DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2024): 0.8

5-year Journal Impact Factor (2024): 0.7

CiteScore (2024): 2.1

SNIP (2024): 1.162

Discussiones Mathematicae Graph Theory

Article in press


Authors:

M. Ji

Meng Ji

Tianjin Normal University

email: mji@tjnu.edu.cn

Y. Mao

Yaping Mao

Department of Mathematics, Qinghai Normal University

Center for Mathematics and Interdisciplinary Sciences of Qinghai Province

email: yapingmao@outlook.com

I. Schiermeyer

Ingo Schiermeyer

Institut für Diskrete Mathematik und Algebra
Technische Universität Bergakademie Freiberg
09596 Freiberg
GERMANY

email: ingo.schiermeyer@math.tu-freiberg.de

Title:

Bounds for Irredundant and CO-Irredundant Ramsey Numbers

PDF

Source:

Discussiones Mathematicae Graph Theory

Received: 2025-02-05 , Revised: 2025-08-14 , Accepted: 2025-08-22 , Available online: 2025-09-16 , https://doi.org/10.7151/dmgt.2604

Abstract:

A set of vertices $X\subseteq V$ in a simple graph $G(V,E)$ is irredundant (CO-irredundant) if each vertex $x\in X$ is either isolated in the induced subgraph $G[X]$ or else has a private neighbor $y\in V\setminus X$ ($y\in V$) that is adjacent to $x$ and to no other vertex of $X$. The irredundant Ramsey number $s(t_{1},\ldots,t_{l})$ and CO-irredundant Ramsey number $s_{\operatorname{CO}}(t_{1},\ldots,t_{l})$ are respectively the minimum $N$ such that every $l$-coloring of the edges of the complete graph $K_{N}$ on $N$ vertices has a monochromatic irredundant set and a monochromatic CO-irredundant set of size $t_{i}$ for some $1\leq i\leq l$. In this paper, first, we establish a lower bound for the irredundant Ramsey number $s(t_{1},\ldots,t_{l})$ using a random and probabilistic method, which extends the lower bound for $s(t,t)$ due to Chen-Hattingh-Rousseau. Second, using Krivelevich's lemma, we give an asymptotic lower bound for the $\operatorname{CO}$-irredundant Ramsey number $s_{\operatorname{CO}}(m,n)$. In the end, we improve the upper bound for $s(3,9)$ such that $24\leq s(3,9)\leq 26$.

Keywords:

irredundant Ramsey number, $\operatorname{CO}$-irredundant Ramsey number, irredundant set

References:

  1. J.A. Bondy and U.S.R. Murty, Graph Theory, Grad. Texts in Math. 244 (Springer-Verlag, London, 2008).
    https://doi.org/10.1007/978-1-84628-970-5
  2. R.C. Brewster, E.J. Cockayne and C.M. Mynhardt, Irredundant Ramsey numbers for graphs, J. Graph Theory 13 (1989) 283–290.
    https://doi.org/10.1002/jgt.3190130303
  3. R.C. Brewster, E.J. Cockayne and C.M. Mynhardt, The irredundant Ramsey number $s(3,6)$, Quaest. Math. 13 (1990) 141–157.
    https://doi.org/10.1080/16073606.1990.9631608
  4. A.P. Burger, J.H. Hattingh and J.H. van Vuuren, The mixed irredundant Ramsey numbers $t(3,7)=18$ and $t(3,8)=22$, Quaest. Math. 37 (2014) 571–589.
    https://doi.org/10.2989/16073606.2014.894691
  5. A. Burger and J. Vuuren, The irredundance-related Ramsey numbers $s(3,8) = 21$ and $w(3,8) = 21$, Util. Math. 120 (2017) 93–107.
    https://doi.org/10.61091/um120-08
  6. G. Chen, J.H. Hattingh and C.C. Rousseau, Asymptotic bounds for irredundant and mixed Ramsey numbers, J. Graph Theory 17 (1993) 193–206.
    https://doi.org/10.1002/jgt.3190170208
  7. G. Chen and C.C. Rousseau, The irredundant Ramsey number $s(3,7)$, J. Graph Theory 19 (1995) 263–270.
    https://doi.org/10.1002/jgt.3190190211
  8. E.J. Cockayne, G. Exoo, J.H. Hattingh and C.M. Mynhardt, The irredundant Ramsey number $s(4,4)$, Util. Math. 41 (1992) 119–128.
  9. E.J. Cockayne, J.H. Hattingh, J. Kok and C.M. Mynhardt, Mixed Ramsey numbers and irredundant Turán numbers for graphs, Ars Combin. 29 (1990) 57–68.
  10. E.J. Cockayne, S.T. Hedetniemi and D.J. Miller, Properties of hereditary hypergraphs and middle graphs, Canad. Math. Bull. 21 (1978) 461–468.
    https://doi.org/10.4153/CMB-1978-079-5
  11. E.J. Cockayne, G. MacGillivray and J. Simmons, CO-irredundant Ramsey numbers for graphs, J. Graph Theory 34 (2000) 258–268.
    https://doi.org/10.1002/1097-0118(200008)34:4<258::AID-JGT2>3.0.CO;2-4
  12. P. Erdős, On the number of complete subgraphs contained in certain graphs, Publ. Inst. Hungar. Acad. Sci. 7 (1962) 459–464.
  13. P. Erdős and J.H. Hattingh, Asymptotic bounds for irredundant Ramsey numbers, Quaest. Math. 16 (1993) 319–331.
    https://doi.org/10.1080/16073606.1993.9631740
  14. A.M. Farley and N. Schacham, Senders in broadcast networks: open irredundancy in graphs, Congr. Numer. 38 (1983) 47–57.
  15. J.H. Hattingh, On irredundant Ramsey numbers for graphs, J. Graph Theory 14 (1990) 437–441.
    https://doi.org/10.1002/jgt.3190140407
  16. M.A. Henningh and O.R. Oellermann, On upper domination Ramsey numbers of graphs, Discrete Math. 274 (2004) 125–135.
    https://doi.org/10.1016/S0012-365X(03)00084-0
  17. M. Krivelevich, A lower bound for irredundant Ramsey numbers, Discrete Math. 183 (1998) 185–192.
    https://doi.org/10.1016/S0012-365X(97)00055-1
  18. C.M. Mynhardt and A. Roux, Irredundance, in: Structures of Domination in Graphs, T.W. Haynes, S.T. Hedetniemi and M.A. Henning (Ed(s)), Dev. Math. 66, (Springer, Cham, 2021) 135–181.
    https://doi.org/10.1007/978-3-030-58892-2_6
  19. V. Nikiforov, On the minimum number of $k$-cliques in graphs with restricted independence number, Combin. Probab. Comput. 10 (2001) 361–366.
    https://doi.org/10.1017/S0963548301004722
  20. C.C. Rousseau and S.E. Speed, Mixed Ramsey numbers revisited, Combin. Probab. Comput. 12 (2003) 653–660.
    https://doi.org/10.1017/S0963548303005704
  21. J.B. Shearer, A note on the independence number of triangle-free graphs, Discrete Math. 46 (1983) 83–87.
    https://doi.org/10.1016/0012-365X(83)90273-X
  22. J. Spencer, Asymptotic lower bounds for Ramsey functions, Discrete Math. 20 (1977) 69–76.
    https://doi.org/10.1016/0012-365X(77)90044-9
  23. W. Sawin, An improved lower bound for multicolor Ramsey numbers and a problem of Erdős, J. Combin. Theory Ser. A 188 (2022) 105579.
    https://doi.org/10.1016/j.jcta.2021.105579

Close