DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2024): 0.8

5-year Journal Impact Factor (2024): 0.7

CiteScore (2024): 2.1

SNIP (2024): 1.162

Discussiones Mathematicae Graph Theory

Article in press


Authors:

J. Hedžet

Jaka Hedžet

Institute of Mathematics, Physics and Mechanics

University of Ljubljana, Slovenia

email: jaka.hedzet96@gmail.com

B. Brešar

Boštjan Brešar

Boštjan Brešar
University of Maribor,
Faculty of Natural Sciences and Mathematics,
Koroška c. 160
2000 Maribor
Slovenia

email: bostjan.bresar@um.si

R. Herrman

Rebekah Herrman

Department of Industrial and Systems Engineering, The University of Tennessee Knoxville, Knoxville, TN, United States of America

email: rherrma2@utk.edu

Title:

Bootstrap percolation and $P_3$-hull number in direct products of graphs

PDF

Source:

Discussiones Mathematicae Graph Theory

Received: 2025-03-10 , Revised: 2025-08-09 , Accepted: 2025-08-11 , Available online: 2025-09-15 , https://doi.org/10.7151/dmgt.2603

Abstract:

The $r$-neighbor bootstrap percolation is a graph infection process based on the update rule by which a vertex with $r$ infected neighbors becomes infected. We say that an initial set of infected vertices propagates if all vertices of a graph $G$ are eventually infected, and the minimum cardinality of such a set in $G$ is called the $r$-bootstrap percolation number, $m(G,r)$, of $G$. In this paper, we study percolating sets in direct products of graphs. While in general graphs there is no non-trivial upper bound on $m(G× H,r)$, we prove several upper bounds under the assumption $\delta(G)\ge r$. We also characterize the connected graphs $G$ and $H$ with minimum degree $2$ that satisfy $m(G × H, 2)=\frac{|V(G × H)|}{2}$. In addition, we determine the exact values of $m(P_n × P_m, 2)$, which are $m+n-1$ if $m$ and $n$ are of different parities, and $m+n$ otherwise.

Keywords:

bootstrap percolation, direct product of graphs, $P_3$-convexity

References:

  1. J. Balogh and B. Bollobás, Bootstrap percolation on the hypercube, Probab. Theory Related Fields 134 (2006) 624–648.
    https://doi.org/10.1007/s00440-005-0451-6
  2. J. Balogh, B. Bollobás, H. Duminil-Copin and R. Morris, The sharp threshold for bootstrap percolation in all dimensions, Trans. Amer. Math. Soc. 364 (2012) 2667–2701.
    https://doi.org/10.1090/S0002-9947-2011-05552-2
  3. J. Balogh and G. Pete, Random disease on the square grid, Random Structures Algorithms 13 (1998) 409–422.
    https://doi.org/10.1002/(SICI)1098-2418(199810/12)13:3/4$<$409::AID-RSA11$>$3.0.CO;2-U
  4. M. Bidgoli, A. Mohammadian and B. Tayfeh-Rezaie, Percolating sets in bootstrap percolation on the Hamming graphs and triangular graphs, European J. Combin. 92 (2021) 103256.
    https://doi.org/10.1016/j.ejc.2020.103256
  5. B. Bollobás, The Art of Mathematics: Coffee Time in Memphis (Cambridge University Press, 2006).
    https://doi.org/10.1017/CBO9780511816574
  6. B. Brešar and J. Hedžet, Bootstrap percolation in strong products of graphs, Electron. J. Combin. 31 (2024) #P4.35.
    https://doi.org/10.37236/11826
  7. B. Brešar and M. Valencia-Pabon, On the $P_3$-hull number of Hamming graphs, Discrete Appl. Math. 282 (2020) 48–52.
    https://doi.org/10.1016/j.dam.2019.11.011
  8. V. Campos, R.M. Sampaio, A. Silva and J.L. Szwarcfiter, Graphs with few $P_4$'s under the convexity of paths of order three, Discrete Appl. Math. 192 (2015) 28–39.
    https://doi.org/10.1016/j.dam.2014.05.005
  9. M.R. Cappelle, E.M.M. Coelho, H. Coelho, B.R. Silva, F. Protti and U.S. Souza, $P_3$-hull number of graphs with diameter two, Electron. Notes Theor. Comput. Sci. 346 (2019) 309–320.
    https://doi.org/10.1016/j.entcs.2019.08.028
  10. C.C. Centeno, S. Dantas, M.C. Dourado, D. Rautenbach and J.L. Szwarcfiter, Convex partitions of graphs induced by paths of order three, Discrete Math. Theor. Comput. Sci. 12(5) (2010) 175–184.
    https://doi.org/10.46298/dmtcs.502
  11. E.M.M. Coelho, H. Coelho, J.R. Nascimento and J.L. Szwarcfiter, On the $P_3$-hull number of some products of graphs, Discrete Appl. Math. 253 (2019) 2–13.
    https://doi.org/10.1016/j.dam.2018.04.024
  12. E.M.M. Coelho, M.C. Dourado and R.M. Sampaio, Inapproximability results for graph convexity parameters, Theoret. Comput. Sci. 600 (2015) 49–58.
    https://doi.org/10.1016/j.tcs.2015.06.059
  13. L.M. González, L.N. Grippo and M.D. Safe, Formulas in connection with parameters related to convexity of paths on three vertices: caterpillars and unit interval graphs, Australas. J. Combin. 79 (2021) 401–423.
  14. L.N. Grippo, A. Pastine, P. Torres, M. Valencia-Pabon and J.C. Vera, On the $P_3$-hull number of Kneser graphs, Electron. J. Combin. 28 (2021) #P3.32.
    https://doi.org/10.37236/9903
  15. R. Hammack, W. Imrich and S. Klavžar, Handbook of Product Graphs, Second Edition (CRC Press, Boca Raton, 2011).
    https://doi.org/10.1201/b10959
  16. M. Morrison and J.A. Noel, Extremal bounds for bootstrap percolation in the hypercube, J. Combin. Theory Ser. A 156 (2018) 61–84.
    https://doi.org/10.1016/j.jcta.2017.11.018
  17. M. Przykucki and T. Shelton, Smallest percolating sets in bootstrap percolation on grids, Electron. J. Combin. 27 (2020) #P4.34.
    https://doi.org/10.37236/9582
  18. Y. Shitov, Counterexamples to Hedetniemi's conjecture, Ann. of Math. 190 (2019) 663–667.
    https://doi.org/10.4007/annals.2019.190.2.6
  19. C. Tardif, Hedetniemi's conjecture, $40$ years later, Graph Theory Notes N. Y. 54 (2008) 46–57.
  20. D.B. West, Introduction to Graph Theory, Second Edition (Prentice Hall, USA, 2001).
  21. X. Zhu, A survey of Hedetniemi's conjecture, Taiwanese J. Math. 2 (1998) 1–24.
    https://doi.org/10.11650/twjm/1500406890

Close