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Abstract

The r-neighbor bootstrap percolation is a graph infection process based
on the update rule by which a vertex with r infected neighbors becomes
infected. We say that an initial set of infected vertices propagates if all
vertices of a graph G are eventually infected, and the minimum cardinality
of such a set in G is called the r-bootstrap percolation number, m(G, r), of
G. In this paper, we study percolating sets in direct products of graphs.
While in general graphs there is no non-trivial upper bound on m(G×H, r),
we prove several upper bounds under the assumption δ(G) ≥ r.

We also characterize the connected graphs G and H with minimum de-

gree 2 that satisfy m(G×H, 2) = |V (G×H)|
2 . In addition, we determine the

exact values of m(Pn×Pm, 2), which are m+n−1 if m and n are of different
parities, and m+ n otherwise.
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1. Introduction

Given a graph G and an integer r ≥ 2, the r-neighbor bootstrap percolation is
a procedure concerned with the states of its vertices which are of two types:
infected or uninfected. An initial set of vertices A0 ̸= ∅ is infected, and by the
update rule an uninfected vertex becomes infected whenever it has at least r
infected neighbors. Once infected, a vertex never changes its state. Given a set
A0 ⊆ V (G) of initially infected vertices, if all vertices of G become infected after
an update rule is applied sufficiently many times, then A0 is an r-percolating set
of G, and we also say that A0 propagates. The r-bootstrap percolation number,
m(G, r), of G, is the smallest cardinality of an r-percolating set of G.

Bootstrap percolation in graphs was considered from different perspectives,
which often concerned classes of graphs that have a product-like structure. Early
studies of r-neighbor bootstrap percolation in graphs were on square grids [2, 3]
and hypercubes (i.e., the Cartesian products of graphs K2) [1]. Recently, those
investigations were extended to generalizations of the mentioned structures, no-
tably on the d-dimensional square grids [17], and the Cartesian powers of complete
graphs [4]. One of the basic questions of these investigations is the probability
that a set of infected vertices will propagate if each vertex is infected with some
probability. Nevertheless, in several of these studies extremal values have also
been considered, where the goal is to determine the cardinality of the smallest
possible set of infected vertices that propagates. Some other papers only focus
on this combinatorial aspect of the smallest set which propagates. For instance,
the r-neighbor bootstrap percolation number was recently investigated in strong
products of graphs [6].

In the case r = 2, the 2-neighbor bootstrap percolation number coincides
with the P3-hull number, which arises from the so-called P3-convexity introduced
in [10]. Efficient algorithms for determining the P3-hull number and related in-
variants in several classes of graph were found in [8], and in [12] inaproximability
results were proved for several convexity parameters including the P3-hull num-
ber. The P3-hull number was recently determined for caterpillar graphs [13],
while exact values or bounds for this number were obtained for Kneser graphs
[14] and graphs with diameter 2 [9]. Concerning products of graphs and using the
language of bootstrap percolation, the 2-neighbor bootstrap percolation number
was recently determined for Hamming graphs [7], and was also studied in var-
ious standard graph products [11]. While the 2-neighbor bootstrap percolation
numbers for strong and lexicographic products of graphs are straightforward to
prove, in general, bounds for the Cartesian product of graphs are more involved;
see [11]. Moreover, the fourth among the standard graph products (see [15] for
an extensive survey on graph products), the direct product, was not considered
in [11] at all.
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The definition of the direct product G × H of graphs G and H is simple:
while V (G × H) = V (G) × V (H), vertices (g, h), (g′, h′) are adjacent in G × H
if gg′ ∈ E(G) and hh′ ∈ E(H). Due to its definition, this graph product is
also known as the categorical product and the tensor product. When considering
graph invariants of graph products, the direct product is often the most chal-
lenging one among the four standard graph products. For instance, the notorious
Hedetniemi’s conjecture on the chromatic number of the direct product of graphs
was posed in 1966, and was intensively studied for half a century (see two sur-
veys [19, 21]), until it was only recently disproved [18]. In this paper, we initiate
the study of the r-neighbor bootstrap percolation in direct products of graphs.

The paper is organized as follows. In the next section, we provide basic
definitions and notation. In Section 3, we show several upper bounds on m(G×
H, r). In particular, we prove that if G is a graph with δ(G) ≥ r and H is
a connected graph, then m(G × H, r) is bounded from above by the order of
G. Then, in Section 4, we characterize the connected graphs G with δ(G) ≥ 2
for which m(G × K2, 2) = |V (G)|. In Section 5, we consider the variation of
the grid that pertains to direct product, notably graphs Pm × Pn, for which we
obtain closed formulas for the values of their 2-neighbor bootstrap percolation
numbers (and P3-hull numbers). Finally, we conclude with several open problems
in Section 6.

2. Definitions and Notation

Let G be a graph and v ∈ V (G) one of its vertices. By NG(v), or simply N(v), we
denote the neighborhood of v, which is defined as the set of vertices in V (G) that
are adjacent to v. The r-neighbor bootstrap percolation is a color change process
that begins with an arbitrarily chosen initial set A0 ⊆ V (G) of blue vertices,
and, for every t ≥ 1, At = At−1 ∪ {v ∈ V (G) : |N(v) ∩ At−1| ≥ r} is the set of
vertices whose color is blue at time t. We say that the set A0 propagates (or is a
percolating set of G) if

⋃
t≥0At = V (G).

Given a graph G and r ≥ 2, let

m(G, r) = min

{
|A0| : A0 ⊆ V (G),

∞⋃
t=0

At = V (G)

}

be the size of a smallest percolating set in G. Any percolating set S satisfying
m(G, r) = |S| is thus a minimum percolating set, and m(G, r) is the r-percolation
number of G. We also say that blue vertices are infected, and so vertices that
are not blue are uninfected, and the process of color change is referred to as the
process of infecting vertices in a graph.
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It is sometimes convenient to present the percolation procedure in the fol-
lowing alternative way. If S is an r-percolating set in G, then we may order the
vertices of V (G) \ S in a sequence (x1, . . . , x|V (G)|−|S|) such that xi has at least
r neighbors in S ∪ {x1, . . . , xi−1} for all i ∈ [|V (G)| − |S|].

The sequence is not unique, and we may reorder any subsequence of vertices
that belong to the same set At as defined above, in any order.

Let G and H be two graphs, and consider their direct product G×H. For a
fixed h ∈ V (H), the subset Gh = {(g, h) : g ∈ V (G)} of V (G×H) is the G-layer
on vertex h. Clearly, the subgraph of G×H induced by the vertices of the G-layer
on h is the empty graph on |V (G)| vertices. Similarly, for g ∈ V (G), the H-layer
on vertex g is gH = {(g, h) : h ∈ V (H)}. It is well known that the direct product
G ×H is a connected graph if and only if G and H are both connected and at
least one of them is non-bipartite [15].

If G is a graph, and S ⊆ V (G), then by G[S] we denote the subgraph of G
induced by S. For notation that is not explicitly defined here we refer to [20].

3. Upper Bounds

In this section, we present several upper bounds on m(G×H, r). We start with
an observation that such bounds are feasible only if the product of minimum
degrees δ(G) and δ(H) of G and H is not smaller than r.

For instance, consider the situation when r = 2 and δ(G) = δ(H) = 1. Note
that degG×H(u, v) = degG(u) degH(v), thus (u, v) will have degree 1 if both u
and v have degree 1 in their graphs. Vertices of degree 1 are sensitive for the
2-neighbor bootstrap percolation process, since they cannot become blue by the
color change rule, thus they must be colored blue initially (that is, they belong
to A0). As an example, let G be the graph K1,n−1 + e, which is obtained from
the star K1,n−1 by adding an edge, and let H ∼= K1,n−1. One can easily see
that (K1,n−1 + e) × K1,n−1 has (n − 1)(n − 3) vertices of degree 1, and with a
little more effort that m

(
(K1,n−1 + e) × K1,n−1, 2

)
= (n − 1)(n − 3) + 2, while

|V (G×H)| = n2. Thus, we infer the following observation.

Observation 1. There exists families of graphs Gn and Hn, each of order n,
such that

lim
n→∞

m(Gn ×Hn, 2)

|V (Gn ×Hn)|
= 1.

The above observation readily implies that there exists no constant c < 1
such that m(G×H, 2) ≤ c|V (G×H)| holds for all graphs G and H, even if their
order is bounded from below.

In the following two upper bounds on m(G×H, r) we only require that one
of the factors (namely, G) has minimum degree at least r.
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Proposition 2. Let r ≥ 2 and let G and H be connected graphs. If δ(G) ≥ r,
then m(G×H, r) ≤ 2m(G, r).

Proof. Let h, h′ ∈ V (H) be adjacent vertices in H, and let S ⊂ V (G) be a
minimum r-percolating set in G. We claim that S × {h, h′} is an r-percolating
set in G×H. (Since |S × {h, h′}| = 2m(G, r), the claim implies the truth of the
proposition.) Let (x1, . . . , x|V (G)|−|S|) be a sequence of vertices in V (G) \ S in an
order in which they become blue in an r-percolation procedure in G (as noted
above, the sequence is not unique, yet we may choose it arbitrarily). Note that
in G×H vertices (xi, h) and (xi, h

′) become blue, since they have at least r blue
neighbors in the set (S∪{x1, . . . , xi−1})×{h′}, respectively (S∪{x1, . . . , xi−1})×
{h}. In this way, all vertices of the layers Gh and Gh′

become blue. Next, since
δ(G) ≥ r, each vertex of a layer Gh′′

, where h′′ ∈ NH(h) ∪NH(h′), has at least r
neighbors in Gh ∪Gh′

, and so it becomes blue. By induction and connectedness
of H, we infer that all vertices of G×H eventually become blue.

In the proof of Proposition 2, the intermediate step of propagation was to
have all vertices of a layer colored blue. In the following result, we start with
such a set, thus the order of G is an upper bound for m(G×H, r)

Proposition 3. If G is a graph with δ(G) ≥ r ≥ 2 and H is a connected graph,
then m(G × H, r) ≤ |V (G)|. In particular, any G-layer is a percolating set of
G×H.

Proof. Let h ∈ V (H) be an arbitrary vertex inH, and let S = Gh. We claim that
S propagates. Indeed, for any g ∈ V (G) and h′ ∈ NH(h), vertex (g, h′) has at least
r neighbors in Gh, since degG(g) ≥ δ(G) ≥ r. In this way, vertices of Gh′

become
blue at time t = 1. By using induction and connectedness of H, we derive that all
vertices of G×H eventually become blue. Thus, m(G×H, r) ≤ |Gh| = |V (G)|.

By exchanging the roles of G and H and using the construction from Propo-
sition 3 for each connected component of G or H, we derive the following obser-
vation.

Corollary 4. If G and H are graphs with min{δ(G), δ(H)} ≥ 2, then m(G ×
H, 2) ≤ |V (G×H)|

2 .

As an example of graphs G and H that attain equality in Corollary 4, we
can take G = C2k+1 and H = K2. Indeed, C2k+1 ×K2

∼= C4k+2, and it is easy to
see that m(C4k+2, 2) = 2k + 1.

Note that δ(G) ≥ r and |V (H)| ≥ 3 imply, by Proposition 3, that m(G ×
H, r) ≤ |V (G)| < |V (G×H)|

2 . Therefore, in order to characterize the pairs of
graphs that attain the bound in Corollary 4, we may restrict to the case when
δ(G) ≥ r and H ∼= K2. Nevertheless, the solution of this problem leads through
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the study of graphs that attain the equality in the bound of Proposition 3, which
we consider in the next section.

4. Graphs with m(G×H, 2) = |V (G)|

In this section, we focus on the case r = 2, and characterize the graphs G and H
for which the bound in Proposition 3 is attained. In order for the equality in the
bound of Proposition 3 may have a chance at holding, G must satisfy δ(G) = r.
More precisely, the following result holds.

Proposition 5. Let r ≥ 2 and let G and H be connected graphs. If δ(G) ≥ r
and there exists a vertex v ∈ V (G) such that for r of its neighbors u1, . . . , ur, it
holds degG(ui) > r for all i ∈ [r], then

m(G×H, r) < |V (G)|.

Proof. Let x and y be adjacent vertices of H. Color all vertices (g, x) ∈ Gx blue
except for the vertex (v, x), where v ∈ V (G) has neighbors u1, . . . , ur all of which
have degree greater than r in G (such a vertex v exists by the assumption). This
blue set has cardinality |V (G)| − 1. Now, all vertices (ui, y) are colored blue in
the first percolation step since all have at least r distinct blue neighbors of the
form (g, x) for some g ∈ V (G) (since their degree is at least r + 1). Then (v, x)
is colored in the second percolation step since it has r colored neighbors, namely
(u1, y), . . . , (ur, y). Therefore all vertices of Gx are blue after the first two steps.
By using induction and connectedness of H, we derive that all vertices of G×H
become blue.

As a by-product of the above result we have the following observation.

Corollary 6. If G is a connected graph with δ(G) = d, then m(G×H, r) < |V (G)|
for all r < d.

The case for ∆(G) = 2 = δ(G) has already been established (see the observa-
tions about cycles). In order to examine other connected graphs with ∆(G) ≥ 3,
we first need the following auxilliary result, considering connected graphs with
∆(G) ≥ 3 of odd order.

Lemma 4.1. If G and H are connected graphs with δ(G) ≥ 2,∆(G) ≥ 3 and
|V (G)| = 2k + 1, then m(G×H, 2) ≤ 2k.

Proof. Let V (H) = {1, 2, . . . , |V (H)|}, where vertices 1 and 2 are adjacent. Note
that G is not a cycle.

We claim that G contains a path P such that the induced subgraph G′ =
G[V (P )] has δ(G′) ≥ 2 and G′ is not an induced cycle. To see that such a path P
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exists, first note that G has a cycle C as a subgraph. If C is a Hamiltonian cycle,
then clearly C is not induced, and for P one can choose a Hamiltonian path.
Otherwise, choose an arbitrary x in C that has a neighbor outside C and extend
a Hamiltonian path of C with an end-vertex x by traversing along an arbitrary
path P ′ that leaves C from x. Since G is finite and δ(G) ≥ 2, eventually there
will be a vertex from P ′ that has a neighbor on P ′ or on C, hence the resulting
path P has the claimed properties (that is, G′ = G[V (P )] has δ(G′) ≥ 2 and G′

is not an induced cycle).
Now, let P = v1v2 · · · vp be such a path in G. Furthermore, let the endvertex

v1 be chosen in such a way that either degG′(v1) > 2 or degG′(v1) = 2 and
v1vp /∈ E(G). (Indeed, we can do this because if degG′(v1) = 2 and v1vp ∈ E(G),
then G[V (P )] contains a Hamiltonian cycle, which is not induced. Hence, we can
choose v1 arbitrarily, as a vertex of degree at least 3 in G′.) By Proposition 3, it
suffices to show that all vertices of a G-layer become blue. We consider two cases
with respect to the order of P .

Case 1. p is odd. In this case, color by blue the vertices

(v2, 1), (v2, 2), (v4, 1), (v4, 2), . . . , (vp−1, 1), (vp−1, 2).

This set enforces that all the vertices in V (G′) × {1, 2} become blue. Indeed,
every vertex (vq, i) for 3 ≤ q ≤ p − 2 and i ∈ {1, 2} is either initially blue or
adjacent to two blue vertices. Note that v1 is adjacent to v2, and let v1 be also
adjacent to vj ̸= vp. Then vertices (v1, 1), (v1, 2) have two blue neighbors and are
colored blue in step 1. Finally, one can infer that vertices (vp, 1), (vp, 2) also have
two blue neighbors and thus become blue.

Now, let K = G−G′. We in addition color by blue all vertices in V (K)×{1}.
Once again we get that the whole subgraph induced by V (G) × {1, 2} becomes
blue, and we infer that the set of vertices initially colored by blue propagates.
Note that the number of these vertices is 2p−1

2 + |V (K)| = p−1+2k+1−p = 2k,
which completes the proof of this case.

Case 2. p is even. Initially, color by blue all vertices from the set

V (G′)× {1}.

Note that all vertices from V (G′) × {1, 2} become blue due to Proposition 3.
Denote G0 = G′ and let Gi be obtained from Gi−1 by adding a maximal path
vi1vi2 · · · vit of vertices in V (G) \ V (Gi−1) such that vi1 is adjacent to a vertex in
Gi−1. (Clearly, unlessGi−1 = G such a path exists.). Note that δ(Gi) ≥ 2 for all i.
If t is even, then we color blue all vertices (vi1 , 1), (vi2 , 1), . . . , (vit , 1). Once again
from Proposition 3 we know that every vertex in V (Gi) × {1, 2} becomes blue.
Since the order ofG is odd this means that for some i, there were an odd number of
vertices added to Gi−1 to obtain Gi. Without loss of generality let i = 1, V (G0) =
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{v1, v2, . . . , vp}, and V (G1) = V (G0)∪{vp+1, vp+2, . . . , vp+2ℓ−1} for some positive
integer ℓ and by the construction we may assume vp+jvp+j+1 ∈ E(G1) for all
1 ≤ j ≤ 2ℓ− 2. Also without loss of generality let vpvp+1 ∈ E(G1). Now we color
blue the vertices {(vp+2, 1), (vp+2, 2), (vp+4, 1), (vp+4, 2), . . . , (vp+2ℓ−2, 1), (vp+2ℓ−2,
2)}. Note that vertices (vp+1, 1), (vp+1, 2), (vp+3, 1), (vp+3, 2), . . . , (vp+2ℓ−3, 1),
(vp+2ℓ−3, 2) have two blue neighbors and are therefore colored blue. Since vertex
vp+2ℓ−1 has degree at least 2 in G1 this means that vertices (vp+2ℓ−1, 1), (vp+2ℓ−1,
2) are now also adjacent to two blue vertices. This means that we initially colored
exactly p+2ℓ−2 = |V (G1)|−1 vertices and all vertices of V (G1)×{1, 2} become
blue. Finally, we color blue all vertices in V (G \ G1) × {1}. Since the initial
set of blue vertices has cardinality |V (G \ G1)| + |V (G1)| − 1 = |V (G)| − 1 and
eventually an entire G-layer becomes blue (namely V (G) × {1}), this concludes
the proof due to Proposition 3.

Lemma 4.2. If G and H are connected graphs with δ(G) = 2,∆(G) ≥ 3 such
that G contains an odd cycle, then m(G×H, 2) ≤ |V (G)| − 1.

Proof. Due to Lemma 4.1, we only need to consider the case when G has an
even order. Let |V (G)| = n and V (H) = {1, 2, . . . , |V (H)|}, such that 1 and 2 are
adjacent. In the proof, we will several times use Proposition 3, without explicitly
mentioning it, in the sense that whenever we will notice that vertices of a G-layer
became blue it yields that the (initially chosen set of blue vertices) propagates.

Choose a cycle C in G, which is isomorphic to Cp, where p is odd, and color
all vertices of V (C) × {1} blue. Notice that all vertices of V (C) × {2} have
two blue neighbors and become blue at step 1 of the color change process. Let
P 1 : v1v2 · · · vt be a path inG of maximum length, such that v1 is adjacent to some
vertex in C. Since the path is maximum, vt is adjacent to either vj for some j ̸= t
or to a vertex in V (C). Now, color by blue all vertices (v2, i), (v4, i), . . . , (vt, i),
if t is even, or (v2, i), (v4, i), . . . , (vt−1, i), if t is odd, for i ∈ {1, 2}. In a similar
way as in the proof of Proposition 4.1, we can show that all vertices of (V (C) ∪
{v1, . . . , vt}) × {1, 2} become blue. If t was even, then we initially colored p + t
vertices, and if t was odd, we initially colored p+ t−1 vertices. Denote by G1 the
subgraph of G induced by V (C) ∪ V (P 1). Notice that if V (G1) = V (G), then t
must have been odd, so we initially colored p+2 · t−1

2 = p+ t− 1 = n− 1 vertices
and the proof is complete. Otherwise, we inductively construct a nested sequence
of subgraphs Gi of G, where G1 has just been defined, and we next define how
we obtain Gi+1 from Gi.

Thus, let Gi be the subgraph of G such that at most |V (Gi)| vertices of
V (Gi)×{1, 2} are initially colored blue, and which makes all vertices of V (Gi)×
{1, 2} be colored blue. Let P i+1 be a path of maximum length in G such that a
vertex of P i is adjacent to a vertex in Gi. As in the previous paragraph, color
blue the vertices of V (P i+1) × {1, 2}, starting from the second vertex of P i+1
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and alternating. Now, the next subgraph in the sequence, Gi+1, is induced by
V (Gi) ∪ V (P i). Note that at most |V (Gi+1)| vertices have been colored blue
initially, and the whole subgraph induced by V (Gi+1)×{1, 2} became blue after
a few steps of applying the color change rule.

Since we started the process with an odd cycle, and G has an even order, it is
clear that one of the paths P j has to have an odd number of vertices. Note that
when a path P j is used in the construction, the graph Gj+1 defined as induced
by V (Gj) ∪ V (P j+1), and we initially colored at most |V (Gj+1)| − 1 vertices.
By using the described procedure, one can see that initially at most |V (G)| − k
vertices were colored blue, where k is the number of odd paths that appear in
the procedure.

Figure 1. Graphs G and G×K2 with their percolating sets.

From the previous two lemmas we obtain a result that characterizes the
extremal graphs for the bound in Proposition 3 for the case r = 2. Note that
Lemma 4.2 implies that unless G is an odd cycle, it has to be bipartite. In
addition, G has to be a bipartite graph withm(G, 2) ≥ |V (G)|

2 . However, since it is

clear that in a bipartite graph G with δ(G) ≥ 2, we always have m(G, 2) ≤ |V (G)|
2 ,

the condition reduces to m(G, 2) = |V (G)|
2 .

Theorem 4.3. If G is a connected graph with δ(G) ≥ 2, then m(G ×K2, 2) =
|V (G)| if and only if either

• G ∼= C2k+1, where k ≥ 2, or

• G is a bipartite graph with m(G, 2) = |V (G)|
2 .

As a consequence of the theorem above, we also get a characterization of the
graphs G and H with attaining the half of the order bound.

Corollary 7. If G and H are connected graphs with δ(G) ≥ 2, then

m(G×H, 2) = |V (G×H)|
2 if and only if H ∼= K2 and either

• G ∼= C2k+1, where k ≥ 2, or

• G is a bipartite graph with m(G, 2) = |V (G)|
2 .

5. Direct Products of Two Paths

As mentioned in the introduction and encountered during our studies of upper
bounds, it is hard to expect any clear general results on the bootstrap percolation
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numbers of direct product of graphs. Thus, in this section we study a basic
instance of direct products, notably, direct products of two paths.

Our aim is to establish the values of m(Pn×Pm, 2). First, note that whenever
n = 2 (respectively m = 2) the direct product of two paths is the disjoint union of
two paths Pm (respectively Pn). Therefore m(P2 × Pm, 2) = 2m(Pm, 2) = 2

⌈
m
2

⌉
.

Furthermore, when n = m = 3, the graph Pn × Pm is the disjoint union of C4

and K1,4, hence m(P3 × P3, 2) = 6. Therefore, in the following results, n and m
will always be such that n ≥ m ≥ 3, and not both m and n are equal to 3.

In the following lemma, we provide lower bounds for the 2-bootstrap percola-
tion numbers of direct products of paths. We do this by making use of perimeter
arguments that were first used for Cartesian grids by Bollobás [5].

Lemma 5.1. Let n,m ≥ 3 and not both equal to 3. Then

m(Pn × Pm, 2) ≥

{
n+m− 1, n+m is odd,

n+m, otherwise.

Proof. Denote V (Pn) = {1, 2, . . . , n} and V (Pm) = {1, 2, . . . ,m}. Note that the
graph Pn × Pm is the disjoint union of two graphs.

When n and m are both even, Pn×Pm contains two copies of the same graph,
which we denote by G1 (see Figure 2 for an example). When n+m is odd, Pn×Pm

contains two copies of the graph, which we denote by G2 (see Figure 3 for an
example). In either case, because of symmetry we will consider the copy of Gi

that contains vertex (1, 1). (Clearly, m(Pn × Pm, 2) = 2m(Gi, 2).) Observe that
G1 and G2 have a grid-like structure, and we can use the well known perimeter
idea of Bollobás: we replace the vertices of the graph with unit squares, such that
two squares share an edge whenever the corresponding vertices are adjacent. If
a vertex is colored blue, then the corresponding square is also blue. Notice that
whenever a new square is colored blue by at least two blue neighbors, the total
perimeter of the blue domain does not increase, which means that the perimeter
of initial blue domain must be at least as big as the total perimeter of the grid.
We distinguish three cases.

Case 1. n,m even. Note that only the squares corresponding to vertices

(1, 1), (3, 1), . . . , (n− 1, 1), (n, 2), (n, 4), . . . , (n,m),

(n− 2,m), (n− 4,m), . . . , (2,m), (1,m− 1), (1,m− 3), . . . , (1, 3)

contribute to the perimeter of the whole grid that arises from G1. Every square
contributes 2 to the total perimeter, except for those corresponding to vertices
of degree 1, which are (1, 1) and (n,m), and they contribute 3. Thus the total
perimeter is 3 + 2(n − 2) + 2(m − 2) + 3 = 2n + 2m − 2. As mentioned earlier,
the perimeter of the initial blue domain must also be at least this value. Every
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square can contribute at most 4 units to the total perimeter, therefore m(G, 2) =
2m(G1, 2) ≥ 2

⌈
2n+2m−2

4

⌉
= 2

⌈
n+m−1

2

⌉
= n+m.

Case 2. n + m odd. Without loss of generality, let n be odd. Similarly to
Case 1, we count the vertices which contribute to the total perimeter. Those are
(1, 1), (3, 1), . . . , (n, 1), (n, 3), . . . , (n,m−1), (m,n−1), (m,n−3), . . . , (m, 2), (m−
1, 1), (m − 3, 1), . . . , (3, 1). Each contributes 2 to the total perimeter except for
(1, 1) and (n, 1), which contribute 3. The total perimeter is therefore 3+2

⌊
n−2
2

⌋
+

3 + 2(m− 2) + 2n−1
2 = 6 + (n− 3) + 2m− 4 + (n− 1) = 2n+ 2m− 2. We infer

that m(Pn × Pm, 2) = 2m(G1, 2) ≥ 2
⌈
2n+2m−2

4

⌉
= 2n+m−1

2 = n+m− 1.

Case 3. n,m both odd and n ≥ 5. In this case, the product Pn × Pm is the
disjoint union of two non-isomorphic graphs, H1 and H2. The vertex set of H1

is
{
(2a + 1, 2b + 1) : 0 ≤ a ≤

⌊
n
2

⌋
, 0 ≤ b ≤

⌊
m
2

⌋ }
∪
{
(2c, 2d) : 1 ≤ c ≤

⌊
n
2

⌋
, 1 ≤

d ≤
⌊
m
2

⌋ }
See Figure 4 for the example of H1 resulting from P7×P5. The vertex

set of H2 is
{
(2a + 1, 2b) : 0 ≤ a ≤

⌊
n
2

⌋
, 1 ≤ b ≤

⌊
m
2

⌋ }
∪
{
(2c, 2d + 1) : 1 ≤ c ≤⌊

n
2

⌋
, 0 ≤ d ≤

⌊
m
2

⌋ }
. Similar to above, vertices (u, v) and (x, y) form an edge if

|u− x| = |v − y| = 1. See Figure 5 depicting H2 for P7 × P5.

Again, we shall use the perimeter idea replacing vertices with squares. Let us
first count the vertices that contribute to the perimeter of H1. Note there are four
squares, corresponding to vertices (1, 1), (n, 1), (1,m) and (n,m), that contribute
3 to the perimeter of H1, while all other vertices contribute 2. Counting the
number of the edges of the grid of squares that correspond to these vertices, we
derive that the perimeter arising from H1 is 12 + 4

⌊
n−2
2

⌋
+ 4

⌊
m−2
2

⌋
.

Now, in H2, all squares on the perimeter of the corresponding grid contribute
exactly 2 edges to the perimeter. Hence, the total perimeter ofH2 is 4

⌊
n
2

⌋
+4
⌊
m
2

⌋
.

Thus,

m(Pn × Pm, 2) ≥

⌈
12 + 4

⌊
n−2
2

⌋
+ 4

⌊
m−2
2

⌋
4

⌉
+

⌈
4
⌊
n
2

⌋
+ 4

⌊
m
2

⌋
4

⌉

≥

⌈
12 + 4

⌊
n−2
2

⌋
+ 4

⌊
m−2
2

⌋
4

+
4
⌊
n
2

⌋
+ 4

⌊
m
2

⌋
4

⌉

=

⌈
12 + 2(n− 3) + 2(m− 3) + 2(n− 1) + 2(m− 1)

4

⌉
=

⌈
12 + 2n− 6 + 2m− 6 + 2n− 2 + 2m− 2

4

⌉
=

⌈
4n+ 4m− 4

4

⌉
= n+m− 1.
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(1, 1)

(8, 8)

(8, 2)

(2, 8)

Figure 2. Graph G1 in P8 × P8 with its percolating set.

(1, 1) (1, 7)

(7, 5)(1, 5)

Figure 3. Graph G2 in P7 × P6 with a percolating set.

For the upper bounds, we will provide a construction of a 2-percolating set
of the appropriate size.

Lemma 5.2. Let n,m ≥ 3 and not both equal to 3. Then

m(Pn × Pm, 2) ≤

{
n+m− 1, n+m is odd,

n+m, otherwise.

Proof. The proof is by construction of appropriate sets of vertices of the desired
cardinality that 2-percolate. We again distinguish three cases: 1) n and m even,
2) n+m odd, and 3) n,m both odd. We use the notation as in Lemma 5.1.

Case 1. n,m even. We will construct a percolating set of G1 and we shall
orient the graph as a grid where (1, 1) is the top left corner, and (n,m) is the
bottom right. Consider the following subcases.

Subcase 1.1. m = 4. Let A0 = {(1, 1), (n, 2), (2, 4), (n, 4)} ∪
{
(2k + 1, 3) :

k = 1, . . . , m−4
2

}
. Note that |A0| = 4 + n−4

2 = n+4
2 . It can be easily verified that

A0 is a percolating set of desired cardinality.
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Subcase 1.2. m = 4k, k > 1. Let A0 = {(1, 1), (n, 2), (2,m), (n,m)} ∪
{
(2k +

1, 3) : k = 1, . . . , n−4
2

}
∪
{
(1, 4k + 1), (n − 1, 4k + 1) : k = 1, . . . , m−4

4

}
. Then

|A0| = 4 + n−4
2 + 2m−4

4 = n+m
2 .

Subcase 1.3. m = 4k + 2, k ≥ 1. Let A0 = {(1, 1), (n, 2), (n,m)} ∪
{
(2k +

1, 3) : k = 1, . . . , n−4
2

}
∪
{
(1, 4k + 1), (n − 1, 4k + 1) : k = 1, . . . , m−2

4

}
. Then

|A0| = 3 + n−4
2 + 2m−2

4 = n+m
2 .

In both Subcases 1.2 and 1.3, the top four Pn-layers, P 1
n , . . . , P

4
n become

infected due to blue vertices in A0 that belong to layers P 1
n , . . . , P

5
n . In addition

to the vertices of the first four Pn-layers, also (1, 5), (n−1, 5) are blue, since they
belong to A0. By using these blue vertices, all vertices in P 5

n also become blue.
The process continues by gradually infecting vertices of lower levels down to level
8, so if m ≤ 8, the process is completed.

Now, for m > 8 vertices (1, 9), (n−1, 9) are also in A0 in both subcases, which
ensures that the vertices of layer P 9

n become blue, and the process continues to
lower Pn-layers. In the bottom two Pn-layers we have the following situation. If
m = 4k, then (2,m) ∈ A0 is needed to resolve vertex (1,m − 1), while all other
vertices of Pm−1

n and Pm
n \ {(n,m), (n − 1,m − 1), (n − 2,m)} become blue due

to blue vertices from the level above, while (n,m) is in A0, and (n − 1,m − 1)
and (n − 2,m) become blue with a help of vertex (n,m). If m = 4k + 2, the
percolation process is straighforward also in the bottom two Pn-layers.

Case 2. n + m odd. Consider the case when exactly one of n or m is odd,
and suppose without loss of generality that n > m. As earlier, we shall orient the
graph as a grid where (1, 1) is the top left corner, (1,m) is the bottom left, (n, 1)
is the top right, and (n,m) is the bottom right. First note that exactly two of
these vertices have degree one and all other vertices have degree 2 or 4. Since the
product Pn ×Pm results in two copies of the same graph, G2 (example in Figure
3), we shall show that m(G2, 2) =

n+m−1
2 .

We distinguish two cases with respect to the parity of n.

Subcase 2.1. n even. In this case, the vertices (1, 1) and (1,m) have degree
one, there are

⌈
m
2

⌉
vertices in columns that have an odd first coordinate, and⌊

m
2

⌋
vertices in columns that have an even first coordinate. We shall define a

set B ⊂ V (G2) and show that it propagates on one copy of G2. Include in B
alternating vertices on the line segments y = x and y = −x +m + 1 beginning
with x = 1. When

⌈
m
2

⌉
is odd, end at their intersection

( ⌈
m
2

⌉
,
⌈
m
2

⌉ )
. When⌈

m
2

⌉
is even, end at x =

⌊
m
2

⌋
, so the two lines do not intersect. Also include in

B alternating points from the line segments y = n+2−x and y = x−n+m− 1
from x = n until x = n−

⌊
m
2

⌋
when

⌈
m
2

⌉
is odd (two lines do not intersect at a

vertex in B) or x = n−
⌊
m
2

⌋
+1 when

⌈
m
2

⌉
is even (two lines intersect at a vertex

in B). Call these four line segments L. Note the graphs with colored vertices in
these two cases (

⌈
m
2

⌉
odd or even) each have two lines that intersect at a vertex
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in B and two lines that intersect at a vertex not in B. Thus, these two cases
are the same up to rotation, so we only consider the first case for the remainder
of this case (that is, we assume

⌈
m
2

⌉
is odd). Add to B all vertices on the line(

j,
⌈
m
2

⌉ )
for
⌈
m
2

⌉
+ 2 ≤ j ≤ n−

⌈
m
2

⌉
and j odd, and call this line L′. Thus, the

size of B for this subgraph is

|B| =
⌈m
2

⌉
+
⌊m
2

⌋
+

1

2

(
n−

⌈m
2

⌉
−
(⌈m

2

⌉
+ 2
))

+ 1

= m+
1

2

(
n− m+ 1

2
− m+ 1

2
− 2

)
+ 1

=
4m

4
+

2n−m− 1−m− 1− 4 + 4

4

=
2n− 2m− 2

4
=

n+m− 1

2
.

To see that this set propagates on G2, first note that all vertices in L that
were not initially infected become infected in the first step because they each
have two neighbors on L that are in B. Let us examine the vertices within the
two triangular regions formed by L. In the second percolating step, the vertices( ⌈

m
2

⌉
− 2,

⌈
m
2

⌉ )
and

(
n −

⌈
m
2

⌉
+ 2,

⌈
m
2

⌉ )
are infected as they each have two

neighbors on L. In the pth percolating step (which only occurs if m
2 ≥ p), the

vertices
( ⌈

m
2

⌉
−p−2, y

)
and

(
n−
⌊
m
2

⌋
+p+2, y

)
for
⌈
m
2

⌉
−p−2 < y <

⌈
m
2

⌉
+p+2

(y odd if p is odd, y even if p is even) are infected. This is because they all have
two previously infected neighbors in

( ⌊
m
2

⌋
− p− 1, z

)
and

(
n−

⌊
m
2

⌋
+ p+ 1, z

)
,

where
⌈
m
2

⌉
− p− 1 < z <

⌈
m
2

⌉
+ p+ 1, or L, which were previously infected.

To see that vertices outside the triangular regions formed by L are infected,
note the vertices

(
j,
⌈
m
2

⌉
± 1
)
for j ∈

{ ⌈
m
2

⌉
+ 1, n −

⌊
m
2

⌋
− 1
}
are infected in

the second step since they have two infected neighbors in L′ ∪ L. Once these
rows have been infected, it is easy to see that the rows

⌈
m
2

⌉
− 2 and

⌈
m
2

⌉
+ 2

are infected as all vertices in those rows have two neighbors in the rows
⌈
m
2

⌉
− 1

and
⌈
m
2

⌉
+ 1 or one neighbor in those rows and one in L. This process repeats

until all rows outside of L are infected. Since all vertices within the triangular
regions formed by L and all vertices outside of them are eventually infected, B
propagates.

Thus, |A0| = 2|B| = 2n+m−1
2 = n+m− 1.

Subcase 2.2. n odd. When n is odd, the vertices (1, 1) and (n, 1) have degree
one, and all columns have the same number of vertices. We shall find a set
B ⊂ V (G2) that propagates on G2. Include in B alternating vertices on the line
segments y = x and y = m − x from x = 1 to x = m

2 − 1 when m
2 is even or

end at x = m
2 when m

2 is odd. Also include in B alternating points on the lines
y = n + 1 − x and y = x − n +m − 1 from x = n to x = n − (m2 − 2) when m

2
is even or x = n − (m2 ) when m

2 is odd. When m
2 is even, the first pair of lines
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and second pair of lines do not intersect in B, and when m
2 is odd, the first pair

of lines and second pair of lines intersect at a vertex in B. Also include in B all
vertices on the line (j, m2 ) for all feasible j, where m

2 + 2 ≤ j ≤ n − m
2 − 1. The

number of initially infected vertices on this line is
⌊
n−m
2

⌋
since there are n −m

columns between the two triangular regions, and only every second j is feasible
to appear on this line. In either case, the size of B for this subgraph is

|B| = m+

⌊
n−m

2

⌋
=

n−m− 1 + 2m

2
=

n+m− 1

2
.

The percolation process is similar to that in Subcase 2.1 with potentially
subtle differences near the boundary of L and L′. Since there are two copies of
G2 in Pn × Pm, we get |A0| = 2|B| = n + m − 1. Thus, when n + m is odd,
m(Pn × Pm, 2) ≤ n+m− 1.

(1, 1) (7, 1)

(5, 1) (5, 7)

Figure 4. Graph H1 with a percolating set.

(1, 2)

(1, 4)

(7, 2)

(7, 4)

Figure 5. Graph H2 with a percolating set.

Case 3. n,m both odd, n ≥ 5. Pn×Pm results in two disjoint graphs that are
not isomorphic. Call them H1 and H2. An example of each subgraph is shown in
Figures 4–5. There are four distinct combinations of

⌊
n
2

⌋
and

⌊
m
2

⌋
even and odd.

Some of these combinations have identical 2-percolating sets. We will consider
the following three cases:

1.
⌊
n
2

⌋
and

⌊
m
2

⌋
both odd and n ̸= m and the equivalent case

⌊
n
2

⌋
even and⌊

m
2

⌋
odd;
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2.
⌊
n
2

⌋
and

⌊
m
2

⌋
both odd and n = m;

3.
⌊
n
2

⌋
and

⌊
m
2

⌋
both even and the equivalent case

⌊
n
2

⌋
odd and

⌊
m
2

⌋
even.

Subcase 3.1.
⌊
n
2

⌋
and

⌊
m
2

⌋
both odd and n ̸= m and the equivalent case

⌊
n
2

⌋
even and

⌊
m
2

⌋
odd.

We will construct a set B0 in H1 that propagates. Add to B0 alternating
vertices on the lines y = x and y = −x + m + 1 from x = 1 to x =

⌊
m
2

⌋
and

y = −x + n + 1 and y = x − n + m from x = n until x = n −
⌊
m
2

⌋
. Call this

set of lines L. In this case, none of the lines intersect within the domain. Then
add to B0 vertices

(
j,
⌈
m
2

⌉ )
for
⌈
m
2

⌉
+ 2 ≤ j ≤ n−

⌈
m
2

⌉
− 2, and call this set L′.

There are n− 2
⌈
m
2

⌉
= n−m− 1 columns that are not in the domain of the four

line segments described above. Half of these are contained in B0, rounded down.
Thus, the size of B0 is

|B0| = 4

(⌈
m
2

⌉
2

)
+

⌈
n−m− 1

2

⌉
= 2

m+ 1

2
+

n−m− 2

2

=
n+m

2
=

⌈
n+m− 1

2

⌉
.

To see that B0 propagates on H1, first note that all vertices in L that
were not infected initially become infected in the first step because they each
have two neighbors on L that are in B0. The vertices

( ⌊
m
2

⌋
− 1,

⌈
m
2

⌉ )
and(

n−
⌊
m
2

⌋
− 1,

⌈
m
2

⌉ )
are infected in the first step since the former has neighbors( ⌊

m
2

⌋
,
⌊
m
2

⌋ )
,
( ⌊

m
2

⌋
,
⌈
m
2

⌉
+1
)
and the latter has neighbors

(
n−

⌊
m
2

⌋
,
⌊
m
2

⌋ )
,
(
n−⌊

m
2

⌋
,
⌈
m
2

⌉
+ 1
)
that are the last points of the line segments above in B0. Also,

all vertices of the form
(
k,
⌈
m
2

⌉
± 1
)
for odd k in

⌊
m
2

⌋
+ 3 ≤ k ≤ n−

⌊
m
2

⌋
− 3 are

infected in the first step since they have two neighbors in
(
j,
⌈
m
2

⌉ )
⊂ B0 for even

j in
⌈
m
2

⌉
+ 3 ≤ j ≤ n−

⌈
m
2

⌉
− 3.

Let us examine the vertices within each triangular region formed by L. In the
second percolating step, the vertices

( ⌊
m
2

⌋
−2,

⌈
m
2

⌉
±1
)
and

(
n−
⌊
m
2

⌋
+2,

⌈
m
2

⌉
±1
)

for are infected as they each have one neighbor on L and one neighbor in
{( ⌊

m
2

⌋
−

1,
⌈
m
2

⌉ )
,
(
n−

⌊
m
2

⌋
− 1,

⌈
m
2

⌉ )}
. In the pth percolating step (which only occurs if

m
2 ≥ p), the vertices

( ⌊
m
2

⌋
−p, y

)
and

(
n−

⌊
m
2

⌋
+p, y

)
for
⌈
m
2

⌉
−p < y <

⌈
m
2

⌉
+p

(y odd if p is odd, y even if p is even) are infected. This is because they all have
two previously infected neighbors in

( ⌊
m
2

⌋
− p+ 1, z

)
and

(
n−

⌊
m
2

⌋
+ p− 1, z

)
,

where
⌈
m
2

⌉
− p+ 1 < z <

⌈
m
2

⌉
+ p− 1, or L, which were previously infected.

To see that vertices outside L are infected, note the vertices
(
j,
⌈
m
2

⌉
± 1
)
for

j ∈
{ ⌊

m
2

⌋
+ 2, n−

⌊
m
2

⌋
− 2
}
are infected in the second step since they have two

infected neighbors in L′ ∪
{( ⌊

m
2

⌋
,
⌊
m
2

⌋ )
,
( ⌊

m
2

⌋
,
⌈
m
2

⌉
+1
)
,
(
n−

⌊
m
2

⌋
,
⌊
m
2

⌋ )
,
(
n−⌊

m
2

⌋
,
⌈
m
2

⌉
+1
)}

. In the third step, the vertices
( ⌈

m
2

⌉
+1,

⌈
m
2

⌉
±1
)
and

(
n−
⌈
m
2

⌉
−

1,
⌈
m
2

⌉
±1
)
are infected since they have neighbors that are in L′∪

{( ⌈
m
2

⌉
,
⌈
m
2

⌉ )
,
(
n

−
⌈
m
2

⌉
,
⌈
m
2

⌉ )}
. Note this means that the rows

⌈
m
2

⌉
−1 and

⌈
m
2

⌉
+1 above L are
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infected. Since these rows are infected, the rows
⌈
m
2

⌉
−2 and

⌈
m
2

⌉
+2 are infected

as all vertices in those rows have two neighbors in the rows
⌈
m
2

⌉
− 1 and

⌈
m
2

⌉
+1

or one neighbor in those rows and one in L. This process repeats until all rows
outside of L are infected. Since all vertices within the triangular regions formed
by L and all vertices outside of them are eventually infected, B0 propagates.

Now we will construct a set B1 that propagates on H2. Add to B1 alternating
vertices on the lines y = x + 1 and y = m − x from x = 1 to x =

⌊
m
2

⌋
. These

two lines intersect at x =
⌊
m
2

⌋
. Also add to B1 alternating vertices on the lines

y = −x+ n+ 2 and y = x− n+m− 1 from x = n to x = n−
⌊
m
2

⌋
. These lines

intersect at x = n −
⌊
m
2

⌋
in this case. Furthermore, add to B1 vertices on the

line
(
j,
⌈
m
2

⌉ )
from

⌊
m
2

⌋
+2 ≤ j ≤ n−

⌊
m
2

⌋
− 1. There are n− 2

⌊
m
2

⌋
= n−m+1

columns that are not in the domain of the four line segments described above.
Half of these are contained in B0, rounded down. The size of B1 is

|B1| = 4

(⌊
m
2

⌋
2

)
+

⌊
n−m+ 1

2

⌋
= 2

m− 1

2
+

n−m

2

=
n+m− 2

2
=

⌊
n+m− 1

2

⌋
.

The proof that B1 propagates in H2 can be done in similar manner as the
one for B0 on G1, by taking into account that the values of j for the vertices in
the second percolating step are j ∈

{ ⌊
m
2

⌋
+ 1, n−

⌊
m
2

⌋
− 1
}
.

Thus, B0 ∪B1 is a 2-percolating set in Pn×Pm and |B0|+ |B1| = n+m− 1.

Subcase 3.2.
⌊
n
2

⌋
and

⌊
m
2

⌋
both odd and n = m. The case n = m requires

a slight variation in either B0 or B1. This variation is required because when
n = m, the set B0 as defined in Subcase 3.1 has m+1 = n+1 vertices, while B1

still has m− 1 vertices. This gives a total of n+m vertices. We shall provide an
alternative construction for B0 here that has n vertices and 2-propagates.

Add to B0 alternating vertices on the lines y = x and y = −x+m+ 1 from
x = 1 to x =

⌊
m
2

⌋
− 2, and y = −x+ n+ 1 and y = x− n+m from x = n until

x = n −
⌊
m
2

⌋
+ 2. In this case, none of the lines intersect within the domain.

Then add to B0 the set of vertices in A =
{( ⌈

m
2

⌉
, j
)
:
⌊
m
2

⌋
− 2 ≤ j ≤

⌊
m
2

⌋
+ 2
}

that are in V (H1). Note |V (H1) ∩A| = 3. The size of B0 is

|B0| = 4

(⌈
m
2

⌉
− 2

2

)
+ 3 = 2

(
m+ 1

2
− 2

)
+ 3 = m = n.

This set propagates similarly to Subcase 3.1. Thus, A0 = B0∪B1 propagates
in Pn × Pm, and |A0| = |B0|+ |B1| = n+m− 1.

Subcase 3.3.
⌊
n
2

⌋
and

⌊
m
2

⌋
both even and the equivalent case

⌊
n
2

⌋
odd and⌊

m
2

⌋
even.
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Let us construct the set of vertices B0 that propagates in H1. Add to B0

alternating vertices on the lines y = x and y = −x+m+1 from x = 1 to x =
⌈
m
2

⌉
,

and y = −x+n+1 and y = x−n+m from x = n until x = n−
⌊
m
2

⌋
. The former

two line segments contain a total of
⌊
m
2

⌋
+1 =

⌈
m
2

⌉
vertices of B0, and the latter

two line segments contain a total of
⌊
m
2

⌋
+ 1 =

⌈
m
2

⌉
vertices of B0. Thus, the

number of vertices in these four line segments and B0 is 2
⌈
m
2

⌉
. Then add to B0

vertices
(
j,
⌈
m
2

⌉ )
for
⌈
m
2

⌉
+2 ≤ j ≤ n−

⌊
m
2

⌋
−2. There are n−2

⌈
m
2

⌉
= n−m−1

columns that are not in the domain of the four line segments described above.
Half of these are contained in B0, rounded down. The size of B0 is thus

|B0| = 2
⌈m
2

⌉
+

⌊
n−m− 1

2

⌋
= 2

⌈m
2

⌉
+

n−m− 2

2

=
2(m+ 1) + n−m− 2

2
=

n+m

2
=

⌈
n+m− 1

2

⌉
.

Now let us define B1 and show that it propagates in H2. Add to B1 alternat-
ing vertices on the lines y = x+ 1 and y = m− x from x = 1 to x =

⌊
m
2

⌋
. Also

add to B1 alternating vertices on the lines y = −x+n+2 and y = x−n+m− 1
from x = n to x = n −

⌊
m
2

⌋
. Finally, add vertices on the line

(
j,
⌈
m
2

⌉ )
from⌊

m
2

⌋
+ 2 ≤ j ≤ n−

⌊
m
2

⌋
− 2. There are n− 2

⌊
m
2

⌋
= n−m+ 1 columns that are

not in the domain of the four line segments described above that contain vertices
of B1. Half of these are contained in B0, rounded down. The size of B1 is then

|B1| = 4

⌊
m
2

⌋
2

+

⌊
n−m+ 1

2

⌋
= 2

⌊m
2

⌋
+

n−m

2

=
2(m− 1) + n−m

2
=

n+m− 2

2
=

⌊
n+m− 1

2

⌋
.

The sets B0 and B1 propagate in a similar was as in Subcase 3.1. Thus,
B0 ∪B1 is a percolating set of Pn × Pm and |B0|+ |B1| = n+m− 1.

From the above lemmas and the fact that m(P3 × P3, 2) = 6, we derive the
following result.

Theorem 5.3. Let n,m ≥ 3 and not both equal to 3. Then

m(Pn × Pm, 2) =

{
n+m− 1, n+m odd,

n+m, otherwise.

6. Concluding Remarks

Several open problems naturally arise from the study in this paper. In Theorem
4.3 we characterized the graphs G and H for which m(G×K2, 2) = |V (G)|. In the
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characterization appears the class of bipartite graphs, which satisfy m(G, 2) =
|V (G)|

2 , whose structure has yet to be discovered. In Figure 6 one can find two
examples of bipartite graphs B2 and B3, which belong to an infinite family start-
ing with B1

∼= C6. Bm is defined to be C6 plus m − 1 disjoint paths of length
three between exactly one pair of antipodal vertices. Among all graphs from the
family, we have m(Bn, 2) = |V (Bn)|/2 only for n ∈ {1, 2}. This indicates that
the characterization of bipartite graphs that appear in Theorem 4.3 might be a
challenging problem, which we next propose.

Problem 1. Characterize bipartite graphs G with δ(G) ≥ 2 satisfying m(G, 2) =
|V (G)|

2 .

Figure 6. Bipartite graphs B2 and B3, where m(B2, 2) = |V (B2)|/2 and m(B3, 2) <
|V (B3)|/2.

It would also be interesting to extend the consideration of graphs with m(G×
H, r) = |V (G)| to r > 2. A simple family of graphs that satisfy this equality with
an arbitrarily large r is that of uniform complete bipartite graphs, Kr,r, multiplied
with K2. Note that m(Kr,r, r) = r and that Kr,r × K2 consists of two disjoint
copies of Kr,r. Thus, m(Kr,r ×K2, r) = 2m(Kr,r, r) = 2r = |V (Kr,r)|.

Another interesting problem is to determine which graphs achieve equality
in Proposition 2.

Problem 2. For which connected graphs G and H, where δ(G) ≥ r ≥ 2, we
have

m(G×H, r) = 2m(G, r)?

Consider the family of hypercubes Qn. Note that m(Qn, n) = 2n−1 for all
n ≥ 2, as m(Qn, r) ≥ 2r−1 ([16, Theorem 1.3]), and equality can be easily found
by coloring exactly half of the vertices of Qn that form a maximum independent
set. Since Qn ×K2 is two disjoint copies of Qn, clearly m(Qn ×K2) = 2 · 2n−1,
hence hypercubes satisfy the equality in Problem 2.

It is quite common to look for bounds on graph invariants of graph prod-
ucts that are expressed in terms of the same invariants of their factors. In this
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line of study, we call a graph invariant σ submultiplicative (respectively, super-
multiplicative) if for every graphs G and H we have σ(G × H) ≤ σ(G)σ(H)
(respectively, σ(G × H) ≥ σ(G)σ(H)). We suspect that for graphs G and H
(perhaps under some additional boundary restrictions) the 2-percolation number
is submultiplicative, which we pose as the following problem.

Problem 3. Let G,H be connected graphs, one of which is not bipartite. Is it
true that

m(G×H, r) ≤ m(G, r)m(H, r)?

From the example of H = P3 and G is the cycle C3 with a pendant leaf
we can see that the set SG × SH , where SG, SH are the percolating sets of G,H
respectively, is in general not a percolating set of G×H. However m(G×H, 2) =
m(G, 2)m(H, 2) still holds in this example.

We also ask the following question, which intuitively should hold true, but
we have not found a formal proof.

Problem 4. Is it true that min{m(G, r),m(H, r)} ≤ m(G×H, r)?

In Section 5 we considered the 2-bootstrap percolation numbers of products
of paths. The following problem is the next step in this line of investigation.

Problem 5. Determine m(Cn × Pm, 2).

From Proposition 3 we see that m(Cn × Pm, 2) ≤ n, and equality appears to
hold for small examples. In fact, when m = 2, equality holds since when n is odd,
Cn × P2 = C2n and when n is even, Cn × P2 is two disjoint copies of Cn. Thus,
the problem need only be considered for n ≥ 3,m ≥ 3. Establishing a general
lower bound for m(G×H, r) could potentially solve this problem.

We were also considering direct products with complete graphs, where our
preliminary result states that m(G×Kn, r) = r whenever G is a connected graph
of order at least 3 and n ≥ 2r. In particular, this implies that m(G×Kn, 2) = 2
for any connected graph G and n ≥ 4. In this direction, we are left to determine
the 2-bootstrap percolation numbers of graphs G×K3.

A majority of results in this paper are concerned with the r-neighbor boot-
strap percolation number where r = 2, which coincides with the P3-hull number.
In particular, Theorem 4.3 characterizes connected graphs G with δ(G) ≥ 2 for
which the P3-hull number equals the order of G, while Theorem 5.3 provides the
values of the P3-hull numbers in direct products of paths.
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