DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2024): 0.8

5-year Journal Impact Factor (2024): 0.7

CiteScore (2024): 2.1

SNIP (2024): 1.162

Discussiones Mathematicae Graph Theory

Article in press


Authors:

H.-H. Lai

Hsin-Hao Lai

Department of Mathematics, National Kaohsiung Normal University

email: hsinhaolai@mail.nknu.edu.tw

0000-0002-3067-6883

C.-L. Tsou

Cheng-Lin Tsou

Ming Yang High School

email: tea00739@myhs.kh.edu.tw

Y.-H. Huang

Yi-Hsuan Huang

Department of Mathematics, National Kaohsiung Normal University

email: joyce882288@yahoo.com.tw

Y.-J. Su

Yu-Jhan Su

Department of Mathematics, National Kaohsiung Normal University

email: d0a3n0@yahoo.com.tw

Title:

Proper additive choice number of planar graphs

PDF

Source:

Discussiones Mathematicae Graph Theory

Received: 2024-12-28 , Revised: 2025-06-22 , Accepted: 2025-07-03 , Available online: 2025-09-10 , https://doi.org/10.7151/dmgt.2601

Abstract:

A proper additive coloring of a graph $G$ is a labeling of its vertices with positive integers such that, for every pair of adjacent vertices, the assigned integers are distinct and the sums of integers assigned to their neighbors are different. The proper additive choice number of $G$ is the least integer $k$ such that, whenever each vertex is given a list of at least $k$ available integers, a proper additive coloring can be chosen from the lists. In this paper, we introduce some applications of Combinatorial Nullstellensatz in the study of proper additive coloring and present upper bounds on the proper additive choice number of planar graphs.

Keywords:

proper additive coloring, proper additive chromatic number, proper additive choice number, planar graph, Combinatorial Nullstellensatz, discharging method

References:

  1. A. Ahadi and A. Dehghan, The inapproximability for the $(0,1)$-additive number, Discrete Math. Theor. Comput. Sci. 17 (2016) 217–226.
    https://doi.org/10.46298/dmtcs.2145
  2. S. Akbari, M. Ghanbari, R. Manaviyat and S. Zare, On the lucky choice number of graphs, Graphs Combin. 29 (2013) 157–163.
    https://doi.org/10.1007/s00373-011-1112-4
  3. N. Alon, Combinatorial nullstellensatz, Combin. Probab. Comput. 8 (1999) 7–29.
    https://doi.org/10.1017/S0963548398003411
  4. N. Alon and M. Tarsi, Colorings and orientations of graphs, Combinatorica 12 (1992) 125–134.
    https://doi.org/10.1007/BF01204715
  5. Z. An, S. Tian and C. Jin, Proper additive coloring of special graphs, in: 2020 International Conference on Computer Science and Management Technology, Shangai, China, (IEEE 2020) 39–43.
    https://doi.org/10.1109/ICCSMT51754.2020.00015
  6. M. Axenovich, J. Harant, J. Przybyło, R. Soták, M. Voigt and J. Weidelich, A note on adjacent vertex distinguishing colorings of graphs, Discrete Appl. Math. 205 (2016) 1–7.
    https://doi.org/10.1016/j.dam.2015.12.005
  7. T. Bartnicki, B. Bosek, S. Czerwiński, J. Grytczuk, G. Matecki and W. Żelazny, Additive coloring of planar graphs, Graphs Combin. 30 (2014) 1087–1098.
    https://doi.org/10.1007/s00373-013-1331-y
  8. M. Bonamy, B. Lévêque and A. Pinlou, $2$-distance coloring of sparse graphs, J. Graph Theory 77 (2014) 190–218.
    https://doi.org/10.1002/jgt.21782
  9. A. Brandt, S. Jahanbekam and J. White, Additive list coloring of planar graphs with given girth, Discuss. Math. Graph Theory 40 (2020) 855–873.
    https://doi.org/10.7151/dmgt.2156
  10. A. Brandt, N. Tenpas and C.R. Yerger, Planar graphs with girth $20$ are additively $3$-choosable, Discrete Appl. Math. 277 (2020) 14–21.
    https://doi.org/10.1016/j.dam.2019.08.021
  11. G. Chartrand, F. Okamoto and P. Zhang, The sigma chromatic number of a graph, Graphs Combin. 26 (2010) 755–773.
    https://doi.org/10.1007/s00373-010-0952-7
  12. D.W. Cranston and R. Škrekovski, Sufficient sparseness conditions for $G^2$ to be $(\Delta+1)$-choosable, when $\Delta \geqslant5$, Discrete Appl. Math. 162 (2014) 167–176.
    https://doi.org/10.1016/j.dam.2013.08.025
  13. D.W. Cranston and D.B. West, An introduction to the discharging method via graph coloring, Discrete Math. 340 (2017) 766–793.
    https://doi.org/10.1016/j.disc.2016.11.022
  14. S. Czerwiński, J. Grytczuk and W. Żelazny, Lucky labelings of graphs, Inform. Process. Lett. 109 (2009) 1078–1081.
    https://doi.org/10.1016/j.ipl.2009.05.011
  15. J. van den Heuvel and S. McGuinness, Coloring the square of a planar graph, J. Graph Theory 42 (2003) 110–124.
    https://doi.org/10.1002/jgt.10077
  16. H.-H. Lai and K.-W. Lih, A note on additive choice number of planar graphs, Discrete Appl. Math. 321 (2022) 357–359.
    https://doi.org/10.1016/j.dam.2022.07.010
  17. W. Ruksasakchai and T. Wang, List strong edge coloring of some classes of graphs, Australas. J. Combin. 68 (2017) 106–117.
  18. T.V. Sateesh Kumar and S. Meenakshi, Proper lucky labeling of graph, in: Proceedings of First International Conference on Mathematical Modeling and Computational Science, S.L. Peng, R.X. Hao and S. Pal (Ed(s)), (Springer, Singapore 2021) 341–351.
    https://doi.org/10.1007/978-981-33-4389-4_31

Close