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Abstract

A proper additive coloring of a graph G is a labeling of its vertices with
positive integers such that, for every pair of adjacent vertices, the assigned
integers are distinct and the sums of integers assigned to their neighbors are
different. The proper additive choice number of G is the least integer k such
that, whenever each vertex is given a list of at least k available integers, a
proper additive coloring can be chosen from the lists.

In this paper, we introduce some applications of Combinatorial Nullstel-
lensatz in the study of proper additive coloring and present upper bounds
on the proper additive choice number of planar graphs.
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1. Introduction

Graphs considered in this paper are finite graphs without loops or multiple edges.
Let NG(v) denote the set of neighbors of a vertex v in G. If S is a set of vertices
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in G, then NG(S) =
⋃

v∈S NG(v). The degree of a vertex v in G, denoted dG(v),
is the number of neighbors of v in G. A vertex v is a k-vertex if dG(v) = k and
a k−-vertex if dG(v) ⩽ k. And a neighbor u of a vertex v is a k-neighbor of v if
dG(u) = k and a k−-neighbor of v if dG(u) ⩽ k. A vertex v is isolated if dG(v) = 0.
Let ∆(G) denote the maximum degree of a vertex in G.

A labeling of a graph G is a mapping f from its vertex set to positive integers.
For an edge xy of G with endpoints x and y, define δf (xy) =

∑
z∈NG(x) f(z) −∑

z∈NG(y) f(z). A labeling f of G is said to be an additive coloring if δf (xy) ̸= 0
for any edge xy of G. The additive coloring was first introduced by Czerwiński,
Grytczuk, and Żelazny [14] as lucky labeling. It was noted by Akbari, Ghanbari,
Manaviyat, and Zare [2] that an additive coloring for a graph G with vertex set
{v1, v2, . . . , v|G|} always exists by mapping vi to 2i for 1 ⩽ i ⩽ |G|. The additive
chromatic number of G, denoted χΣ(G), is the least integer k such that G has an
additive coloring from the vertex set of G to {1, 2, . . . , k}. Note that χΣ(G) = 1
if G is a graph with no edges. An open conjecture proposed in [14] states that
χΣ(G) ⩽ χ(G) for any graph G, where χ(G) denotes the chromatic number of G.

A list L of G is a mapping that assigns a finite set of positive integers to
each vertex of G. For a positive integer k, a list L is a k-list if |L(v)| ⩾ k for
each vertex v of G. An additive coloring ϕ of G is called an additive L-coloring
of G if ϕ(v) ∈ L(v) for each vertex v of G. The additive choice number of G,
denoted chΣ(G), is the least integer k such that G has an additive L-coloring for
any k-list L. Obviously, χΣ(G) ⩽ chΣ(G) for any graph G. And it was proved
by Ahadi and Dehghan [1] that the difference between χΣ(G) and chΣ(G) can be
arbitrary large.

The known results about additive coloring of planar graphs are summarized
as follows. Let G be a planar graph. It was proved by Bartnicki, Bosek, Cz-
erwiński, Grytczuk, Matecki, and Żelazny [7] that χΣ(G) ⩽ 468 and χΣ(G) ⩽ 36
when G is 3-colorable. It was proved that chΣ(G) ⩽ 5∆(G) + 1 by Axenovich,
Harant, Przyby lo, Soták, Voigt, and Weidelich [6] and chΣ(G) ⩽ 2∆(G) + 25
by Lai and Lih [16]. And it was proved in [14] that chΣ(G) ⩽ 3 if G is bipar-
tite. The girth g(G) of G is defined to be the length of a shortest cycle, where
g(G) = ∞ if G has no cycle. It was proved by Brandt, Jahanbekam, and White
[9] that χΣ(G) ⩽ 4 if g(G) ⩾ 10 and chΣ(G) ⩽ 3, 8, 9, and 19 if g(G) ⩾ 26, 7, 6,
and 5, respectively. And it was proved by Brandt, Tenpas, and Yerger [10] that
chΣ(G) ⩽ 3 if g(G) ⩾ 20.

A labeling f of G is said to be a proper additive coloring if f is an additive
coloring and f(u) ̸= f(v) for any edge uv of G. The proper additive chromatic
number of G, denoted χσ(G), is the least integer k such that G has a proper
additive coloring from the vertex set of G to {1, 2, . . . , k}. The proper additive
coloring was first studied in [2] and called proper lucky labeling in some papers.
A similar application of the Combinatorial Nullstellensatz in [2] or a consequence
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of Lemma 5 showed that chσ(G) exists and is at most ∆(G)2 + ∆(G) + 1 for
any graph G. The proper additive chromatic number is an upper bound on
the additive chromatic number for any graph G. Results of proper additive
chromatic number of paths, stars, cycles, wheels, complete bipartite graphs, and
some classes of graphs can be found in [5, 18].

Let L be a list of G. A proper additive coloring φ of G is called a proper
additive L-coloring of G if φ(v) ∈ L(v) for each vertex v of G. The proper
additive choice number of G, denoted chσ(G), is the least integer k such that G
has a proper additive L-coloring for any k-list L. Obviously, χσ(G) ⩽ chσ(G) for
any graph G. It was proved that chΣ(T ) ⩽ 2 in [14] and chσ(T ) ⩽ 3 in [2] for
every tree T .

In this paper, we study the proper additive coloring and the proper additive
choice number of planar graphs by using Combinatorial Nullstellensatz and the
discharging method. In Section 2, we introduce some auxiliary lemmas obtained
by using Combinatorial Nullstellensatz. Let G be a planar graph. In Section 3,
we prove that chσ(G) ⩽ min{2∆(G) + 30, 5∆(G) + 6}. In Section 4, we prove
that chσ(G) ⩽ 5 if G is bipartite. In Section 5, we prove that chσ(G) ⩽ 5, 10,
12, and 28 if g(G) ⩾ 26, 7, 6, and 5, respectively. And in Section 6, we prove
that chσ(G) ⩽ 8 if ∆(G) ⩽ 6 and g(G) ⩾ 10 and chσ(G) ⩽ 9 if ∆(G) ⩽ 4 and
g(G) ⩾ 6.

2. Combinatorial Nullstellensatz and Auxiliary Lemmas

The following lemma is a well-known fact of the additive coloring and the proper
additive coloring. Note that the first equality is the Observation 1.8 in Chartrand,
Okamoto, and Zhang [11].

Lemma 1. If the components of G are G1, G2, . . . , Gk, then χΣ(G) = max
1≤j≤k

χΣ(Gj), χσ(G) = max
1≤j≤k

χσ(Gj), chΣ(G) = max
1≤j≤k

chΣ(Gj), and chσ(G) = max
1≤j≤k

chσ(Gj).

The following Combinatorial Nullstellensatz due to Alon [3] is a very useful
tool in dealing with problems of combinatorial nature. It has already been used
to study the additive coloring in [2, 7, 9, 10, 14].

Theorem 2. Let F be a field and F (x1, . . . , xn) be a polynomial in F[x1, . . . , xn].
Suppose the degree of F is

∑n
i=1 ki, where each ki is a nonnegative integer and

the coefficient of xk11 xk22 · · ·xknn in F is nonzero. If L1, L2, . . . , Ln are subsets of F
with |Li| > ki for each i, then there exist c1 ∈ L1, c2 ∈ L2, . . . , cn ∈ Ln such that
F (c1, c2, . . . , cn) ̸= 0.
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In order to apply Combinatorial Nullstellensatz in the study of proper addi-
tive coloring, we introduce the following definitions and Proposition 3. Note that
Proposition 3 will be a handy tool in the proofs of this paper.

Assume S = {v1, . . . , vt} is a set of vertices in G. Label the set NG(S) \S by
{vt+1, . . . , vr}. Let E1(S) be the set of edges such that ab ∈ E1(S) if and only if
exactly one of a and b has a neighbor in S. Let E2(S) be the set of edges such
that ab ∈ E2(S) if and only if both a and b have a neighbor in S and the set of
neighbors of a in S and the set of neighbors of b in S are different. And let E3(S)
be the set of edges in E1(S) ∪ E2(S) with at least one endpoint in S. Note that
each edge in E1(S) is in the form viw where 1 ⩽ i ⩽ r and w /∈ NG(S). And each
edge in E2(S) ∪ E3(S) is in the form vivj , 1 ⩽ i < j ⩽ r.

Let G \ S be the subgraph of G obtained by removing all the vertices in S
and λ be a proper additive coloring of G \ S. We are going to define a proper
additive coloring f of G by labeling vi with xi for each vertex vi in S such that
f extends λ in the sense that f coincides with λ on G \ S. For convenience, we
define that λ(vi) = 0 for each vertex vi in S.

If viw is an edge in E1(S), then the difference between δf (viw) and δλ(viw) is∑
vp∼vi,1⩽p⩽t

xp. We have
∑

vp∼vi,1⩽p⩽t
xp ̸= −δλ(viw) =

∑
z∈NG(w)

λ(z)−
∑

z∈NG(vi)\S
λ(z)

by the claim of f . If vivj is an edge in E2(S), then the difference between
δf (vivj) and δλ(vivj) is

∑
vp∼vi,1⩽p⩽t

xp−
∑

vq∼vj ,1⩽q⩽t
xq. Since vi and vj have different

sets of neighbors in S,
∑

vp∼vi,1⩽p⩽t
xp −

∑
vq∼vj ,1⩽q⩽t

xq is not zero. And we have∑
vp∼vi,1⩽p⩽t

xp −
∑

vq∼vj ,1⩽q⩽t
xq ̸= −δλ(vivj) =

∑
z∈NG(vj)\S

λ(z) −
∑

z∈NG(vi)\S
λ(z) by

the claim of f . If e is an edge in E3(S) and the two endpoints of e are both in S,
then e = vivj for some 1 ⩽ i < j ⩽ t and we have xi − xj ̸= 0 by the claim of f .
If e is an edge in E3(S) and exactly one endpoint of e is in S, then e = vivj for
some 1 ⩽ i ⩽ t < j ⩽ r and we have xi ̸= λ(vj) by the claim of f . Note that, for
each of the above inequalities, the left-hand side is a polynomial of the variables
x1, . . . , xt with degree 1 and the right-hand side is a constant.

Assume that E1(S)∪E2(S)∪E3(S) ̸= ∅. The following polynomial is obtained
by multiplying the left-hand sides of the above inequalities.

PS(x1, . . . , xt) =
∏

viw∈E1(S),i⩽r

 ∑
vp∼vi,1⩽p⩽t

xp

 ∏
vivj∈E2(S),i<j

 ∑
vp∼vi,1⩽p⩽t

xp−

∑
vq∼vj ,1⩽q⩽t

xq

 ∏
vivj∈E3(S),i<j⩽t

(xi − xj)
∏

vivj∈E3(S),i⩽t<j

(xi) ∈ Q[x1, . . . , xt].

Since each parenthesis is a polynomial with degree 1, the polynomial PS is
not the zero polynomial and the degree of PS is |E1(S)| + |E2(S)| + |E3(S)|.
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A graph G and a set S = {v1, v2} of vertices in G are given in Figure 1. We
have NG(S) \ S = {v3, v4, v5, v6}, E1(S) = {e2}, E2(S) = {e1, e3, e4, e5, e6, e7, e8,
e9, e10}, and E3(S) = {e3, e4, e5, e6, e7, e8, e9, e10}. Note that e11 /∈ E2(S) since
the two endpoints of e11 have the same neighbors in S. In addition, PS(x1, x2) =
x71x

7
2(x1 + x2)(x1 − x2)

3.

v1

e2

e3

e1

v2

e5

e7 e8

e6

e4

e9
e10

e11

v3 v4

v5 v6

v7

Figure 1. A graph G and a set S = {v1, v2} of vertices in G.

Proposition 3. Let S = {v1, . . . , vt} be a set of vertices in G and k be a positive
integer. If the coefficient of

∏
1⩽i⩽t

xdii in PS is nonzero,
∑

1⩽i⩽t
di = |E1(S)| +

|E2(S)| + |E3(S)|, and k > di for each 1 ⩽ i ⩽ t, then

chσ(G) ⩽ max{k, chσ(G \ S)}.

Proof. Let L be a max{k, chσ(G \ S)}-list of G and λ be a proper additive
L-coloring of G \ S. Define the polynomial

PS,λ(x1, . . . , xt) =
∏

viw∈E1(S),i⩽r

 ∑
vp∼vi,1⩽p⩽t

xp +
∑

z∈NG(vi)\S

λ(z) −
∑

z∈NG(w)

λ(z)


∏

vivj∈E2(S),i<j

 ∑
vp∼vi,1⩽p⩽t

xp −
∑

vq∼vj ,1⩽q⩽t

xq +
∑

z∈NG(vi)\S

λ(z) −
∑

z∈NG(vj)\S

λ(z)


∏

vivj∈E3(S),i<j⩽t

(xi − xj)
∏

vivj∈E3(S),i⩽t<j

(xi − λ(vj)) ∈ Q[x1, . . . , xt].

The degrees of PS,λ and PS are both |E1(S)| + |E2(S)| + |E3(S)|. Since the
degree of each parenthesis in PS,λ is 1 and

∑
1⩽i⩽t

di equals the degree of PS,λ, the

coefficient of
∏

1⩽i⩽t
xdii in PS,λ equals the coefficient of

∏
1⩽i⩽t

xdii in PS . By Theorem

2, there are c1 ∈ L(v1), c2 ∈ L(v2), . . . , ct ∈ L(vt) so that PS,λ(c1, c2, . . . , ct) ̸= 0.
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Define the labeling f of G such that f(v) = λ(v) if v /∈ S and f(vi) = ci if
1 ⩽ i ⩽ t. First, we prove that f is an additive L-coloring of G. Let xy be an
edge of G.

Case 1. Both x and y have no neighbor in S. Then δf (xy) = δλ(xy) ̸= 0.

Case 2. Only one of x and y has neighbors in S. Assume that x has a
neighbor in S. Then xy ∈ E1(S) and x = vi for some 1 ⩽ i ⩽ r. We have δf (xy) =
δf (viy) =

∑
vp∼vi,1⩽p⩽t

cp+
∑

z∈NG(vi)\S
λ(z)−

∑
z∈NG(y)

λ(z). Since PS,λ(c1, c2, . . . , ct) ̸=

0, we have δf (xy) ̸= 0.

Case 3. Both x and y have neighbors in S.

Subcase 3.1. The set of neighbors of x in S and the set of neighbors of y in
S are the same. Both x and y are in G \ S and δf (xy) = δλ(xy) +

∑
vp∼x,1⩽p⩽t

cp −∑
vp∼y,1⩽p⩽t

cp = δλ(xy) ̸= 0.

Subcase 3.2. The set of neighbors of x in S and the set of neighbors of y in
S are different. Then xy ∈ E2(S) and assume x = vi and y = vj with 1 ⩽ i <
j ⩽ r. Then δf (xy) = δf (vivj) =

∑
vp∼vi,1⩽p⩽t

cp −
∑

vq∼vj ,1⩽q⩽t
cq +

∑
z∈NG(vi)\S

λ(z)−∑
z∈NG(vj)\S

λ(z). Since PS,λ(c1, c2, . . . , ct) ̸= 0, we have δf (xy) ̸= 0.

Therefore, f is an additive L-coloring of G. Now we prove that f(x) ̸= f(y)
for any edge xy of G.

Case 4. xy /∈ E3(S). Both x and y are in G \S. Then f(x) = λ(x) ̸= λ(y) =
f(y) by the assumption of λ.

Case 5. xy ∈ E3(S).

Subcase 5.1. Only one of x and y is in S. Assume that x is in S. Then x = vi
and y = vj for some 1 ⩽ i ⩽ t < j. We have f(vi) − f(vj) = ci − λ(vj). Since
PS,λ(c1, c2, . . . , ct) ̸= 0, we have f(vi) − f(vj) ̸= 0.

Subcase 5.2. Both x and y are in S. Assume that x = vi and y = vj for some
1 ⩽ i < j ⩽ t. Then f(vi) − f(vj) = ci − cj . Since PS,λ(c1, c2, . . . , ct) ̸= 0, we
have f(vi) − f(vj) ̸= 0.

Hence, f is a proper additive L-coloring of G and chσ(G) ⩽ max{k, chσ(G \
S)}.

The following result of the additive chromatic number and the additive choice
number was proved in [16] and can be obtained by rewriting the Lemma 3.1(a)
in [9].
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Lemma 4. If G is a graph and v is a vertex of G, then

χΣ(G) ⩽ max

{
χΣ(G \ {v}), 1 +

∑
u∈NG(v)

dG(u)

}

and

chΣ(G) ⩽ max

{
chΣ(G \ {v}), 1 +

∑
u∈NG(v)

dG(u)

}
.

By similar arguments of the proofs of Lemma 4 in [9] and [16], we have
the following result of the proper additive choice number. Now we give a proof
obtained by applying Proposition 3.

Lemma 5. If G is a graph and v is a vertex of G, then

chσ(G) ⩽ max

{
chσ(G \ {v}), 1 + dG(v) +

∑
u∈NG(v)

dG(u)

}
.

Proof. Let S be {v}. Since the endpoints of any edge in E2(S) have different
sets of neighbors in S and |S| = 1, E2(S) = ∅. We have |E1(S)| ⩽

∑
u∈NG(v)

dG(u),

|E3(S)| = dG(v), and the polynomial PS equals x
|E1(S)|+|E3(S)|
1 .

By Proposition 3, we have chσ(G) ⩽ max{|E1(S)| + |E3(S)| + 1, chσ(G \
{v})} ⩽ max{1 + dG(v) +

∑
u∈NG(v)

dG(u), chσ(G \ {v})}.

The following result of the additive choice number was rewritten from the
Lemma 3.1(b) in [9].

Lemma 6. Let G be a graph with girth at least 5 and v be a vertex of G. Let R be
a set of 1-neighbors of v with |R| = r and Q = {v1, . . . , vq} be a set of 2-neighbors
of v having a (k − 1)−-neighbor other than v, say v′1, . . . , v

′
q, respectively, such

that v′1, . . . , v
′
q are independent. If r(k − 1) +

∑
vi∈Q

(k − dG(v′i) − 1) ⩾ dG(v), then

chΣ(G) ⩽ max{chΣ(G \ (R ∪Q)), k}.

By a similar argument of the proof of Lemma 6 in [9], we have the following
result of the proper additive choice number. Now we give a proof obtained by
applying Proposition 3.

Lemma 7. Let G be a graph with girth at least 5 and v be a vertex of G. Let R be
a set of 1-neighbors of v with |R| = r and Q = {v1, . . . , vq} be a set of 2-neighbors
of v having a (k − 3)−-neighbor other than v, say v′1, . . . , v

′
q, respectively, such

that v′1, . . . , v
′
q are independent. If r(k − 2) +

∑
vi∈Q

(k − dG(v′i) − 3) ⩾ dG(v), then

chσ(G) ⩽ max{chσ(G \ (R ∪Q)), k}.
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v1 vq

v01 v0q

v

vq+rvq+1

Figure 2. An illustration of Lemma 7.

Proof. Let R = {vq+1, . . . , vq+r} and S = R ∪ Q. Since v′1, . . . , v
′
q are indepen-

dent, E2(S) = ∅. We have |E1(S)| = dG(v) +
∑

vi∈Q
dG(v′i), |E3(S)| = r + 2q, and

the polynomial PS equals (x1 + · · · + xq+r)
dG(v)

∏
1⩽i⩽q

x
dG(v′i)+2
i

∏
q+1⩽j⩽q+r

xj .

Since
∑

vi∈Q
(k−dG(v′i)−3)+r(k−2) ⩾ dG(v), there exist nonnegative integers

d1, . . . , dq+r such that d1 + · · · + dq+r = dG(v), di ⩽ k − dG(v′i) − 3 for each
1 ⩽ i ⩽ q, and dj ⩽ k − 2 for each q + 1 ⩽ j ⩽ q + r. By the multinomial

theorem, the coefficient of
∏

1⩽i⩽q+r
xdii in (x1 + · · ·+xq+r)

dG(v) is nonzero. Hence,

the coefficient of
∏

1⩽i⩽q
x
di+dG(v′i)+2
i

∏
q+1⩽j⩽q+r

x
dj+1
j in PS equals the coefficient of∏

1⩽i⩽q+r
xdii in (x1 + · · ·+ xq+r)

dG(v) and is nonzero. Since di + dG(v′i) + 2 ⩽ k− 1

for each 1 ⩽ i ⩽ q and dj + 1 ⩽ k − 1 for each q + 1 ⩽ j ⩽ q + r, we have
chσ(G) ⩽ max{k, chσ(G \ (R ∪Q))} by Proposition 3.

3. Planar Graphs

The following lemma was proved by van den Heuvel and McGuinness [15] using
the discharging method and used to prove that the additive choice number of a
planar graph is at most 2∆(G) + 25 in [16].

Lemma 8. Let G be a planar graph. Then there exists a vertex v whose k
neighbors v1, v2, . . . , vk are enumerated to satisfy dG(v1) ⩽ · · · ⩽ dG(vk) and one
of the following statements holds.

(A1) k ⩽ 2;

(A2) k = 3 with dG(v1) ⩽ 11;
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(A3) k = 4 with dG(v1) ⩽ 7 and dG(v2) ⩽ 11;

(A4) k = 5 with dG(v1) ⩽ 6, dG(v2) ⩽ 7, and dG(v3) ⩽ 11.

If G is planar, then G contains a vertex with degree at most 5. By the well-
known property and Lemmas 5 and 8, we have the following upper bound on the
proper additive choice number of planar graphs.

Theorem 9. If G is a planar graph, then

χσ(G) ⩽ chσ(G) ⩽ min{2∆(G) + 30, 5∆(G) + 6}.

Proof. We prove the theorem by induction on the number of vertices of G. The
theorem is trivially true for the induction basis of a single vertex graph.

Let v be the vertex characterized in Lemma 8, we have 1 + dG(v) + dG(v1) +
· · ·+ dG(vk) ⩽ 2∆(G) + 30 for each case. Hence, we have chσ(G) ⩽ max{chσ(G \
{v}), 1+dG(v)+

∑
u∈NG(v)

dG(u)} ⩽ max{2∆(G\{v})+30, 2∆(G)+30} ⩽ 2∆(G)+

30 by Lemma 5.
Let w be a vertex with dG(w) ⩽ 5. By Lemma 5, we have chσ(G) ⩽

max{chσ(G\{w}), 1+dG(w)+
∑

u∈NG(w)

dG(u)} ⩽ max{5∆(G\{w})+6, 5∆(G)+

6} ⩽ 5∆(G) + 6.

4. Bipartite Planar Graphs

The following theorem of proper additive choice number of bipartite graphs was
proved in [2] by using Combinatorial Nullstellensatz and used to prove that the
proper additive choice number of a forest is at most 3.

Theorem 10. Let G be a bipartite graph and k be a positive integer such that G
has an orientation with maximum out-degree at most k. Then chσ(G) ⩽ 2k + 1.

The maximum average degree of a graph G, denoted mad(G), is the maximum

of the average degrees 2∥H∥
|H| taken over all the subgraphs H of G. A graph G has

an orientation with maximum out-degree at most k if and only if the maximum
average degree of G is at most k (cf. [4]). Since the maximum average degree of
a bipartite planar graph is less than 2, we have the following corollary.

Corollary 11. If G is a bipartite planar graph, then χσ(G) ⩽ chσ(G) ⩽ 5.

5. Planar Graphs with Given Girth

Recall that it was proved in [9] that the additive choice number of a planar graph
with girth at least 5 is at most 19. By the proof in [9], we have the following
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lemma. Note that the constraint 1 ⩽ d ⩽ 9 in (B1) which we will use in the proof
of Theorem 13 is not described in [9] but we can obtain it from the proof. The
constraints in (C1) of Lemma 14, (D1) of Lemma 18, and (E1) of Lemma 12 are
similar.

Lemma 12. If G is planar and the girth of G is at least 5, then G contains at
least one of the following configurations.

(B1) An isolated vertex or a d-vertex with 1 ⩽ d ⩽ 9 has neighbors with degree
sum at most 18.

(B2) A d-vertex v with d ⩽ 18r+(18− t)qt, where r is the number of 1-neighbors
of v and qt is the number of 2-neighbors of v having a t−-neighbor other
than v for some t ⩽ 18.

(B3) An induced cycle v3v1v4v5v2 such that dG(v3) ⩽ 17, dG(v1) = dG(v2) = 2,
dG(v4) ⩽ 7, and dG(v5) ⩽ 7.

By Lemma 12 and the auxiliary lemmas, we have the following theorem for
planar graphs with girth at least 5.

Theorem 13. If G is a planar graph with girth at least 5, then

χσ(G) ⩽ chσ(G) ⩽ 28.

Proof. We prove by using mathematical induction on the number of vertices.
The theorem is trivially true for the induction basis of a single vertex graph. By
Lemma 12, we have three configurations to argue.

For Configuration B1, let v be the characterized vertex. We have chσ(G \
{v}) ⩽ 28 by the induction hypothesis. By Lemmas 1 and 5, we have chσ(G) ⩽
max{chσ(G \ {v}), 1 + dG(v) +

∑
u∈NG(v)

dG(u)} ⩽ max{28, 1 + 9 + 18} = 28.

For Configuration B2, note that dG(v) ⩽ 18r + (18 − t)qt ⩽ 26r + (25 − t)qt
for some t ⩽ 18. Let R be the set of the r 1-neighbors of v and Q be the set
of the 2-neighbors of v having a t−-neighbor other than v. By the induction
hypothesis, we have chσ(G \ (R ∪ Q)) ⩽ 28. By Lemma 7, we have chσ(G) ⩽
max{chσ(G \ (R ∪Q)), 28} = 28.

For Configuration B3, let S = {v1, v2}. Since the most restrictions on labels
occurs when dG(v3) = 17 and dG(v4) = dG(v5) = 7, we assume that this is
the case. By the induction hypothesis, we have chσ(G \ {v1, v2}) ⩽ 28. Since the
coefficient of x261 x82 in P{v1,v2} = x81x

8
2(x1+x2)

17(x1−x2) is 1, we have chσ(G) ⩽ 28
by Proposition 3.

Therefore, we have χσ(G) ⩽ chσ(G) ⩽ 28.

Recall that it was proved in [9] that the additive choice number of a planar
graph with girth at least 6 is at most 9. By the proof in [9], we have the following
lemma.
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v1

v2

v3

v4

v5

Figure 3. Configuration B3.

Lemma 14. If the girth of G is at least 6 and the maximum average degree of
G is less than 3, then G contains at least one of the following configurations.

(C1) An isolated vertex, a 1-vertex that has a 8−-neighbor, or a 2-vertex that has
neighbors with degree sum at most 8.

(C2) A d-vertex v with d ⩽ 8r + (8 − t)qt, where r is the number of 1-neighbors
of v and qt is the number of 2-neighbors of v having a t−-neighbor other
than v for some t ⩽ 8.

(C3) A 6-vertex having six 2-neighbors one of which has a 3−-neighbor.

(C4) A 7-vertex having seven 2-neighbors two of which have a 4−-neighbors.

By Lemma 14 and the auxiliary lemmas, we have the following theorem for
graphs with girth at least 6 and maximum average degree less than 3.

Theorem 15. If the girth of G is at least 6 and the maximum average degree of
G is less than 3, then χσ(G) ⩽ chσ(G) ⩽ 12.

Proof. We prove by using mathematical induction on the number of vertices.
The theorem is trivially true for the induction basis of a single vertex graph.
By Lemma 14, we have four configurations to argue. Let v be the characterized
vertex in each configuration.

For Configuration C1, we have chσ(G \ {v}) ⩽ 12 by the induction hypoth-
esis. By Lemmas 1 and 5, we have chσ(G) ⩽ max{chσ(G \ {v}), 1 + dG(v) +∑
u∈NG(v)

dG(u)} ⩽ max{12, 1 + 2 + 8} = 12.

For Configuration C2, note that dG(v) ⩽ 8r + (8 − t)qt ⩽ 10r + (9 − t)qt
for some t ⩽ 8. Let R be the set of the r 1-neighbors of v and Q be the set
of the 2-neighbors of v having a t−-neighbor other than v. By the induction
hypothesis, we have chσ(G \ (R ∪ Q)) ⩽ 12. By Lemma 7, we have chσ(G) ⩽
max{chσ(G \ (R ∪Q)), 12} = 12.

For Configuration C3, let v2 be a 2-neighbor of v having a 3−-neighbor. Since
the most restrictions on labels occurs when v2 has a 3-neighbor, we assume that
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this is the case. Relabel v by v1 and label the vertices in NG({v1, v2}) as in
Figure 4. By the induction hypothesis, we have chΣ(G \ {v1, v2}) ⩽ 12. Since the
coefficient of x101 x112 in P{v1,v2} = x101 x32(x1 − x2)

8 is 1, we have chσ(G) ⩽ 12 by
Proposition 3.

v1 v2

v3

v4

v5

v6

v7

v8 v1

v2

v3

v4

v5

v6

v7

v8

v2

v9

v2

v10

Figure 4. Configurations C3 and C4.

For Configuration C4, let v2 and v3 be 2-neighbors of v having a 4−-neighbor.
Since the most restrictions on labels occurs when v2 and v3 both have a 4-
neighbor, we assume that this is the case. Relabel v by v1 and label the ver-
tices in NG({v1, v2, v3}) as in Figure 4. By the induction hypothesis, we have
chΣ(G \ {v1, v2, v3}) ⩽ 12. Since the coefficient of x101 x102 x93 in P{v1,v2,v3} =
x101 x42x

4
3(−x1 + x2 + x3)

7(x1 − x2)
2(x1 − x3)

2 is 35, we have chσ(G) ⩽ 12 by
Proposition 3.

Therefore, we have χσ(G) ⩽ chσ(G) ⩽ 12.

The following proposition is a well-known property of planar graphs.

Proposition 16. Let G be a planar graph with girth at least g. Then, mad(G) <
2g
g−2 .

By Proposition 16, we have mad(G) < 3 if G is a planar graph with girth at
least 6. Therefore, we have the following corollary for planar graphs with girth
at least 6.

Corollary 17. If G is a planar graph with girth at least 6, then

χσ(G) ⩽ chσ(G) ⩽ 12.

Recall that it was proved in [9] that the additive choice number of a planar
graph with girth at least 7 is at most 8. By the proof in [9], we have the following
lemma.

Lemma 18. If the girth of G is at least 6 and the maximum average degree of
G is less than 14

5 , then G contains at least one of the following configurations.
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(D1) An isolated vertex, a 1-vertex that has a 7−-neighbor, or a 2-vertex that has
neighbors with degree sum at most 7.

(D2) A d-vertex v with d ⩽ 7r + (7 − t)qt, where r is the number of 1-neighbors
of v and qt is the number of 2-neighbors of v having a t−-neighbor other
than v for some t ⩽ 7.

By Lemma 18 and the auxiliary lemmas, we have the following theorem for
graphs with girth at least 6 and maximum average degree less than 14

5 .

Theorem 19. If the girth of G is at least 6 and the maximum average degree of
G is less than 14

5 , then χσ(G) ⩽ chσ(G) ⩽ 10.

Proof. We prove by using mathematical induction on the number of vertices.
The theorem is trivially true for the induction basis of a single vertex graph. By
Lemma 18, we have two configurations to argue.

For Configuration D1, let v be the characterized vertex. We have chσ(G \
{v}) ⩽ 10 by the induction hypothesis. By Lemmas 1 and 5, we have chσ(G) ⩽
max{chσ(G \ {v}), 1 + 2 + 7} = 10.

For Configuration D2, note that dG(v) ⩽ 7r + (7 − t)qt ⩽ 8r + (7 − t)qt
for some t ⩽ 7. Let R be the set of the r 1-neighbors of v and Q be the set
of the 2-neighbors of v having a t−-neighbor other than v. By the induction
hypothesis, we have chσ(G \ (R ∪ Q)) ⩽ 10. By Lemma 7, we have chσ(G) ⩽
max{chσ(G \ (R ∪Q)), 10} = 10.

Therefore, we have χσ(G) ⩽ chσ(G) ⩽ 10.

By Proposition 16, we have mad(G) < 14
5 if G is a planar graph with girth at

least 7. Therefore, we have the following corollary for planar graphs with girth
at least 7.

Corollary 20. If G is a planar graph with girth at least 7, then

χσ(G) ⩽ chσ(G) ⩽ 10.

Let P (t2, . . . , tn−1) be the path v1v2 · · · vn−1vn such that, for each i in {2, . . . ,
n − 1}, the vertex vi has ti 1-neighbors and dG(vi) = 2 + ti. Recall that it was
proved in [9] that the additive choice number of a planar graph with girth at least
26 is at most 3. By the proof in [9], we have the following lemma.

Lemma 21. If G is planar and the girth of G is at least 26, then G contains at
least one of the following configurations.

(E1) An isolated vertex or a 1-vertex that has a 2−-neighbor.

(E2) A d-vertex v with d ⩽ 2r + (2 − t)qt, where r is the number of 1-neighbors
of v and qt is the number of 2-neighbors of v having a t−-neighbor other
than v for some t ⩽ 2.
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(E3) A bipartite component.

(E4) A path P (t2, . . . , tn−1) with (t2, . . . , tn−1) = (1, 0, 1), (1, 1, 1), (1, 1, 0, 0),
(0, 1, 0, 0), or (1, 0, 0, 0).

(E5) A path v6v3v1v2v4v5v7 with dG(vi) = 2 for each 1 ⩽ i ⩽ 5.

By Lemma 21 and the auxiliary lemmas, we have the following theorem for
planar graphs with girth at least 26.

Theorem 22. If G is a planar graph with girth at least 26, then

χσ(G) ⩽ chσ(G) ⩽ 5.

Proof. We prove by using mathematical induction on the number of vertices.
The theorem is trivially true for the induction basis of a single vertex graph. By
Lemma 21, we have five configurations to argue.

For Configuration E1, let v be the characterized vertex. We have chσ(G \
{v}) ⩽ 5 by the induction hypothesis. By Lemmas 1 and 5, we have chσ(G) ⩽
max{chσ(G \ {v}), 1 + 1 + 2} ⩽ 5.

For Configuration E2, note that dG(v) ⩽ 2r + (2 − t)qt ⩽ 3r + (2 − t)qt
for some t ⩽ 2. Let R be the set of the r 1-neighbors of v and Q be the set
of the 2-neighbors of v having a t−-neighbor other than v. By the induction
hypothesis, we have chσ(G \ (R ∪ Q)) ⩽ 5. By Lemma 7, we have chσ(G) ⩽
max{chσ(G \ (R ∪Q)), 5} = 5.

For Configuration E3, we have chσ(G) ⩽ 5 by Lemma 1 and Corollary 11.

For Configuration E4, choose an integer i with 2 ⩽ i ⩽ n− 1 and ti = 1. Let
ui be the 1-neighbor of vi. We have chσ(G\{ui}) ⩽ 5 by the induction hypothesis.
By Lemmas 1 and 5, we have chσ(G) ⩽ max{chσ(G \ {ui}), 1 + 1 + 3} = 5.

For Configuration E5, let S = {v1, v2}. By the induction hypothesis, we have
chΣ(G \ {v1, v2}) ⩽ 5. Since the coefficient of x41x

4
2 in P{v1,v2} = x21x

2
2(x1 − x2)

4

is 6, we have chσ(G) ⩽ 5 by Proposition 3.

Therefore, we have χσ(G) ⩽ chσ(G) ⩽ 5.

6. Planar Graphs with Given Maximum Degree and Girth

Let l be a positive integer. An l-thread in a graph G is a trail of length l + 1 in
G whose l internal vertices have degree 2 in G. Under the definition, the ends of
an l-thread may be the same vertex. It was proved in [8, 12] that the square of
a graph with the maximum degree at most 6 and maximum average degree less
than 5

2 is 7-choosable and the following lemma can be obtained by the proofs (cf.
[13]).
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Figure 5. Configurations E4 and E5.

Lemma 23. Let G be a graph with the maximum degree at most 6 and maxi-
mum average degree less than 5

2 . Then G contains at least one of the following
configurations.

(F1) An isolated vertex v or a 1-vertex.

(F2) A 2-thread joining a 5−-vertex and a 4−-vertex.

(F3) A cycle of length divisible by 4 composed of 3-threads whose endpoints have
degree 6.

(F4) A 4-vertex v having four 2-neighbors v1, v2, v3, v4 such that v1, v2, and v3
have a 2-neighbor and v4 has a 4−-neighbor other than v.

(F5) A 3-vertex v having three 2-neighbors v1, v2, v3 which have a 4−-neighbor
other than v.

(F6) A 3-vertex u having one 4−-neighbor and two 2-neighbors v, x such that v
has a 2-neighbor and x has a 4−-neighbor.

By Lemma 23 and the auxiliary lemmas, we have the following theorem for
planar graphs with maximum degree at most 6 and girth at least 10.

Theorem 24. If G is a planar graph with maximum degree at most 6 and girth
at least 10, then χσ(G) ⩽ chσ(G) ⩽ 8.

Proof. We prove by using mathematical induction on the number of vertices.
The theorem is trivially true for the induction basis of a single vertex graph. Since
G is a planar graph with girth at least 10, we have mad(G) < 5

2 by Proposition
16. By Lemma 23, we have six configurations to argue.
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For Configuration F1, let v be the characterized vertex. We have chσ(G \
{v}) ⩽ 8 by the induction hypothesis. By Lemmas 1 and 5, we have chσ(G) ⩽
max{chσ(G \ {v}), 1 + 1 + 6} ⩽ 8.

For Configuration F2, label the 2-thread by v3v1v2v4. Since the girth of G is
at least 10, v3 and v4 are distinct and nonadjacent. Since the most restrictions on
labels occurs when dG(v3) = 5 and dG(v4) = 4, we assume that this is the case.
We have chσ(G \ {v1, v2}) ⩽ 8 by the induction hypothesis. Since the coefficient
of x71x

6
2 in P{v1,v2} = x51x

4
2(x1 − x2)

4 is 6, we have chσ(G) ⩽ 8 by Proposition 3.

v1 v2 v4v3

v

Figure 6. Configurations F2 and F3.

For Configuration F3, let v be the third vertex in a 3-thread of the cycle.
We have chσ(G \ {v}) ⩽ 8 by the induction hypothesis. By Lemma 5, we have
chσ(G) ⩽ max{chσ(G \ {v}), 1 + 2 + 4} ⩽ 8.

For Configuration F4, we have chσ(G \ {v1, v2, v3}) ⩽ 8 by the induction
hypothesis. Since {v1, v2, v3} is a set of 2-neighbors of v having a 2-neighbor
other than v and dG(v) = 4 ⩽ (8 − 2 − 3) × 3, we have chσ(G) ⩽ max{chσ(G \
({v1, v2, v3}), 8} = 8 by Lemma 7.

For Configuration F5, we have chσ(G \ {v1, v2, v3}) ⩽ 8 by the induction
hypothesis. Since {v1, v2, v3} is a set of 2-neighbors of v having a 4−-neighbor
other than v and dG(v) = 3 ⩽ (8 − 4 − 3) × 3, we have chσ(G) ⩽ max{chσ(G \
({v1, v2, v3}), 8} = 8 by Lemma 7.

For Configuration F6, we have chσ(G\{v}) ⩽ 8 by the induction hypothesis.
By Lemma 5, we have chσ(G) ⩽ max{chσ(G \ {v}), 1 + 2 + 5} ⩽ 8.

Therefore, we have χσ(G) ⩽ chσ(G) ⩽ 8.

The following lemma was proved by Ruksasakchai and Wang [17] using the
discharging method.
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Figure 7. Configurations F4, F5, and F6.

Lemma 25. Let G be a graph with maximum degree at most 4 and maximum
average degree less than 3. Then G contains at least one of the following config-
urations.

(G1) An isolated vertex v or a 1-vertex.

(G2) A 2-vertex v having two 3−-neighbors.

(G3) A 4−-vertex v having two 2-neighbors v1, v2 one of which has a 3−-neighbor
other than v.

(G4) A 4-vertex v having four 2-neighbors v1, v2, v3, v4.

(G5) A 2-vertex u having two 4-neighbors v and w such that v has three 2-
neighbors u, v1, v2, and w has two or three 2-neighbors.

By Lemma 25 and the auxiliary lemmas, we have the following theorem for
planar graphs with maximum degree at most 4 and girth at least 6.

Theorem 26. If G is a planar graph with maximum degree at most 4 and girth
at least 6, then χσ(G) ⩽ chσ(G) ⩽ 9.

Proof. We prove by using mathematical induction on the number of vertices.
The theorem is trivially true for the induction basis of a single vertex graph. Since
G is a planar graph with girth at least 6, we have mad(G) < 3 by Proposition
16. By Lemma 25, we have five configurations to argue.

For Configuration G1, let v be the characterized vertex. We have chσ(G \
{v}) ⩽ 9 by the induction hypothesis. By Lemmas 1 and 5, we have chσ(G) ⩽
max{chσ(G \ {v}), 1 + 1 + 4} ⩽ 9.

For Configuration G2, we have chσ(G\{v}) ⩽ 9 by the induction hypothesis.
We have chσ(G) ⩽ max{chσ(G \ {v}), 1 + 2 + 6} ⩽ 9 by Lemma 5.

For Configurations G3, G4, and G5, we have chσ(G \ {v1, v2}) ⩽ 9 by the
induction hypothesis. Since {v1, v2} is a set of 2-neighbors of v having a 4−-
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v

v1

v2
v4

v

v1

v2

v3

wv

v1

v2

u

Figure 8. Configurations G3, G4, and G5.

neighbor other than v and dG(v) ⩽ 4 ⩽ (9 − 4 − 3) × 2, we have chσ(G) ⩽
max{chσ(G \ ({v1, v2}), 9} = 9 by Lemma 7.

Therefore, we have χσ(G) ⩽ chσ(G) ⩽ 9.
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