DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2024): 0.8

5-year Journal Impact Factor (2024): 0.7

CiteScore (2024): 2.1

SNIP (2024): 1.162

Discussiones Mathematicae Graph Theory

Article in press


Authors:

Q. Zhou

Qingquan Zhou

School of Mathematics and Statistics,
Hainan University
Haikou, Hainan 570228, P. R. China

email: puppy@hainanu.edu.cn

Z. Luo

Zhidan Luo

School of Mathematics and Statistics,
Hainan University
Haikou, Hainan 570228, P. R. China

email: luodan@hainanu.edu.cn

0009-0005-6195-147X

Title:

Monochromatic stars and matchings in complete multipartite graphs

PDF

Source:

Discussiones Mathematicae Graph Theory

Received: 2025-03-17 , Revised: 2025-07-17 , Accepted: 2025-07-18 , Available online: 2025-08-29 , https://doi.org/10.7151/dmgt.2598

Abstract:

For graphs $G_{1},\dots, G_{l}$ and $G$, let $G\rightarrow(G_{1}, \dots, G_{l})$ denote that any $l$-coloring of $E(G)$ yields a monochromatic $G_{i}$ in color $i$ for some $i\in [l]$. Let $K_{1,n}$ be the star of order $n+1$, $mK_{2}$ be the matching of size $m$, and $K_{N_{1}, \dots, N_{k}}$ be the complete $k$-partite graph whose partite sets have sizes $N_{1}, \dots, N_{k- 1}$ and $N_{k}$, respectively. In this paper, we prove that if $\sum_{l= 1}^{k} N_{l} \geq \max\{2n+ m- 2, 2m\}$ and $\sum_{l= 1}^{k} N_{l}- N_{c}\geq m$ for each $c\in [k]$, then $K_{N_{1}, \dots, N_{k}}\rightarrow(K_{1, n}, mK_{2})$. Furthermore, we extend it to multicolors.

Keywords:

bipartite Ramsey numbers, set and size multipartite Ramsey numbers, multipartite graphs

References:

  1. A.P. Burger and J.H. van Vuuren, Ramsey numbers in complete balanced multipartite graphs. Part I: Set numbers, Discrete Math. 283 (2004) 37–43.
    https://doi.org/10.1016/j.disc.2004.02.004
  2. A.P. Burger and J.H. van Vuuren, Ramsey numbers in complete balanced multipartite graphs. Part II: Size numbers, Discrete Math. 283 (2004) 45–49.
    https://doi.org/10.1016/j.disc.2004.02.003
  3. S.A. Burr and J. Roberts, On Ramsey numbers for stars, Util. Math. 4 (1973) 217–220.
  4. E.J. Cockayne and P.J. Lorimer, On Ramsey graph numbers for stars and stripes, Canad. Math. Bull. 18 (1975) 31–34.
    https://doi.org/10.4153/CMB-1975-005-0
  5. E.J. Cockayne and P.J. Lorimer, The Ramsey number for stripes, J. Aust. Math. Soc. 19 (1975) 252–256.
    https://doi.org/10.1017/S1446788700029554
  6. R.J. Faudree and R.H. Schelp, Path-path Ramsey-type numbers for the complete bipartite graph, J. Combin. Theory Ser. B 19 (1975) 161–173.
    https://doi.org/10.1016/0095-8956(75)90081-7
  7. A. Gyárfás and J. Lehel, A Ramsey-type problem in directed and bipartite graphs, Period. Math. Hungar. 3 (1973) 299–304.
    https://doi.org/10.1007/BF02018597
  8. F. Harary, Recent results on generalized Ramsey theory for graphs, in: Graph Theory and Applications, Y. Alavi, D.R. Lick and A.T. White (Ed(s)), Lecture Notes in Math. 303, (Springer, Berlin, Heidelberg, 1972) 125–138.
    https://doi.org/10.1007/BFb0067364
  9. C. Jayawardene and L. Samarasekara, Size multipartite Ramsey numbers for stripes versus stripes, Ars Combin. 129 (2016) 357–366.
  10. G.R. Omidi, G. Raeisi and Z. Rahimi, Stars versus stripes Ramsey numbers, European J. Combin. 67 (2018) 268–274.
    https://doi.org/10.1016/j.ejc.2017.08.009
  11. P.H. Perondi and E.L. Monte Carmelo, Set and size multipartite Ramsey numbers for stars, Discrete Appl. Math. 250 (2018) 368–372.
    https://doi.org/10.1016/j.dam.2018.05.016
  12. G. Raeisi, Star-path and star-stripe bipartite Ramsey numbers in multicoloring, Trans. Comb. 4 (2015) 37–42.
    https://doi.org/10.22108/toc.2015.7275

Close