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Abstract

For graphs G1, . . . , Gl and G, let G → (G1, . . . , Gl) denote that any l-
coloring of E(G) yields a monochromatic Gi in color i for some i ∈ [l]. Let
K1,n be the star of order n+1, mK2 be the matching of sizem, andKN1,...,Nk

be the complete k-partite graph whose partite sets have sizes N1, . . . , Nk−1

and Nk, respectively. In this paper, we prove that if
∑k

l=1 Nl ≥ max{2n +

m − 2, 2m} and
∑k

l=1 Nl − Nc ≥ m for each c ∈ [k], then KN1,...,Nk
→

(K1,n,mK2). Furthermore, we extend it to multicolors.

Keywords: bipartite Ramsey numbers, set and size multipartite Ramsey
numbers, multipartite graphs.
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1. Introduction

In this paper, all graphs are simple. For a graph G, let V (G) and E(G) denote the
vertex and the edge sets of G, respectively. The order of G is |V (G)|, and the size
of G is |E(G)|. For a positive integer l ≥ 2, let G1, . . . , Gl and G be graphs, and
let G → (G1, . . . , Gl) denote that any l-coloring of E(G) yields a monochromatic
copy of Gi in color i for some i ∈ [l]. The Ramsey number for G1, . . . , Gl,
r(G1, . . . , Gl), is the minimum integer N such that KN → (G1, . . . , Gl). For
positive integers n and m, let K1,n be the star of order n+1, and let mK2 be the
matching of size m. For given positive integers n1, . . . , ns,m1, . . . ,mt−1 and mt,
let
∑

=
∑s

i=1(ni − 1) and Λ =
∑t

j=1(mj − 1). In 1972, Harary [8] determined
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the value of r(K1,n1 ,K1,n2). Burr and Roberts [3] extended it to multicolors by
showing that

r(K1,n1 , . . . ,K1,ns) =

{∑
+1, if

∑
and some ni are even,∑

+2, otherwise.

In 1975, Cockayne and Lorimer [5] determined the Ramsey numbers for matchings
by showing that r(m1K2, . . . ,mtK2) = max1≤j≤t{mj} + Λ + 1. Furthermore,
they [4] determined the Ramsey numbers for stars versus a matching. In 2018,
Omidi, Raeisi and Rahimi [10] determined the Ramsey numbers for stars versus
matchings by showing that if m1 ≥ · · · ≥ mt, then

r(K1,n1 , . . . ,K1,ns ,m1K2, . . . ,mtK2)

=

{
r + Λ+ 1, if m1 < r ≤ 2m2,

∑
and some ni are even,

max{r − 1,m1}+ Λ+ 1, otherwise,

where r = r(K1,n1 , . . . ,K1,ns).

For a positive integer k ≥ 2, let N1, . . . , Nk be positive integers and let
KN1,...,Nk

be the complete k-partite graph whose partite sets have sizes N1, . . . ,
Nk−1 and Nk, respectively. If |N1| = · · · = |Nk| = t, then simplify it as Kk×t.
In 1973, Gyárfás and Lehel [7], and Faudree and Schelp [6] introduced the bi-
partite Ramsey number for bipartite graphs G1, . . . , Gl, br(G1, . . . , Gl), which is
the minimum integer N such that K2×N → (G1, . . . , Gl). In 2015, Raeisi [12]
determined the bipartite Ramsey numbers for stars versus matchings by showing
that

br(K1,n1 , . . . ,K1,ns ,m1K2, . . . ,mtK2) =

{
Λ + 1, if

∑
<
⌊
Λ+1
2

⌋
,∑

+
⌊
Λ
2

⌋
+ 1, otherwise.

Let a ≥ 1 and b ≥ 2 be positive integers. In 2004, Burger and van Vuuren [1] intro-
duced the set multipartite Ramsey number for G1, . . . , Gl, Ma(G1, . . . , Gl), which
is the minimum integer k such that Kk×a → (G1, . . . , Gl). They [2] also intro-
duced the size multipartite Ramsey number for G1, . . . , Gl, mb(G1, . . . , Gl), which
is the minimum integer N such that Kb×N → (G1, . . . , Gl). In 2016, Jayawar-
dene and Samarasekara [9] determined the size multipartite Ramsey numbers for
matching versus matching by showing that if m1 ≥ m2, then

mb(m1K2,m2K2) =

{
m1 +m2 − 1, if b = 2,⌈
2m1+m2−1

b

⌉
, otherwise.

In 2018, Perondi and Monte Carmelo [11] determined the set and the size multi-
partite Ramsey numbers for stars by showing that
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Ma(K1,n1 , . . . ,K1,ns) =


∑
a + 1, if a is odd,

∑
a and some ni are even,⌊∑

a

⌋
+ 2, otherwise.

and

mb(K1,n1 , . . . ,K1,ns) =


∑
b−1 , if b and

∑
b−1 are odd, and some ni is even,⌈∑

+1
b−1

⌉
, otherwise.

In this paper, we prove the following theorems.

Theorem 1. If
∑k

l=1Nl ≥ max {2n+m− 2, 2m} and
∑k

l=1Nl − Nc ≥ m for
each c ∈ [k], then KN1,...,Nk

→ (K1,n,mK2).

Furthermore, we extend it to multicolors.

Theorem 2. If
∑k

l=1Nl ≥ max {2
∑

+Λ+ 1, 2Λ + 2} and
∑k

l=1Nl−Nc ≥ Λ+1
for each c ∈ [k], then KN1,...,Nk

→ (K1,n1 , . . . ,K1,ns ,m1K2, . . . ,mtK2).

Notations. For sets of vertices U and V satisfying U ∩ V = ∅, let E(U, V ) be
the set of all edges with one end vertex in U and the other in V . Denote the
subgraph H of G by H ⊂ G. For a red-blue edge-colored graph G, let R and B be
the induced subgraphs of G induced by the red and blue edges, respectively. Let
NR(v) and NB(v) be the set of all vertices adjacent to v in R and B, respectively.
Let dR(v) = |NR(v)| and dB(v) = |NB(v)|.

2. Monochromatic Stars and Matchings

Lemma 3. If N1 + N2 ≥ max{2n + m − 2, 2m} and Ni ≥ m for each i ∈ [2],
then KN1,N2 → (K1,n,mK2).

Proof. Let V (KN1,N2) = V1∪V2 with |Vi| = Ni for each i ∈ [2]. Color E(KN1,N2)
arbitrarily by red and blue and let K be the resulting graph. Let H = sK2 =
{ujvj |uj ∈ V1, vj ∈ V2, j ∈ [s]} be a maximum blue matching of K, and assume
that s ≤ m− 1 (otherwise, there is a blue copy of mK2 in K, and we are done).
Moreover, let Ui = Vi \ V (H) for each i ∈ [2]. Note that Ui ̸= ∅ since Ni ≥ m
and s ≤ m− 1. Let U ′

1 be the set of all uj such that E({uj}, U2) is red, and let
U ′
2 be the set of all vj such that E({vj}, U1) is red. For each j ∈ [s], if there are

vertices w ∈ U1 and w′ ∈ U2 such that vjw and ujw
′ are blue, then there is a blue

copy of (s+1)K2 (replace ujvj with vjw and ujw
′). It is a contradiction since H

is a maximum blue matching. Consequently, E({uj}, U2) or E({vj}, U1) is red,



4 Q. Zhou and Z. Luo

and thus |U ′
1|+ |U ′

2| ≥ s. Note that E(U1, U2) is red since H is a maximum blue
matching. Now, there are vertices u ∈ U1 and v ∈ U2 such that dR(u) ≥ |U2|+|U ′

2|
and dR(v) ≥ |U1|+ |U ′

1|. Note that

dR(u) + dR(v) ≥ |U2|+ |U ′
2|+ |U1|+ |U ′

1|
≥ N1 +N2 − 2s+ s

≥ 2n+m− 2− s ≥ 2n− 1.

By the pigeonhole principle, dR(u) ≥ n or dR(v) ≥ n and so, K contains a red
copy of K1,n, completing the proof.

Remark 4. The lower bounds presented in Lemma 3 are the best. Indeed, if
N1 = m − 1, or N2 = m − 1, or N1 +N2 = 2m − 1, then a blue copy of KN1,N2

contains neither a red copy of K1,n nor a blue copy of mK2. If N1 ≥ m,N2 ≥ m
and N1 +N2 = 2n+m− 3, then let N1 ≥ n− 1, and let N2 ≥ n− 1. In KN1,N2 ,
color a copy of Kn−1,n−1 in red and all other edges in blue. The resulting graph
contains neither a red copy of K1,n nor a blue copy of mK2.

Theorem 5. If
∑3

l=1Nl ≥ max {2n+m− 2, 2m} and
∑3

l=1Nl − Nc ≥ m for
each c ∈ [3], then KN1,N2,N3 → (K1,n,mK2).

Proof. Let V (KN1,N2,N3) = V1 ∪ V2 ∪ V3. Color E(KN1,N2,N3) arbitrarily by red
and blue and let K be the resulting graph. Let sK2 be a maximum blue matching
of K and denote it by S. Furthermore, we may assume that s ≤ m − 1. In the
sequel, the index of sets is considered in modulo 3, and we will consider four cases
depending on the coverage relationships between S and all Vi.

Case 1. S covers V1, V2 and V3. Then 2m ≤
∑3

l=1Nl = |V (S)| = 2s ≤
2(m− 1). This is a contradiction.

Case 2. S covers precisely one of V1, V2 and V3. Without loss of generality,
assume that V3 ⊂ V (S). For each k ∈ [3], let Sk = {ab ∈ E(S)|a ∈ Vk+1, b ∈
Vk+2}. Let A1 = V2 ∩ V (S1), A2 = V3 ∩ V (S2), A3 = V2 ∩ V (S3), C1 = V3 ∩
V (S1), C2 = V1 ∩ V (S2), C3 = V1 ∩ V (S3), A = V1 \ V (S), and C = V2 \ V (S).
Note that A ̸= ∅ and C ̸= ∅.

For each i ∈ [3], let Si,A = {x ∈ Ai|E({x}, A) is red} and Si,C = {x ∈
Ci|E({x}, C) is red}. For each edge uivi ∈ Si, let ui ∈ Ai and vi ∈ Ci. If there
are vertices w ∈ A and w′ ∈ C such that uiw and viw

′ are blue, then there is a
blue copy of (s+1)K2 (replace uivi with uiw and viw

′). It is a contradiction since
S is a maximum blue matching. Consequently, E({ui}, A) or E({vi}, C) is red,
and thus |Si,A| + |Si,C | ≥ |Si|. Note that E(A,C) is red since S is a maximum
blue matching.
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Now, there are vertices u ∈ A and v ∈ C such that dR(u) ≥
∑3

j=1 |Sj,A|+ |C|
and dR(v) ≥

∑3
j′=1 |Sj′,C |+ |A|. Note that

dR(u) + dR(v) ≥
3∑

j=1

|Sj,A|+ |C|+
3∑

j′=1

|Sj′,C |+ |A|

≥ |A|+ |C|+
3∑

l=1

|Sl| =
3∑

l=1

Nl − 2s+ s

≥ 2n+m− 2− s ≥ 2n− 1.

By the pigeonhole principle, dR(u) ≥ n or dR(v) ≥ n and so, K contains a red
copy of K1,n, and we are done.

Case 3. S covers precisely two of V1, V2 and V3. Without loss of generality,
we may assume that V2 ∪ V3 ⊂ V (S). For each k ∈ [3], let Sk = {ab ∈ E(S)|a ∈
V3−k, b ∈ V2−k}. For each i ∈ [2], let Ai = V1 ∩V (Si) and Ci = Vi+1 ∩V (Si). Let
C = V1 \ V (S). Note that |C| ≥ 2 since

∑3
l=1Nl ≥ 2m and s ≤ m− 1.

For each i ∈ [2], let Si,S3 = {x ∈ Ai|E({x}, V (S3)) is red} and Si,C = {x ∈
Ci|E({x}, C) is red}. For each edge uivi ∈ Si, let ui ∈ Ci and vi ∈ Ai. If there
is a vertex w ∈ C and an edge w′w′′ ∈ S3 such that uiw and viw

′ are blue, then
there is a blue copy of sK2 (replace uivi and w′w′′ with uiw and viw

′), which
covers only one of V2 and V3 since |C| ≥ 2. Then K contains a red copy of K1,n

by Case 2, and we are done. Consequently, we may assume that E({ui}, C) or
E({vi}, V (S3)) is red, and thus |Si,S3 |+ |Si,C | ≥ |Si|.

If there is a vertex u′ ∈ C and an edge v′v′′ ∈ S3 such that u′v′ is blue, then
there is a blue copy of sK2 (replace v′v′′ with u′v′), which covers only one of V2

and V3 since |C| ≥ 2. Then K contains a red copy of K1,n by Case 2, and we are
done. Consequently, we may assume that E(C, V (S3)) is red.

Now, there are vertices u ∈ C and v ∈ V (S3) such that dR(u) ≥ |V (S3)| +∑2
j=1 |Sj,C | and dR(v) ≥ |C|+

∑2
j′=1 |Sj′,S3 |. Note that

dR(u) + dR(v) ≥ |V (S3)|+
2∑

j=1

|Sj,C |+ |C|+
2∑

j′=1

|Sj′,S3 |

≥ |C|+ |S1|+ |S2|+ 2|S3|

=

3∑
l=1

Nl − 2s+ s+ |S3|

≥ 2n+m− 2− s ≥ 2n− 1.

By the pigeonhole principle, dR(u) ≥ n or dR(v) ≥ n and so, K contains a red
copy of K1,n, and we are done.
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Case 4. S covers none of the V1, V2 and V3. For each k ∈ [3], let Sk =
{ab ∈ E(S)|a ∈ Vk+1, b ∈ Vk+2}. For each k ∈ [3], let Ak = Vk+2 ∩ V (Sk),
Ck = Vk+1 ∩ V (Sk), and Dk = Vk − V (S). Note that for each k ∈ [3], Dk ̸= ∅.

For each i ∈ [3], let Si+1,Ai = {x ∈ Ai|E({x}, Di+1) is red} and Si+2,Ci =
{x ∈ Ci|E({x}, Di+2) is red}. For each edge uivi ∈ Si, let ui ∈ Ai and vi ∈ Ci.
If there are vertices w ∈ Di+1 and w′ ∈ Di+2 such that uiw and viw

′ are blue,
then there is a blue copy of (s + 1)K2 (replace uivi with uiw and viw

′). It is a
contradiction since S is a maximum blue matching. Consequently, E({ui}, Di+1)
or E({vi}, Di+2) is red, and thus |Si+1,Ai |+ |Si+2,Ci | ≥ |Si|.

For each i ∈ [3], let S′
i = {uv ∈ Si|NB(u)∩Di ̸= ∅, NB(v)∩Di ̸= ∅}. Assume

that there is an edge uv ∈ S′
i such that |NB(u)∩Di| ≥ 2 and |NB(v)∩Di| ≥ 2, or

(NB(u) ∩Di) \ (NB(v) ∩Di) ̸= ∅. Let w ∈ NB(u) ∩Di and let w′ ∈ NB(v) ∩Di

satisfy w ̸= w′. Then there is a blue copy of (s+ 1)K2 (replace uv with uw and
vw′). It is a contradiction since S is a maximum blue matching. Consequently,
for each edge uivi ∈ S′

i, |NB(ui) ∩ Di| = |NB(vi) ∩ Di| = 1 and NB(ui) ∩ Di =
NB(vi)∩Di. If |NB(xi)∩V (S′

i)| ≥ 1 for each vertex xi ∈ Di, then there is a blue
copy of sK2 (replace the blue edges in S′

i with the blue edges in E(Di, V (S′
i)),

which covers only Vi. Then K contains a red copy of K1,n by Case 2, and we
are done. Consequently, we may assume that there is a vertex u′i ∈ Di such that
E({u′i}, V (S′

i)) is red. Note that for any uv ∈ Si\S′
i, E({u}, Di) or E({v}, Di) is

red by the definition of Si\S′
i, and thus |NR(u

′
i) ∩ V (Si)| ≥ 2|S′

i| + |Si| − |S′
i| =

|S′
i|+ |Si|. Furthermore, for each i ∈ [3], E(Di, Di+1) is red since S is a maximum

blue matching. Note that

3∑
i=1

dR(u
′
i) =

3∑
i=1

(
|Si,Ai−1 |+ |Si,Ci−2 |+ |NR(u

′
i) ∩ V (Si)|+ |Di+1|+ |Di+2|

)
≥

3∑
i=1

(
|Si,Ai−1 |+ |Si,Ci−2 |+ |S′

i|+ |Si|+ |Di+1|+ |Di+2|
)

≥ 2

 3∑
i=1

|Di|+
3∑

j=1

|Sj |

+

3∑
k=1

|S′
k| = 2

(
3∑

i=1

Ni − 2s+ s

)
+

3∑
k=1

|S′
k|

≥ 2(2n+m− 2− s) ≥ 4n− 2 ≥ 3n− 2.

By the pigeonhole principle, dR(u
′
1) ≥ n, dR(u

′
2) ≥ n or dR(u

′
3) ≥ n and so, K

contains a red copy of K1,n, and we are done.
All cases have been discussed, and we have finished the proof.

Now, we are ready to prove our main theorems.

Proof of Theorem 1. We may assume that N1 ≥ · · · ≥ Nk. Then the condition
can be simplified as

∑k
l=1Nl ≥ max{2n+m−2, 2m} and

∑k
l=2Nl ≥ m. Now, we
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use induction on k to prove the theorem. Note that the assertion holds for k = 2, 3
by Lemma 3 and Theorem 5. Assume that the assertion holds for k−1 and k ≥ 4.
If N1 ≥ m, then we are done since KN1,

∑k
l=2 Nl

→ (K1,n,mK2) by Lemma 3 and

KN1,
∑k

l=2 Nl
⊂ KN1,...,Nk

. Thus, we may assume that N1 ≤ m − 1, and let M =

Nk−1 +Nk. If M ≤ N1, then we are done since KN1,...,Nk−2,M → (K1,n,mK2) by
the induction hypothesis and KN1,...,Nk−2,M ⊂ KN1,...,Nk

. Consequently, we may

assume that M > N1. If
∑k−2

l=1 Nl ≥ m, then we are done since KM,N1,...,Nk−2
→

(K1,n,mK2) by the induction hypothesis and KM,N1,...,Nk−2
⊂ KN1,...,Nk

. Thus,

we may assume that
∑k−2

l=1 Nl ≤ m− 1. Note that M = Nk−1 +Nk ≤ N1 +N2 ≤∑k−2
l=1 Nl ≤ m − 1. Then 2m ≤

∑k
l=1Nl =

∑k−2
l=1 Nl + M ≤ 2m − 2. This is a

contradiction.

Remark 6. The lower bounds presented in Theorem 1 are the best for 2 ≤ k ≤
m + 1. The assertion holds for k = 2 by Remark 4. Assume that k ≥ 3. Let
V (KN1,...,Nk

) =
⋃k

l=1 Vl with |Vl| = Nl for each l ∈ [k]. If there is c0 ∈ [k] such

that
∑k

l=1Nl−Nc0 = m− 1, or
∑k

l=1Nl = 2m− 1, then a blue copy of KN1,...,Nk

contains neither a red copy of K1,n nor a blue copy of mK2. If
∑k

l=1Nl =

2n +m − 3 and
∑k

l=1Nl − Nc ≥ m for each c ∈ [k], then let N1 = N2 = n − 1

and
∑k

l=3Nl = m − 1. Color E(V1, V2) in red and all other edges in blue. The
resulting graph contains neither a red copy of K1,n nor a blue copy of mK2.

Proof of Theorem 2. Color E(KN1,...,Nk
) arbitrarily by s+t colors. If the color

of an edge is the first s colors, then recolor it with red. Otherwise, recolor it with
blue. Note thatKN1,...,Nk

→
(
K1,

∑
+1, (Λ + 1)K2

)
by Theorem 1. If there is a red

copy of K1,
∑

+1, then there is a monochromatic copy of K1,ni in color i for some
i ∈ [s] by the pigeonhole principle. If there is a blue copy of (Λ+1)K2, then there
is a monochromatic copy of mjK2 in color s+j for some j ∈ [t] by the pigeonhole
principle. Consequently, KN1,...,Nk

→ (K1,n1 , . . . ,K1,ns ,m1K2, . . . ,mtK2).

The following is from Theorem 2 directly by the definition of the set and the
size multipartite Ramsey numbers.

Corollary 7.

Ma(K1,n1 , . . . ,K1,ns ,m1K2, . . . ,mtK2)

≤ max

{⌈
2
∑

+Λ+ 1

a

⌉
,

⌈
2Λ + 2

a

⌉
,

⌈
Λ + 1

a

⌉
+ 1

}
.

Corollary 8.

mb(K1,n1 , . . . ,K1,ns ,m1K2, . . . ,mtK2)

≤ max

{⌈
2
∑

+Λ+ 1

b

⌉
,

⌈
2Λ + 2

b

⌉
,

⌈
Λ + 1

b− 1

⌉}
.
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We can also resolve the bipartite Ramsey numbers for stars versus matchings.

Theorem 9.
br(K1,n1 , . . . ,K1,ns ,m1K2, . . . ,mtK2)

= m2(K1,n1 , . . . ,K1,ns ,m1K2, . . . ,mtK2)

≤ max

{∑
+

⌈
Λ + 1

2

⌉
,Λ + 1

}
.

The upper bound in Theorem 9 is tight. The lower bound is omitted here
and one can find it in [12].

3. Remark

We have proven that the lower bounds of Theorem 1 are the best for 2 ≤ k ≤
m+ 1. If k ≥ m+ 2, then in Remark 6, we have to partition V1 or V2 into more
sets. In this case, the lower bound of

∑k
l=1Nl can be improved.

Conjecture 10. Let k ≥ m+2 be an integer. If
∑k

l=1Nl ≥ max
{

k−m+1
k−m (n− 1)

+ m, 2m
}
and

∑k
l=1Nl−Nc ≥ m for each c ∈ [k], then KN1,...,Nk

→ (K1,n,mK2).

We believe that the lower bounds of Theorem 2 can be improved since
r(m1K2, . . . ,mtK2) = max

1≤j≤t
{mj}+ Λ+ 1 from [5].

Conjecture 11. If m1 ≥ · · · ≥ mt,
∑k

l=1Nl ≥ max {2
∑

+Λ+ 1,Λ +m1 + 1}
and

∑k
l=1Nl − Nc ≥ m1 for each c ∈ [k], then KN1,...,Nk

→ (K1,n1 , . . . ,K1,ns ,
m1K2, . . . ,mtK2).
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