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Abstract

For graphs Gi,...,G; and G, let G — (Gy,...,G}) denote that any I-
coloring of E(QG) yields a monochromatic G; in color 4 for some i € [I]. Let
K, ,, be the star of order n+1, mKj, be the matching of size m, and Kn, ... n,
be the complete k-partite graph whose partite sets have sizes Ni,..., Nx_1
and Ny, respectively. In this paper, we prove that if Zle N; > max{2n +
m — 2,2m} and Zle N, — N, > m for each ¢ € [k], then Ky, N, —
(K1,n, mKj). Furthermore, we extend it to multicolors.
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1. INTRODUCTION

In this paper, all graphs are simple. For a graph G, let V(G) and E(G) denote the
vertex and the edge sets of G, respectively. The order of G is |V (G)|, and the size
of G is |E(G)|. For a positive integer [ > 2, let G1,...,G; and G be graphs, and
let G — (G1,...,G)) denote that any [-coloring of E(G) yields a monochromatic
copy of G; in color i for some ¢ € [l]. The Ramsey number for Gi,...,G,
r(Gy,...,G;), is the minimum integer N such that Ky — (Gy,...,G). For
positive integers n and m, let K1, be the star of order n+ 1, and let mKs be the
matching of size m. For given positive integers nq,...,ns, my,...,my—1 and my,
let > =>7 (n;—1) and A = Z;Zl(mj —1). In 1972, Harary [8] determined
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the value of 7(K1 p,, K1 n,). Burr and Roberts [3] extended it to multicolors by
showing that

S>> 41, if Y and some n; are even,

r(King, s Kin,) =
(K1my 1ns) {24_2’ otherwise.

In 1975, Cockayne and Lorimer [5] determined the Ramsey numbers for matchings
by showing that r(miKs,...,m¢Ks) = maxi<j<i{m;} + A + 1. Furthermore,
they [4] determined the Ramsey numbers for stars versus a matching. In 2018,
Omidi, Raeisi and Rahimi [10] determined the Ramsey numbers for stars versus
matchings by showing that if my > --- > my, then

T(Kl,nla LR Kl,ns>m1K2> cee >th2)

_r+ A+, if my <r < 2mgy, Y and some n; are even,
max{r —1,m1} +A+1, otherwise,

where r = 7(Kiny, ..., Kin,)-

For a positive integer k£ > 2, let Ny,..., N be positive integers and let
K, ... N, be the complete k-partite graph whose partite sets have sizes Ny, ...,
Ng—1 and Ng, respectively. If |[Nj| = --- = |Ni| = t, then simplify it as Kjx;.

In 1973, Gyéarfds and Lehel [7], and Faudree and Schelp [6] introduced the bi-
partite Ramsey number for bipartite graphs G, ..., Gy, br(Gy,...,G;), which is
the minimum integer N such that Koxn — (Gi,...,Gp). In 2015, Raeisi [12]
determined the bipartite Ramsey numbers for stars versus matchings by showing
that

A+1, ity < |45,

br(Kipys. oy K1, miKa,...,mKs) =
(Kim, 1,n 1482 tK2) {Z+L%J+1, otherwise.

Let a > 1 and b > 2 be positive integers. In 2004, Burger and van Vuuren [1] intro-
duced the set multipartite Ramsey number for G, ..., G, M,(G1,...,G;), which
is the minimum integer k& such that Kpy, — (Gi,...,G). They [2] also intro-
duced the size multipartite Ramsey number for Gy, ..., Gy, my(G1, ..., G), which
is the minimum integer N such that Kyxny — (G1,...,G;). In 2016, Jayawar-
dene and Samarasekara [9] determined the size multipartite Ramsey numbers for
matching versus matching by showing that if m; > mso, then

mi+mo—1, ifb=2,

mplm K , K =
p(m1Ko, maKy) {[Wrbmzl} otherwise.

In 2018, Perondi and Monte Carmelo [11] determined the set and the size multi-
partite Ramsey numbers for stars by showing that
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% + 1, if a is odd, % and some n; are even,

L% + 2, otherwise.

%, if b and % are odd, and some n; is even,

{%—‘ , otherwise.

In this paper, we prove the following theorems.

Theorem 1. If Zle N; > max{2n+m — 2,2m} and Zle N; — N, > m for
each c € [k], then Kn, . N, — (Kin, mKs).

77777

Furthermore, we extend it to multicolors.

Theorem 2. If S5 | Ny > max {2 +A + 1,2A + 2} and Y5 Ny— N. > A+1
for each c € [k], then Kn, .~N, = (Kiny,-. . Kipn,,miKo,...,mK>).

Notations. For sets of vertices U and V satisfying U NV = 0, let E(U,V) be
the set of all edges with one end vertex in U and the other in V. Denote the
subgraph H of G by H C G. For a red-blue edge-colored graph G, let R and B be
the induced subgraphs of GG induced by the red and blue edges, respectively. Let
Ngr(v) and Ng(v) be the set of all vertices adjacent to v in R and B, respectively.
Let dr(v) = |[Ng(v)| and dp(v) = |Np(v)|.

2. MONOCHROMATIC STARS AND MATCHINGS

Lemma 3. If N; + No > max{2n + m — 2,2m} and N; > m for each i € [2],
then Ky, N, — (K15, mK>).

Proof. Let V(Kn, n,) = V1UVa with |V;| = N; for each i € [2]. Color E(Kn, n,)
arbitrarily by red and blue and let K be the resulting graph. Let H = sKy =
{ujvjluj € Vi,vj € Va,j € [s]} be a maximum blue matching of K, and assume
that s < m — 1 (otherwise, there is a blue copy of mKjs in K, and we are done).
Moreover, let U; = V; \ V(H) for each i € [2]. Note that U; # () since N; > m
and s < m — 1. Let U] be the set of all u; such that E({u;},Us) is red, and let
Uj be the set of all vj such that E({v;},U;) is red. For each j € [s], if there are
vertices w € Uy and w’ € Uy such that vjw and ujw’ are blue, then there is a blue
copy of (s+ 1)Ky (replace u;v; with vjw and wjw’). It is a contradiction since H
is a maximum blue matching. Consequently, E({u;}, Us) or E({v;},Uy) is red,
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and thus |U{| 4 |Uj| > s. Note that E(Uy,Us) is red since H is a maximum blue
matching. Now, there are vertices u € U; and v € Uy such that dg(u) > |Us|+|Uj|
and dgr(v) > |Uy| 4+ |U]|. Note that

dr(u) + dr(v) > |Us| + |Us| + |U1| + |Uf]
> N1+ Ng—2s+s
>2n4+m—2—s>2n—1.

By the pigeonhole principle, dr(u) > n or dr(v) > n and so, K contains a red
copy of K15, completing the proof. [ |

Remark 4. The lower bounds presented in Lemma 3 are the best. Indeed, if
Ni=m—1,0or Ny =m —1, or N; + N2 = 2m — 1, then a blue copy of Ky, n,
contains neither a red copy of K, nor a blue copy of mKs. If Ny > m, No > m
and N1+ No =2n+m — 3, then let Ny >n —1, and let No > n —1. In Ky, n,,
color a copy of K,_1,—1 in red and all other edges in blue. The resulting graph
contains neither a red copy of K, nor a blue copy of mKs.

Theorem 5. If Z?:l N; > max{2n+m — 2,2m} and Z?:l Ny — N. > m for
each ¢ € [3], then Ky, Ny Ny — (K1 n, mK?).

Proof. Let V(Kn, nyn;) = Vi UVoU V3. Color E(Kp, N, nN,) arbitrarily by red
and blue and let K be the resulting graph. Let sKs be a maximum blue matching
of K and denote it by S. Furthermore, we may assume that s < m — 1. In the
sequel, the index of sets is considered in modulo 3, and we will consider four cases
depending on the coverage relationships between S and all V;.

Case 1. S covers Vi,V and V3. Then 2m < Z?:l Ny = |V(5)] = 25 <
2(m — 1). This is a contradiction.

Case 2. S covers precisely one of Vi, V5 and V3. Without loss of generality,
assume that V3 C V(S). For each k € [3], let S, = {ab € E(S)|a € Vit1,b €
Vk+2}. Let A1 = Vo N V(Sl),AQ =Vsn V(Sg),Ag = VN V(Sg),C1 = VN
V(Sl),CQ =Vin V(SQ),Cg =Vin V(Sg),A =W \ V(S), and C =V} \ V(S)
Note that A # () and C # 0.

For each i € [3], let S; 4 = {z € Aj|E({z}, A) is red} and S;c = {z €
C;|E({z},C) is red}. For each edge u;v; € S;, let u; € A; and v; € C;. If there
are vertices w € A and w’ € C such that uw;w and v;w’ are blue, then there is a
blue copy of (s+1)K> (replace u;v; with u;w and v;w’). Tt is a contradiction since
S is a maximum blue matching. Consequently, E({u;}, A) or E({v;},C) is red,
and thus [S; a| + |Si,c| > |Si|. Note that E(A,C) is red since S is a maximum
blue matching.
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Now, there are vertices u € A and v € C such that dr(u) > E?:l |Sj.a|+C|
and dg(v) > Z?/:1 |Sjr.c| + |A]l. Note that

w

dp(u) + dg(v Z JA|+\C!+Z!S'C|+\A|

j=1 §'=1

>|A\+]C|+Z\Sl| ZN1—2S+S
=1
22n+m—2—522n—1.

By the pigeonhole principle, dr(u) > n or dr(v) > n and so, K contains a red
copy of K1, and we are done.

Case 3. S covers precisely two of Vi, Vo and V3. Without loss of generality,
we may assume that Vo U V3 C V(S). For each k € [3], let S, = {ab € E(S)|a €
Va_g, b€ Vo_i}. Foreachi € [2],let A; =ViNV(S;) and C; = Vi1 NV (S;). Let
C =V;\ V(5). Note that |C| > 2 since 2?21 Ny >2m and s <m — 1.

For each i € [2], let S; g, = {z € A;|E({z},V(S3)) is red} and S; ¢ = {z €
Ci|E({x},C) is red}. For each edge u;v; € S;, let u; € C; and vl € A;. If there
is a vertex w € C and an edge w'w” € S3 such that u;w and v;w’ are blue, then
there is a blue copy of sKy (replace w;v; and w'w” with w;w and v;w’), which
covers only one of V5 and V3 since |C| > 2. Then K contains a red copy of Kj
by Case 2, and we are done. Consequently, we may assume that E({u;},C) or
E({v;},V(S3)) is red, and thus |S; s,| + |Si.c| > |Si].

If there is a vertex v/ € C' and an edge v'v” € S3 such that «/v’ is blue, then
there is a blue copy of sKj (replace v'v” with «/v"), which covers only one of V5
and V3 since |C| > 2. Then K contains a red copy of K, by Case 2, and we are
done. Consequently, we may assume that E(C,V(S3)) is red.

Now, there are vertices u € C' and v € V(S3) such that dg(u) > |V (S3)| +
S 1Sic (v) > |C|+ 371 1Sj7,s,]- Note that

2 2
dr(u) + dr(v) > [V(S3)| + > ISl +1C1+ > ISj sl
j=1 j=1
> |C| + |S1| + |S2| + 2|S3]

3
= ZNZ—23+3+!S;;]
=1
>2n4+m—2—s>2n—1.

By the pigeonhole principle, dgr(u) > n or dgr(v) > n and so, K contains a red
copy of K1, and we are done.
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Case 4. S covers none of the Vi, Vo and V3. For each k € [3], let S =
{ab € E(S)la € Vii1,b € Viio}. For each k € [3], let Ay = Viyo NV (Sk),
Cr = Viy1 NV (Sk), and Dy = Vi, — V(S). Note that for each k € [3], Dy # 0.

For each i € [3], let Sit1,4, = {x € A|E({z}, Diy1) is red} and Sjjo ¢, =
{z € Cj|E({x}, Di12) is red}. For each edge u;v; € S;, let u; € A; and v; € C;.
If there are vertices w € D;11 and w' € D;io such that u;w and v;w’ are blue,
then there is a blue copy of (s + 1)Ky (replace u;v; with w;w and v;w'). Tt is a
contradiction since S is a maximum blue matching. Consequently, E({u;}, Diy1)
or E({’UZ}, Di+2) is red, and thus |Si+1,Ai| + |Si+2,C¢| > ‘SZ|

For each i € (3], let S] = {uv € S;|Np(u) N D; # 0, Ng(v)ND; # 0}. Assume
that there is an edge uv € S} such that |[Np(u)ND;| > 2 and |[Np(v)ND;| > 2, or
(NB(U,) N Dz) \ (NB(’U) N Dz) #* 0. Let w € NB(U) N D; and let w’ € NB(U) N D;
satisfy w # w’. Then there is a blue copy of (s + 1)K (replace uv with uw and
vw’). Tt is a contradiction since S is a maximum blue matching. Consequently,
for each edge w;v; € S, [INg(u;) N D;| = |Ng(v;) N D;| = 1 and Np(u;) N D; =
Np(vi)ND;. If [INg(x;) NV (S)| > 1 for each vertex z; € D;, then there is a blue
copy of sKy (replace the blue edges in S} with the blue edges in E(D;, V(S))),
which covers only V;. Then K contains a red copy of Ki, by Case 2, and we
are done. Consequently, we may assume that there is a vertex ) € D; such that
E({ul},V(S))) is red. Note that for any uv € S;\S}, E({u}, D;) or E({v}, D;) is
red by the definition of S;\S!, and thus |Ng(u}) NV (S;)| > 2|S| + |Si| — |Si] =
|5/ +|S;|. Furthermore, for each i € [3], E(D;, D;1+1) is red since S is a maximum
blue matching. Note that

3

Z dr(u;)

i=1 i=1

I
NE

(1,41 1+ [Sicia| + [Nr(u)) N V(Si)] + [ Disa| + | Dita)

M-

(1S5,4,1| 4 Si.cissl + 157 + 16 + [Dig1| + | Diyal)

=1

> 2 Z|Di|+
j

3

=1

3 3 3
1551 ] + D 1Sk =2 <ZN¢ — 25+s> +) 1S
1 k=1 =1 k=1

>2(2n+m—2—s5)>4n—2 > 3n — 2.

By the pigeonhole principle, dr(u}) > n,dgr(ub) > n or dgr(uj) > n and so, K
contains a red copy of K ,, and we are done.
All cases have been discussed, and we have finished the proof. [ |

Now, we are ready to prove our main theorems.

Proof of Theorem 1. We may assume that Ny > --- > Nj. Then the condition
can be simplified as Zle N; > max{2n+m—2,2m} and E?:Q N; > m. Now, we
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use induction on k to prove the theorem. Note that the assertion holds for & = 2,3
by Lemma 3 and Theorem 5. Assume that the assertion holds for k—1 and k& > 4.
If N7 > m, then we are done since KN1,Z{°:2 N (K1,n,mK>) by Lemma 3 and
KNl,Zfzg N C Ky, ...N,- Thus, we may assume that Ny < m — 1, and let M =
Nj—1+ Ni. If M < Ny, then we are done since Ky, . n, om0 — (K15, mK2) by
the induction hypothesis and Ky, .. n, ,,m C Kn, . n,. Consequently, we may
assume that M > N;. If Zf:f N; > m, then we are done since Ky n,,... N, , —
(K15, mK>) by the induction hypothesis and Ky n,... N,_, C Kn,,.. N, Thus,
we may assume that Zf:_f N; <m—1. Note that M = Np_1 4+ N, < N7+ Ny <

;:12 N; <m —1. Then 2m < Zle N; = f:_le + M < 2m —2. Thisis a
contradiction. ™

Remark 6. The lower bounds presented in Theorem 1 are the best for 2 < k <
m + 1. The assertion holds for k = 2 by Remark 4. Assume that k£ > 3. Let
V(KnN, .. .N,) = Ule Vi with |Vj| = N, for each | € [k]. If there is ¢g € [k] such
that Zle Ny — N, =m—1,or Zle N; =2m —1, then a blue copy of K, . N,
contains neither a red copy of Kj, nor a blue copy of mKs. If Zle N; =
2n +m — 3 and ZleNl — N, > m for each ¢ € [k], then let Ny = No =n —1
and Zf:f} N; = m — 1. Color E(V1,V3) in red and all other edges in blue. The
resulting graph contains neither a red copy of K, nor a blue copy of mKo.

Proof of Theorem 2. Color E(KJ, .. n,) arbitrarily by s+t colors. If the color
of an edge is the first s colors, then recolor it with red. Otherwise, recolor it with
blue. Note that Ky, . n, — (KLZ 1, (A + 1)K2) by Theorem 1. If there is a red
copy of Kj sy~ 1, then there is a monochromatic copy of K7 p, in color i for some
i € [s] by the pigeonhole principle. If there is a blue copy of (A+1) K3, then there
is a monochromatic copy of m;K» in color s+ j for some j € [t] by the pigeonhole
principle. Consequently, Ky, . N, = (Kipnis.-, Kin,,miKo, ... ,mKs). [

The following is from Theorem 2 directly by the definition of the set and the
size multipartite Ramsey numbers.

Corollary 7.
Mo (K1 pys - King, miKa, ..., mKa)

o ([ [ [121] ).

a a

Corollary 8.

mb(KLm, ey KLns,leQ, e ,thQ)

<man {2 [252] [5]
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We can also resolve the bipartite Ramsey numbers for stars versus matchings.

Theorem 9.
b’l‘(Kl,nl, e ,Kl,ns,leQ, e ,thQ)

= mQ(Kl,nlv v 7Kl,nsam1K25 e athQ)

Smax{z—i- {A;rlw ,A+1}.

The upper bound in Theorem 9 is tight. The lower bound is omitted here
and one can find it in [12].

3. REMARK

We have proven that the lower bounds of Theorem 1 are the best for 2 < k <
m+ 1. If K > m + 2, then in Remark 6, we have to partition V7 or V5 into more
sets. In this case, the lower bound of Zle N; can be improved.

Conjecture 10. Let k > m +2 be an integer. If 27:1 N; > max {%(n -1)
+ m, 2m} and Zle N;—N. > m for each c € [k], then Kn, . N, = (K1 n, mK>).

We believe that the lower bounds of Theorem 2 can be improved since
r(miKs,...,mKs) = fgai(t{mj} + A+ 1 from [5].
<i<

Conjecture 11. If my > -+ > my, Zle Ny > max {2 +A+1,A+my + 1}
and Zle N; — N. > my for each ¢ € [k|, then Ky, N, = (Kings---, Kin,,
leQ, e ,thz).
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