DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2024): 0.8

5-year Journal Impact Factor (2024): 0.7

CiteScore (2024): 2.1

SNIP (2024): 1.162

Discussiones Mathematicae Graph Theory

Article in press


Authors:

K.M. Harith

K. Mohamed Harith

Indian Institute of Technology Madras

email: harry1496@gmail.com

0009-0001-1819-4005

A.V. Jayanthan

A.V. Jayanthan

Department of Mathematics
IIT Madras
Chennai
600036

email: jayanav@iitm.ac.in

0000-0001-5950-5909

R. Rao B.V.

Raghavendra Rao B.V.

Department of Computer Science
IIT Madras
Chennai
600036

email: bvrr@cse.iitm.ac.in

0000-0001-8383-8690

Title:

Bounds for packing chromatic number of some subclasses of trees

PDF

Source:

Discussiones Mathematicae Graph Theory

Received: 2025-01-18 , Revised: 2025-07-02 , Accepted: 2025-07-02 , Available online: 2025-08-29 , https://doi.org/10.7151/dmgt.2597

Abstract:

It is known that computing packing chromatic number is \NP-hard even for trees. In this article, we derive an exact formula for the packing chromatic number for trees of diameter five in terms of number of vertices of degree at least four. Additionally, we improve the upper bound for shifted packing chromatic number of an infinite path. We also establish a new bound for the packing chromatic number of any tree, related to the number of vertices of degree at least four. Finally, we identify an infinite class of trees containing caterpillars, which has a bounded packing chromatic number.

Keywords:

tree, vertex degree, graph diameter, graph coloring

References:

  1. G. Argiroffo, G. Nasini and P. Torres, The packing coloring problem for lobsters and partner limited graphs, Discrete Appl. Math. 164 (2014) 373–382.
    https://doi.org/10.1016/j.dam.2012.08.008
  2. J. Balogh, A. Kostochka and X. Liu, Packing chromatic number of cubic graphs, Discrete Math. 341 (2018) 474–483.
    https://doi.org/10.1016/j.disc.2017.09.014
  3. B. Brešar and J. Ferme, An infinite family of subcubic graphs with unbounded packing chromatic number, Discrete Math. 341 (2018) 2337–2342.
    https://doi.org/10.1016/j.disc.2018.05.004
  4. B. Brešar and J. Ferme, Graphs that are critical for the packing chromatic number, Discuss. Math. Graph Theory 42 (2022) 569–589.
    https://doi.org/10.7151/dmgt.2298
  5. B. Brešar, J. Ferme, S. Klavžar and D.F. Rall, A survey on packing colorings, Discuss. Math. Graph Theory 40 (2020) 923–970.
    https://doi.org/10.7151/dmgt.2320
  6. B. Brešar, S. Klavžar and D.F. Rall, On the packing chromatic number of Cartesian products, hexagonal lattice, and trees, Discrete Appl. Math. 155 (2007) 2303–2311.
    https://doi.org/10.1016/j.dam.2007.06.008
  7. B. Brešar, S. Klavžar, D.F. Rall and K. Wash, Packing chromatic number, $(1, 1, 2, 2)$-colorings, and characterizing the Petersen graph, Aequationes Math. 91 (2017) 169–184.
    https://doi.org/10.1007/s00010-016-0461-8
  8. J. Fiala and P.A. Golovach, Complexity of the packing coloring problem for trees, Discrete Appl. Math. 158 (2010) 771–778.
    https://doi.org/10.1016/j.dam.2008.09.001
  9. J. Fiala, S. Klavžar and B. Lidick\`y, The packing chromatic number of infinite product graphs, European J. Combin. 30 (2009) 1101–1113.
    https://doi.org/10.1016/j.ejc.2008.09.014
  10. N. Gastineau, P. Holub and O. Togni, On the packing chromatic number of subcubic outerplanar graphs, Discrete Appl. Math. 255 (2019) 209–221.
    https://doi.org/10.1016/j.dam.2018.07.034
  11. W. Goddard, S.M. Hedetniemi, S.T. Hedetniemi, J.M. Harris and D.F. Rall, Broadcast chromatic numbers of graphs, Ars Combin. 86 (2008) 33–50.
  12. D. Laïche and É. Sopena, Packing colouring of some classes of cubic graphs, Australas. J. Combin. 72 (2018) 376–404.
  13. C. Sloper, An eccentric coloring of trees, Australas. J. Combin. 29 (2004) 309–322.
  14. D.B. West, Introduction to Graph Theory (Prentice Hall, 2001).

Close