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Abstract

It is known that computing packing chromatic number is NP-hard even
for trees. In this article, we derive an exact formula for the packing chromatic
number for trees of diameter five in terms of number of vertices of degree
at least four. Additionally, we improve the upper bound for shifted packing
chromatic number of an infinite path. We also establish a new bound for the
packing chromatic number of any tree, related to the number of vertices of
degree at least four. Finally, we identify an infinite class of trees containing
caterpillars, which has a bounded packing chromatic number.

Keywords: tree, vertex degree, graph diameter, graph coloring.
2020 Mathematics Subject Classification: 05C05, 05C07, 05C15.

1. INTRODUCTION

Let G = (V,E) be a finite simple undirected graph. For k € N, a packing k-
coloring is a partition of the vertex set V into k subsets Vi,...,V; such that if
u,v € Vi, u # v, then the length of a shortest path between the vertices v and
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v in G is greater than i, for all i € [k] := {1,...,k}. The smallest integer k
for which there exists a packing k-coloring of G is called the packing chromatic
number of G, denoted by x,(G).

The term “packing chromatic number” was introduced by Bresar et al. [6],
as it combines aspects of both packing (densely collecting vertices) and coloring
(partitioning the vertex set). However, the concept was initially introduced by
Goddard et al. in [11] under the name “broadcast chromatic number” with
applications to frequency assignment problems. Prior to the formal introduction
of packing coloring, Sloper studied a related problem called the eccentric coloring
of trees in [13]. He established some upper bounds and calculated the eccentric
chromatic numbers for certain classes of trees, including caterpillars and binary
trees. Since eccentric colorings are a specific type of packing coloring, the same
upper bounds apply to packing chromatic numbers as well.

Many authors have explored various structural and algorithmic aspects of
packing coloring for special classes of graphs, such as planar graphs, subcubic
graphs, and certain types of trees, leading to numerous open questions and con-
jectures. In [11], Goddard et al. showed that the decision version of packing chro-
matic number is NP-complete and later, Fiala and Golovach [8] showed that it
remains NP-complete even for trees. Obtaining bounds on the packing chromatic
number of various classes of graphs and obtaining characterization of graphs with
a given packing chromatic number remain key areas of research. For example,
bounding packing chromatic number of subcubic graphs received wide attention
in the literature. Initially, it was questioned in [7] whether the class of subcubic
graphs have bounded packing chromatic number. However, this was disproved
by Balogh et al. in [2], and later improved by several authors [3, 10, 12] (see also
the survey [5]).

Since determining packing chromatic number is NP-hard even for trees [8],
bounding packing chromatic number remains interesting even for trees. In a
graph G, a vertex is called a large vertex if its degree is greater than or equal
to 4. In [11], the authors present an exact formula for the packing chromatic
number of trees of diameter four, based on the number of large-degree vertices.
Utilizing this, they showed that packing chromatic number of trees is bounded

by ”T” which is sharp even for lobsters of small diameters.

Using standard apparatus from model checking for monadic second order
logic, Fiala and Golovach [8] observed that if the packing chromatic number of a
tree is bounded by a constant, then determining the exact value can be done in
polynomial time. Thus it is interesting to identify classes of graphs for which the
packing chromatic number is bounded. Argiroffo et al. [1], obtained bounds on
the packing chromatic number of lobsters in terms of the maximum number of
large vertices adjacent to a vertex in its spine. In this article, we first determine
the exact values of the packing chromatic number for trees with diameter five,
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based on the number of large vertices, by identifying certain packing chromatic
critical subtrees.

When a graph has many pendant vertices, color 1 can be assigned to all
the pendant vertices. It is therefore reasonable to inquire about the minimum
number of colors required to packing color a graph when the use of smaller colors
is restricted. In other words, for 1 < s < k, the s-shifted packing k-coloring is
the partition of the vertex set V' of a graph into k subsets Vi,...,V; such that
for any u,v € V;, u # v, the distance between u and v in G is at least s + .
In [9], an upper bound for the shifted packing chromatic number of path graphs
was determined. Building on this, Argiroffo et al. in [1] offer an upper bound for
the packing chromatic number of lobsters and show that it can be computed in
polynomial time for an infinite subclass of them, including caterpillars. It may
be noted that they studied s-shifted packing k-coloring of graphs under the name
(k, s)-packing coloring.

We enhance this upper bound for the shifted packing chromatic number of
the infinite path. The main idea is to construct a packing coloring for the infinite
path using the packing coloring of a finite path. By utilizing the packing coloring
for binary trees and realising the role played by large vertices, we establish a
new upper bound for the packing chromatic number of any tree. Finally, we
identify an infinite class of trees that includes caterpillars but is not contained
within lobsters, where the packing chromatic number is bounded by leveraging
the bound on the shifted packing chromatic number of paths.

The paper is organized as follows. In the next section, we review some graph
theory terminologies that will be used throughout the article. In Section 3, we
discuss the packing chromatic number of trees with diameter five. In Section 4,
we derive an upper bound for the shifted packing coloring of an infinite path.
Section 5 covers new upper bounds for the packing chromatic number of lobsters
and trees in general. Finally, in Section 6, we examine the packing chromatic
number for the class of bounded width trees, which includes caterpillars.

2. PRELIMINARIES

In this section, we recall some definitions and notations in graph theory. More
details can be found in the textbook by West, [14]. Let G be a graph. We denote
its vertex set by V(G) (or simply V') and its edge set by E(G) (or simply E).
All graphs considered here are undirected, unweighted, finite, and simple. Thus
FE can be viewed as a set of unordered pairs of vertices. For a vertex v € V, the
total number of vertices in G that are adjacent to v is called the degree of v. If a
vertex v has degree one in G, it is referred to as a leaf or a pendant vertex. We
shall call a vertex a large vertex if it has degree greater than or equal to four, [11].
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Let u,v € V be any two distinct vertices. The distance between vertices
u and v is the length of the shortest path connecting the two vertices, denoted
by d(u,v). This is well defined for any pair of vertices when the graph con-
sidered is connected. The eccentricity of a vertex v € V, denoted by eg(v),
is defined as the maximum distance between v and any other vertex in G:
eq(v) = maxyey{d(u,v)}. The diameter of a graph is the greatest distance
between any pair of vertices, that is, diam(G) = max,cy {ec(v)}. The center of a
graph G, denoted by C(G), is the set of vertices with minimum eccentricity, that
is, C(G) = {v € G | ¢¢(v) is minimum}.

A subset S C V is said to be an independent set if G does not contain an
edge between any pair of vertices in S. For a positive integer k, a proper k-
vertex coloring of graph G is a function f : V — [k] which partitions V into k
independent sets

V=Vu---uVg,

where each V; is called a color class. The least positive integer k for which such
partition of vertex set exists is called the chromatic number of the graph, denoted
by x(G). For s € N, U C V is said to be an s-packing independent set, if for any
two distinct vertices u,v € U, d(u,v) > s. A packing k-coloring of graph G is a
partition of the vertex set V into k independent sets

V=WVu---uVg,

where each V; is an i-packing independent set. If such a partition of V exists,
then the graph G is said to be packing k-colorable. The least positive integer k for
which G is packing k-colorable is called the packing chromatic number, denoted
by X,(G).

In this article, we limit our focus on trees. Recall that an acyclic graph is
called a forest and a connected forest is a tree. Very often, a graph that is a tree
is denoted by T instead of G. A subtree T of a tree T is an induced subgraph
which has V(T") C V(T'), and it is also denoted by 7" C T.

A tree T is a packing chromatic critical graph, or x,-critical graph, if for
every proper subtree T of T, x,(T") < x,(T). If T is x,-critical and x,(T) = k,
then T is referred to as a k-x,-critical tree. Furthermore, if for all v € V,
Xp(T —v) < xp(T), then T is called x,-vertez-critical tree. It has been shown by
Bresar and Ferme [4] that these two notions coincide for trees. More generally,
let G be a class of graphs. For a positive integer k, we say a graph G € G is
k-x,-critical in G, if x,(G) = k and for every proper subgraph H € G of G,
Xp(H) < x,(G). Observe that, if G € G is k-x,-critical and H is a subgraph of
G such that x,(H) = x,(G) =k, then H ¢ G.

For any two graphs G1,Go, define their intersection G1 N Go as the graph
with the vertex set V(G1) NV (G2) and edge set E(G1) N E(G2). Note that the
diameter of G1 N G4 is at most the minimum of the diameters of G; and Gs.
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For a positive integer n, let the path P, be the tree with vertex set V(P,,) =
{1,...,n} and edge set E(P,) = {{i,i +1} | 1 < i < n—1}. For n > 3,
let the cycle C,, be the graph with vertex set V(C,) = {1,...,n} and edge set
E(Cy) ={{i,i+1} |1 <i<n—-1}U{{l,n}}.

Let G be a finite graph. For v € V(G), let G(v) denote the BFS Tree which
is obtained by running the Breadth First Search algorithm with initial vertex v,
[14]. Note that, for a tree T', its BFS tree T'(v) is isomorphic to 7', while there
is an ordering of the vertices in T'(v). In fact, the vertices in T'(v) are totally
ordered and the order can be obtained by the breadth first search traversal.

A caterpillar is a tree T such that the induced subtree obtained by removing
all the pendant vertices of T is a path. The central path is called the spine of
the caterpillar. A lobster is a tree T such that the induced subtree obtained by
removing all the pendant vertices of T" is a caterpillar. The spine of the induced
caterpillar is called the spine of the lobster.

3. PACKING COLORING FOR TREES OF DIAMETER FIVE

In this section, we determine the packing chromatic number for all trees of diam-
eter five. If a tree T has diameter two or three, then it can be easily verified that
Xp(T) = 2 or 3, respectively. Goddard et al. have derived an explicit formula for
the packing chromatic number of trees of diameter four.

Theorem 3.1 [11]. Let T be a tree of diameter 4 with center v. Fori=1,2,3,
let n; denote the number of meighbours of v of degree i, and let L denote the
number of large neighbours of v. If L =0 then

4, if ng > 2 and n1 +ng +ng > 3,
Xp(T) = .
3, otherwise

and if L > 0 then

L+3, ifng>1 and ny + ng +ng > 2,
Xp(T) = L+1, ifni =ng =n3 =0,
L + 2, otherwise.

Let D5 denote the class of all trees of diameter five. For any 7" € Ds, the
set of centers is C(T') = {v1,v2}. Define Lj, for j = 1,2, as the number of large
neighbors of v;, excluding the other center. For positive integers m1, ma, define a
subclass Ds(mq, ma) of D5 consisting of trees with diameter five, where L1 = m;
and L2 = ma.
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Every tree T' € D5 contains Py as an induced subtree. Py requires a minimum
of three colors to be packing colored. Therefore, for every T € Ds, we have
Xo(T) = 3.

In the following, an exact formula for packing chromatic number is obtained
in terms of Ly, Ly of the tree. The strategy involves identifying the x,-critical
tree within some subclass of D5 and then developing a formula for the packing
chromatic number. In the figures throughout the rest of this section, each tree is
depicted with a valid packing coloring indicated within its vertices, illustrating
the upper bounds on their packing chromatic numbers.

3.1. Packing coloring of D5(0, 0)

Let us consider the case when a diameter five tree does not have any large-degree
vertices adjacent to a center. There are exactly three x,-critical trees in D5(0,0).
We name them as 17,75, T3, and describe them below.

Consider the tree 77 in Figure 1. If any

of the centers is colored 1, then three

new colors are required to color its neigh- ° °

bors. Assume that none of the centers

is colored 1. Then the induced subtree e 0 e ° e e
Ps requires minimum four colors to be

packing colored. Thus x,(77) = 4. It is Figure 1. Tree T}.

not very difficult to see that T3 is 4-x,-

critical in Ds.

Consider the tree T, in Figure 2. If any
degree three vertex is colored 1, then

three more new colors are required to ° °

color its neighbors. If none of them

are colored 1, then we are done. Thus,

Xp(T2) = 4. For criticality, we consider Q e

subtrees of Ty which lie in D5. These are

obtained by removing one or more leaves e ° Q ° 0 e
of a degree three neighbor of a center. In

any such case, the tree can be packing Figure 2. Tree T5.

colored using 3 colors. Therefore, T3 is
4-x ,-critical in Ds.

Consider the tree T3 in Figure 3. We want to show that x,(73) > 5. In
any packing coloring of T3 where one of the centers is assigned the color 1, we
need at least 5 colors. Assume that both centers are assigned colors other than 1.
Consider the degree three vertices in T5. Suppose that all three vertices do not
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receive color 1, then we are done, as at least two more unused colors are required
to color them. Suppose that only one of the degree three vertices is colored with
1, then either one of its leaves must receive a color different from that of the
centers and the remaining degree three vertices, or the other two degree three
vertices must receive different colors. In both cases, we are done.

Suppose that two of the degree three ver-
tices receive color 1, then the third de-
gree three vertex must receive a color
different from that of the centers. More-
over, in this case, either a leaf of a degree
three vertex colored with 1 will receive
an unused color or a leaf of the degree
two vertex will receive an unused color.
If all three degree vertices receive color 1,
then also we are done. Thus, x,(73) = 5.

Figure 3. Tree T5.

Lemma 3.2. The tree T3 in Figure 3 is 5-x,-critical in Ds.

Proof. We need to consider only subtrees of T3 that lie in Ds. The maximal
such subtrees of T3 can be obtained by removing exactly one leaf from {a,b,c,d,e}
in Figure 4. It is sufficient to provide a valid packing coloring using four or fewer
colors for these maximal subtrees. To obtain a valid packing coloring for a subtree
of T3, we will follow the same packing coloring given in Figure 3, with some minor
changes listed in Table 1. Thus, T3 is 5-x,-critical in Ds. [ |

It remains to prove that 77,75, T3 are the only x,-critical trees in D5(0,0).
We do this in the following proposition.

Proposition 3.3. If T € D5(0,0) such that
(1) T is 4-x,-critical in D5(0,0), then T is isomorphic to Ty or Ts.
(2) T is 5-xp-critical in D5(0,0), then T is isomorphic to T.

Proof. (1) The degree of both centers in T} is three. T has only one center
of degree greater than two and, furthermore, that center has two neighbors of
degree three. Let T' be a 4-x,-critical tree in D5(0,0). If T contains T or T»,
then T is isomorphic to T or T3 respectively, as 17, Ty are 4-x,-critical trees in
Ds. Let us suppose T does not contain 77 and 75, then T has the property that
the degree of at least one of the centers is two. Also, there can be at most one
neighbor of degree three adjacent to any center. Therefore, the packing coloring
in Figure 5 can be extended to any tree in D5(0,0) which does not contain 77, Tb
as a subtree. Thus x,(7T") = 3, which is a contradiction.

(2) The tree T3 has the following structural properties.
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Pendant
vertex Change in packing coloring
removed
v, > 1, v9 >4, w— 2, v
a
—3,c—1,e = 1.
v9 =3, w—2,c—1,y—
b 2, leaves of y — 1, x — 1,
leaf of x — 2
orvg — 3, w—2¢— 1,
x — 2, leaves of x —> 1, y
— 1, leaf of y— 2.
v — 2, v — 4, ¢ = 3,
¢
e— 3.
q v9 = 1, x =2,y =3, b
— 1.
o v > 2,0 =>4, w—3,c
— 1.
Figure 4. 5-x,-critical. Table 1. Packing coloring using four or less

number of colors.

1. Both centers have degree 4.

2. One of the centers has exactly one neighbor of degree three while the other
center has exactly two neighbors of degree three.

Let T be a 5-x-critical tree in D5(0,0). If T’ contains T3, then T is isomorphic
to T3 by Lemma 3.2. Now let us suppose that 7" does not contain 7T5. We consider

two cases.

Figure 5. A 3-packing coloring.

Case 1. T has a center whose degree is strictly less than 4. Suppose v;
has degree strictly less than 4, then use the following packing coloring. Assign
v1 — 1, v; can have at most two neighbors other than vo, assign them 2,3 and
their leaves 1. Assign vy — 4, the neighbors of vy (other than v1) — 1 and their
leaves 2, 3.
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Case 2. T does not satisfy property (ii) of 73. In this case, the distribution
of degree three vertices among the centers differs from that of T3, and a maximal
common subtree T'N T3 that can be obtained is by removing either vertex b or c
from T3. Again, Table 1 provides valid packing colorings using at most 4 colors
for such subtrees, which can be extended to T itself. Hence, x,(T") < 4, again
contradicting the assumption.

Let us suppose that one of the centers does not have any neighbors of degree
three (excluding the other center). Then the packing coloring used when pendant
vertex ¢ was removed can be used to extend the coloring of this tree, refer Table
1.

In both cases, we arrive at a contradiction to the criticality of 7. Therefore,
if T is 5-x,-critical in D5(0,0), then T" must be isomorphic to T5. [

Theorem 3.4. Let T be a tree of diameter 5 with the centers vi and vo. Let
Ly, Lo be the number of large-degree vertices adjacent to vi and vs, respectively
(excluding v1 and ve themselves). Suppose that L1 =0 and Ly = 0, then

5, if Ty C T,
Xp(T) =<4, if I5 T and (Ty CT orTo CT),

3, otherwise.

Proof. The lower bounds for each of the cases have been established by the
discussion on Tp, Ty, and T5. One good choice for packing coloring is to assign
the two centers 4,5 and color every neighbor of centers with 1 and finally assign
the vertices that are distance two from centers colors 2 and 3. Thus for any tree
T € D5(0,0), we have x,(7') < 5. By Proposition 3.3, the upper bound for the
packing chromatic number of any tree in D5(0,0) that does not contain Tj is 4,
while for any tree that does not contain 77 or 75 is 3. [ ]

3.2. Packing coloring of D5(> 0,0).

Next, let us consider the trees that have large-degree vertices adjacent to exactly
one of the centers. For any tree T € D5(0,> 0), we can interchange the labeling
of the two centers and end up in the case of D5(> 0,0). Therefore, it suffices to
study the case L; > 0 and Lo = 0.

The next lemma is a structural result for existence of optimal packing coloring
which assigns unique colors to the large vertices of T € D5(> 0, 0).

Lemma 3.5. Let T € D5(L1,0), where Ly > 3. Then there exists an optimal
packing coloring of T with a large vertex receiving a unique color.

Proof. Let f be any optimal packing coloring of T € D5(> 3,0). Suppose there
is a large vertex in T" which receives a color greater than or equal to 4 under f,
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then by diameter condition, it will be a unique color. Therefore, we can assume
that under the packing coloring f, every large vertex receives the color 1,2 or 3.

There can be at most one large vertex having color 2 or 3. Suppose there are
two large vertices that are colored 1 under f. Then at least one of the two large
vertices has a leaf that will receive a unique color in the tree. We can recolor a
large vertex with the unique color and its leaves with 1, to obtain another packing
coloring, which is again optimal, as it uses same colors as f. Suppose there are
two large vertices which are colored 1 and 3, then there is a unique color assigned
to one of the leaves of the large vertex colored 1. Again, we can recolor a large
vertex with the unique color and obtain an optimal packing coloring.

Therefore, in all possible optimal packing colorings f, either a large vertex
already receives a unique color (when colored with a value > 4), or we can find a
large vertex that can be recolored with a unique color originally assigned to one
of its leaves, while preserving the packing constraints and the number of colors
used. In either case, we obtain a new optimal packing coloring in which at least
one large vertex receives a unique color. [

Note that any large vertex which is colored 1 in any 1" € D5 must have degree
less than or equal to four. Otherwise, one of its leaves will necessarily be assigned
a unique color. Moreover, the following observation is an immediate deduction
from the proof of Lemma 3.5.

Observation 3.6. Let T' € D5 be any tree.

1. If T has a large vertex adjacent to a center, then there exists an optimal
packing coloring that assigns the colors 1,2 or 3 to the large vertex.

2. If T has two large vertices adjacent to a center, then there exists an optimal
packing coloring that assigns either the colors 1,2 or 2,3 to the large vertices.

For a tree T and w € V(T'), for convenience, we let T\ {w} denote the subtree
of T that is obtained by removing w and its pendant vertices from T'.

Lemma 3.7. For Ly > 0, let T € D5(L1,0) be such that there exists an optimal
packing coloring of T with a large neighbor w of a center receiving a unique color.
Then x,(T) = xp(T \ {w}) + 1.

Proof. Let T € D5(L1,0) be any tree with an optimal packing coloring f.
Suppose that f assigns a unique color to a large vertex w of T, then the in-
duced subtree T\ {w} can be packing colored using the restriction of f. Thus,
Xp(T\{w}) < x,(T)—1. On the other hand, let f’ be an optimal packing coloring
of T\ {w}. Then f’ can be extended to a packing coloring of T', by setting f’(w)
to be a unique color and the pendant vertices at w in 7" can be set to 1. Thereby,
we obtain a packing coloring of 7' from an optimal packing coloring of T"\ {w}
and thus, x,(T) < x,(T \ {w}) + 1. |
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The results of Lemmas 3.5 and 3.7 facilitate the reduction of trees in Ds(>
3,0). This enables us to concentrate on x,-critical trees within the subclasses
D5(1, 0) and D5(2, 0)

Case (2a). Packing coloring of T' € D5(1,0). Let T € D5(1,0) be any tree.
By Observation 3.6, there is an optimal packing coloring which assigns colors 1, 2
or 3 to the large vertex in 7. Furthermore, we have a packing coloring using the
following schema: center vi,vy — 4,5, large vertex — 2, every pendant vertex
at distance two away from the center (other than the leaves of the large vertex)
— 2,3 and the remaining vertices — 1. Therefore, x,(T") < 5.

Remark 3.8. For any 7' € D5(1,0), we may assume that there is an optimal
packing coloring which assigns the colors 2 or 3 to the large vertex. This is
because utilizing the color 1 for the large vertex uses at least 5 colors, which is
an upper bound of packing chromatic number for this class.

Consider the tree Ty in Figure 6. It ° Q °

contains 77 as a subtree. Therefore,

Xp(T4) > 4. The packing coloring given ° e ° ° ° °
in Figure 6 shows that x,(74) = 4. It can

be easily verified that T} is 4-x-critical 0

in D5(1,0).
Figure 6. Tree Tj.

Consider the tree Ty in Figure 7. It con-

tains Th as a subtree. Therefore, we can ° °
conclude that x,(75) = 4. For critical-
ity, we consider subtrees of 15 which lie
in D5(1,0). These are obtained by re-
moving one or more leaves of a degree
three neighbor of a center. In any such
case, the obtained subtree can be pack-
ing colored using 3 colors. Therefore, T5
is 4-x,-critical in D5(1,0).

Figure 7. Tree T5.

Consider the tree Tg in Figure 8. It con-
tains 75 as a subtree. As before, we con- ° °

clude that x,(T5) = 4. For criticality,

we consider subtrees of Ty which lie in 0 0

D5(1,0). These are obtained by remov-

ing(one)or more leaves of the deg};ee three 0 e e ° ° °
neighbor of the center. In any such case,

the obtained subtree can be packing col- e

ored using 3 colors. Therefore, Ty is 4-

Xp—Critical in D5(1’ 0)' Figure 8. Tree Tg.
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Consider the tree T in Figure 9. We
note that T contains 73 as a subtree.
To see this, let v be a leaf adjacent to
the large neighbor of vy (as illustrated
in Figure 9) and let 7" be the subtree
T7 \ {v}. It is not hard to see that T3 is
isomorphic to 7”. Therefore, x,(T7) = 5.

Consider the tree Tg in Figure 10. We
want to show that x,(Ts) > 5. If a center
or the large-degree vertex is colored 1,
then four unused colors are required to
color its neighbors. Therefore, assume
that none of the centers or large vertex
is colored 1, then three colors which are
not 1 are required to color them. Now
consider the degree three vertex. If it is
not colored 1, then it must be an unused
color, thus attaining a minimum bound
of 5 colors. If it is colored 1, then one Figure 10. Tree Ts.
of its leaves must be assigned an unused

color. Thus, x,(78) = 5. The criticality

of T7 and T3 is proved in Lemma 3.9.

There are exactly 5 y,-critical trees in D5(1,0). We name them as 7}, ..., Tg,
and describe them below.

Lemma 3.9. The trees Ty, Ty are 5-x,-critical trees in the subclass of Ds(1,0).

Proof. First we prove the criticality of T7. We need to consider only subtrees of
T7 that lie in D5(1,0). Note that a subtree of 77 will still be in D5(1,0) only if
it is obtained by removing anyone or more of the leaves {b,c,d,e} in Figure 11.
It is sufficient to provide a valid packing coloring using four colors or less for the
subtrees obtained by removing one of those leaves. To obtain a valid packing
coloring for a subtree of T, we will follow the same packing coloring given in
Figure 9, with some minor changes listed in Table 2. Thus, 7% is 5-x,-critical in
D5(1,0).

For the criticality of Tg, we need to consider only subtrees of Ty that lie in
D5(1,0). Note that a subtree of Ty will still be in D5(1,0) only if it is obtained
by removing anyone or more of the leaves {b,c,e} in Figure 12. It is sufficient to
provide a valid packing coloring using four colors or less for the subtrees obtained



BouNDS FOR PACKING CHROMATIC NUMBER OF SOME SUBCLASSES ... 13

pendant

vertex Change in packing coloring

removed

b v] = 2, v9 >4, w — 3.
v — 3, y — 2, leaves of

¢ y— 1,z — 1, leafof z — 2
or vo — 3, z — 2, leaves
ofz -1,y — 1 leafof y
— 2.

q v =1,y =2 7z — 3, ¢
— 1.

o v > 1, v —>4,x—>3,b
— 1.

Figure 11. Tr is 5-x,-critical in D5(1,0).  Table 2. Packing coloring using four or
less number of colors.

by removing one of those leaves. To obtain a valid packing coloring for a subtree
of Ty, we will follow the same packing coloring given in Figure 10, with some

minor changes listed in Table 3. Thus, T is 5-x,-critical in D5(1,0). [

pendant

vertex Change in packing coloring

removed

b vg — 3, b — 2.

. v9 — 1, ¢c— 2,z = 3, d
— 1.

. vi > 1, v —>4vyv—=3,b
— 1.

Figure 12. Ty is 5-x,-critical in D5(1,0).  Table 3. Packing coloring using four or
less number of colors.

It remains to prove that Ty, ..., Ty are the only x,-critical trees in D5(1,0).
We do this in the following proposition.

Proposition 3.10. If T € D5(1,0) such that
(1) T is 4-xp-critical, then T is isomorphic to Ty or Ts or Tg.
(2) T is 5-xp-critical, then T is isomorphic to T7 or Tg.

Proof. (1) In Table 4, we list some structural properties of Ty, T5 and Tg which
we use in the proof. Let T' be a 4-y,-critical tree in D5(1,0). Without loss of
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generality, we can assume that 7" does not contain Ty, T5 or Tg as they are 4-x,-
critical trees in D5(1,0). Then T has the property that degree of at least one of
the centers is two, as Ty is not a subtree.

Suppose that v; has degree two. Then there can be at most one degree three
neighbor to vy, as T3 is not a subtree. Then assign the packing coloring to the
tree T'N Ty as illustrated in Figure 13(a). The tree T can be constructed from
T N T5 by attaching pendant vertices or paths of length two at vs. The packing
coloring shown in Figure 13(a) can be extended to entire T by coloring the newly
added pendant vertices, which are at a distance two from vy, with color 2, and
coloring all other newly added vertices with color 1. Thus, a packing coloring for
T is obtained using only three colors. This contradicts 4-x ,-criticality of T'.

’ Tree ‘ Properties

T4 | Degree of both centers is three.
T5 | Two degree three vertices adjacent to center vs.
Ts | One degree three vertex adjacent to center vy.

Table 4. Properties of Ty, Ts, and T.

(a) A 3-packing coloring. (b) A 3-packing coloring.

Figure 13. Subtrees of T and Tj.

Suppose that vy has degree two. Then there can be no degree three neighbor
to vy, as Ty is not a subtree. Then assign the packing coloring to the tree T'NTg
as illustrated in Figure 13(b). The tree T can be constructed from T'N T by
attaching pendant vertices or paths of length two at v;. The packing coloring
shown in Figure 13(b) can be extended to entire T' by coloring the newly added
pendant vertices, which are at a distance two from vy, with color 2, and coloring
all other newly added vertices with color 1. Thus, a packing coloring for T is
obtained using only three colors. This contradicts 4-x,-criticality of 7.

Thus, if T € Ds5(1,0) is 4-x,-critical tree, then T is isomorphic to Ty, T or Tg.
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(2) In Table 5, we list some structural properties of 77 and Tg which we use
in the proof.

’ Tree ‘ Properties

Degree of both centers is four.

T7 | One vertex of degree two adjacent to vy.
Two vertices of degree three adjacent to vs.
Degree of both centers is four.

Ts | One vertex of degree three adjacent to v;.

Table 5. Properties of T7 and Tg.

Let T be a 5-x,-critical tree in D5(1,0). Without loss of generality, we can
assume that 7' does not contain 7% or Tg, as indicated by Lemma 3.9. Suppose
that there is a center in T' that has degree less than 4, while the other properties
of T7 and Ty may hold. If v; has degree less than 4, then assign the packing
coloring: v; — 1, v — 4, non-center neighbors of v; — {2,3}, distance two
pendant vertices of vo — {2, 3} and remaining vertices with 1. If vy has degree less
than 4, then assign the packing coloring: vy — 4, v9 — 1, non-center neighbors
of vog — {2, 3}, large vertex — 2, distance two pendant vertices (except the leaves
at the large vertex) of v; — {2,3} and remaining vertices with 1. This ensures a
packing coloring of T" with less than 5 colors.

Now assume that both the centers have degree four. Furthermore, assume
that there are no degree three vertices adjacent to v;, otherwise Tg will be a
subtree of T

Suppose that there are no degree two vertices adjacent to vy, then assign the
following packing coloring to T: vi — 2, vo — 4, large vertex — 3, distance two
pendant vertices from vy (except for the leaves of v1) — {2,3} and remaining
vertices with 1. Suppose there is a degree two vertex adjacent to vi, then there
can be at most one degree three vertex adjacent to v, otherwise 7% will be a
subtree. In this case, assign the following packing coloring to T": v1 — 3, v9 — 4,
large vertex — 2, distance two pendant vertices of v; and vy (except for the leaves
of the large vertex and degree three vertex, as well as pendant vertices of v1, v9)
— 2, the degree three neighbor of v — 2 and remaining vertices with 1.

In all of the above cases, if T" does not contain 7% or Ty, then T" can be packing
colored using 4 colors. This contradicts 5-x ,-criticality of T'. [

Case (2b). Packing coloring of T' € D5(2,0). Let T' € D5(2,0) be any tree.
By Observation 3.6, there exists an optimal packing coloring such that the pair
of large vertices is colored using 1,2 or 2, 3.
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Lemma 3.11. Let T € D5(2,0). Suppose there is an optimal packing coloring for
T such that a large vertex is colored 1, then there is an optimal packing coloring
with one of the large vertices receiving a unique color.

Proof. By Observation 3.6, let f be an optimal packing coloring of T' € D5(2,0)
which assigns the colors 1,2 to the pair of large vertices.

Assume that the pendant vertices of the large vertex colored with 1 are
assigned colors 2, 3,4 under f. If any of these three colors assigned to the leaves
is unique in 7', then a recoloring of 1" can achieve the required optimal packing
coloring. Suppose there is another vertex, w, in T that is also colored with 4
under f. Then w must be present as a pendant vertex located at distance two
from vo. We can assume, without loss of generality, that w must be adjacent to
a vertex in T colored with 1 under f. If not, there is an optimal coloring that
is nearly identical to f but assigns the color 1 to w. Similarly, w must have a
sibling colored with 2 under f, as v9 cannot be colored 2 under f. Additionally,
T has a vertex colored with 3 at distance of at most three from w. Refer Figure
14(a) for the optimal coloring f.

Note that both the centers, v, v cannot be assigned colors 1,2, 3,4 under f,
so they receive two unique colors in T, say c1, co, respectively. Now, consider the
following packing coloring f’. Large vertex colored 1 under f — co and its leaves
— 1, the center vy — 4, all neighbors of ve (except v;) — 1, all the pendant
vertices at distance two from vy (except for leaves of v1) — {2,3} and for the
remaining vertices follow the packing coloring f.

(a) An optimal coloring f. (b) An optimal packing coloring f’.

Figure 14. Two packing colorings of the same tree.

We conclude that f’ is an optimal packing coloring that utilizes the same
colors as f and also achieves the required condition. [ |

With the next result, we shall obtain a structural property of trees in D5(2,0),
which will restrict the class D5(2,0) to look out for y,-critical trees.
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Lemma 3.12. Let T € D5(2,0). Suppose there exists a degree three vertex adja-
cent to the center vy (which is not ve), then there is an optimal packing coloring
such that one of the large vertices, which is not vy or va, receives a unique color.

Proof. By Observation 3.6 and Lemma 3.11, we may assume that under an
optimal packing coloring f, both large vertices of T receive colors 2, 3.

Consider the vertices which are colored X, Y and Z as shown in Figure 15(a).
If one of them is a unique color in 7', then we can obtain another packing coloring
by interchanging that unique color with 3 on the large vertex, to obtain the
required packing coloring. So we can assume that X =1 and Y = 4 and they are
not unique in the optimal packing coloring f of 7. This ensures that v; receives
a unique color ¢;. Now, running over a similar argument as in Lemma 3.11, we
can deduce that a = 1, b = 4 and ¢ = 2. Moreover, vs is assigned a unique color
¢y under f.

Further, we can construct an optimal packing coloring f’ of T' such that one
of the large vertices receives a unique color in 7. The packing coloring f’ of T.
Large vertex colored 3 under f — cg, center vo — 4, all neighbors of vy (except
v1)— 1, Y = 3, all the pendant vertices at distance two from vs (except for leaves
of v1) — {2,3} respectively and for the remaining vertices follow the packing
coloring f.

(a) An optimal packing coloring f. (b) An optimal packing coloring f.

Figure 15. Two packing colorings of the same tree.

Therefore, for T' € D5(2,0), whenever there exists a degree three vertex
adjacent to the center vy, then there is an optimal packing coloring such that one
of the large vertices receive a unique color in 7. [ |

Aided by Lemmas 3.12 and 3.7, we can focus on those trees T' € D5(2,0) such
that there are no degree three vertices adjacent to v1. There are two x,-critical
trees in the class of D5(2,0) which do not have a degree three vertex adjacent to
v1. We name them Ty, T1g, and describe them below.
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Though the tree Ty is not 4-x,-critical in Ds, by its minimality in Ds(2,0),
it is 4-x,-critical in D5(2,0). It remains to establish that 77 is 5-)x,-critical in
D5(2,0).

Lemma 3.13. The tree Tig is a 5-x,-critical tree in the class of D5(2,0). More-
over, let T' be any tree in Ds(2,0) which does not contain a degree three vertex
adjacent to vi. Suppose T is 5-x,-critical in Ds(2,0), then T is isomorphic to

Tio.
O
Consider the tree Ty in Figure 16. It con- Q e ° ° e e

tains the tree T5 as a subtree. Therefore,
we can conclude that x,(Ty) = 4. Note Q e
that Ty is the minimal tree in the class

of D5(2,0). e e e

Figure 16. Tree Ty.

Consider the tree Ty in Figure 17. We
want to show that x,(Th9) > 5. If the
center v; or a large vertex is colored 1,
then we require minimum 5 colors for
packing coloring of T7g. Assume that v;
and the large vertices are not colored 1,
in fact, they receive three different col-
ors which are not 1. Suppose the center
v9 receives color 1, then one of the two
neighbors of vy must receive an unused
color. Therefore, we get x,(T10) > 5 and Figure 17. Tree Tio.
the packing coloring given in Figure 17

shows that x,(T10) = 5.

Proof. Any subtree of Thg in D5(2,0) can only be obtained by removing the leaf
at v or vo. If leaf at vy is removed, then recolor as: v1 — 1,v2 — 4 and the rest
same as in Figure 17. If leaf at vy is removed, then recolor as: vy — 1, degree
two neighbor of vy — 2, the leaf at distance two from ve (which is not leaf of v;)
— 3 and the rest same as in Figure 17. Therefore, T is 5-)-critical tree in the
class of D5(2,0).

Let T' € D5(2,0) be any 5-x,-critical tree with no degree three vertex adjacent
to vy. Without loss of generality, we may assume that 7" does not contain Tjg.
Note that T1g has the property that the degree of v; is 4 and degree of vy is
3. If v; has degree less than 4 in 7', then assign the packing coloring: v; — 1,
vy — 4, large vertices — {2,3}, distance two pendant vertices of vy — {2,3}
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and remaining vertices — 1. If vy has degree less than 3 in T, then assign the
packing coloring: vy — 1, large vertices — {2, 3}, distance two pendant vertices
of v1, v (except for leaves of vy, v2) — {2,3} and remaining vertices — 1. Note
that, for the above coloring, we rely on the fact that v; does not have a degree
three neighbor. This is a contradiction to T" being 5-x ,-critical in D5(2,0). Thus,
T is isomorphic to Tig. [ |

Theorem 3.14. Let T be a tree of diameter 5. Let vy, vy be the two centers of T'.
Let m be the number of degree three vertices adjacent to v1. Let L1 and Lo be the
total number of large-degree vertices adjacent to vy and vy, respectively (excluding
vy and vy themselves). Suppose that L1 > 0 and Lo = 0, then

( 2)+5, if Tio CT and m =0,
( 2)4+4, ifTiog T, To C T and m =0,

Xp(T) =1 (L1 — 1) + 5, if none of the above and (T C T or Ty C T),
( 1) + 4, if none of the above and (Ty CT orTs CT orTs CT),
(Li—1)

+ 3, otherwise.

Proof. Let T € D5(L1,0) be any tree. Using Lemmas 3.5, 3.7 and 3.12 we can
find a subtree T” of tree T' with at most 2 large vertices such that

Xp(T') + (L2 — 2), if T" € D5(2,0),

Xp(T) = {Xp(T/) + (L1 —1), it T’ € D5(1,0).

Thus it is sufficient to prove that x,(7") satisfies the following:

5, if Tyo € T" and m = 0,

4, if Tyo ¢ T, Ty C T and m = 0,

xp(T") = ¢ 5, if none of the above and (Ty C T or Ty C T"),
4, if none of the above (Ty C T" or T5 C T" or Tg C T"),
3,

otherwise.

The lower bounds for each of the cases have been established by the discussion
on T4*T10.

When T" € D5(2,0), by Lemma 3.12, we have m = 0. One good choice for
packing coloring is to assign the centers — {4,5}, the large vertices — {2,3},
every pendant vertex at distance two from v; (except the leaves of large vertices
and vg) — 2, every prendant vertex distance two from vy (except the leaves of
v1) — {2,3} and remaining vertices — 1. Moreover, by Lemma 3.13, any 7" that
contains T1g has packing chromatic number 5. Further, when T}g is not contained
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as a subtree in T”, then as Ty is a minimal tree in D5(2,0), we have Ty C T".
Thus T” will have packing chromatic number 4.

When 77 € D5(1,0), one good choice for packing coloring is to assign the
two centers — {4,5}, large vertex — 2, assign every vertex distance two from
the centers (except leaves of large vertex)— {2,3} and remaining vertices — 1.
Thus, for any tree 77 € D5(1,0), we have x,(7") < 5. By the criticality of trees
Ty-Tg in Proposition 3.10, the upper bound for the packing chromatic number of
any tree in Ds(1,0) that does not contain 77 or Ty is 4, while for any tree that
does not contain Ty or 15 or Tj is 3. [ ]

3.3. Packing coloring of D5(> 0, > 0).

Next, let us consider the trees that have large-degree vertices adjacent to both
centers. In Lemmas 3.5 and 3.7, the number of large vertices adjacent to the
center v; plays a crucial role, while vy has zero large neighbors (other than v;). By
fixing the number of large neighbors adjacent to vy, the proofs remains unchanged
for both those lemmas. Therefore, the following observations are immediate.

Observation 3.15. Let T' € D5(L1, Lo) with Ly > 3 or Ly > 3. Then there is
an optimal packing coloring of T with one of the large vertices receiving a unique
color.

Observation 3.16. Let T € D5(L1, L2) such that there exists an optimal packing
coloring of T with a large neighbor w receiving a unique color. Then x,(T) =

Xp(T\ {w}) + 1.

Observations 3.15 and 3.16 facilitates the reduction of trees when T' € D5 (L1,
L), where Ly > 3 or Ly > 3. This allows us to focus our attention on y ,-critical
trees within the subclasses D5(1,1), D5(1,2), D5(2,1), and D5(2,2).

Case (3a). Packing coloring of T € Ds(1,1). There are exactly three x,-
critical trees in Ds(1,1). We name them as 711,712,713, and describe them
below.

Consider the tree T7; in Figure 18. It
contains the tree T} as a subtree. Thus,
it follows from the packing coloring given e °
in Figure 18 that x,(711) = 4. For criti-

cality, we consider subtrees of 771 which e ° e e ° °

lie in D5(1,1). These are obtained by re-

moving pendant vertices at the centers.

Clearly, when one pendant vertex of a ° ° ° °
center is removed, then that subtree can Figure 18. Tree T};.
be packing colored using 3 colors. There-

fore, T11 is 4-x,-critical in D5(1,1).
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Consider the tree T2 in Figure 19. It
contains the tree T5 as a subtree. Thus,
Xp(T12) = 4. For criticality, we con-
sider subtrees of T2 which lie in D5(1,1).
These are obtained by removing one or
more leaves of the degree three neighbor
of center. In any such case, the obtained
subtree can be packing colored using 3
colors. Therefore, Tz is 4-x,-critical in
D5(1,0).

Figure 19. Tree Tis.

Consider the tree T13 in Figure 20. We
want to show that x,(713) > 5. If a cen-
ter or a large vertex is colored 1, we need
at least 5 colors. Suppose that these four
vertices are given colors other than 1,
they can be colored with a minimum of
three different colors ¢y, ¢o, c3. Now con-
sider the degree three neighbor of the
center. If it is not colored 1, then we
require a color different from ¢y, ¢g, c3 to
color it. Suppose it is colored 1, then one
of its leaf must receive a color different
from c1,co,c3. In any case, T13 requires
minimum 5 colors to be packing colored.
Thus, x,(T13) = 5. Criticality of T13 is
shown below.

Figure 20. Tree Tis.

Lemma 3.17. The tree T13 is 5-x,-critical in the subclass of Ds(1,1).

Proof. We need to consider only subtrees of T3 that lie in D5(1,1). Note that
a subtree of Ty3 will still be in D5(1,1) only if it is obtained by removing any-
one or more of the leaves {b,c,e} in Figure 21. It is sufficient to provide a valid
packing coloring using four colors or less for the subtrees obtained by removing
one of those leaves. To obtain a valid packing coloring for a subtree of 113, we will
follow the same packing coloring given in Figure 20, with some minor changes
listed in Table 6. Thus, T3 is 5-x,-critical in Ds. [ ]

We now prove that 771, T12 and T3 are the only x,-critical trees in D5(1,1).

Proposition 3.18. If T' € D5(1,1) such that
(1) T is 4-xp-critical, then T is isomorphic to Tiy or Tha.
(2) T is 5-xp-critical, then T' is isomorphic to Tis.
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pendant
vertex Change in packing coloring
removed
vi > 1, v =4,z — 3, e
b
— 1.
vg — 1, ¢c — 3.
vy — 3, e — 2.
Figure 21. Tree T73 is 5-),-critical in Table 6. Packing coloring using four colors.

Ds(1,1).

’ Tree ‘ Properties

T11 | Degree of both centers is three.
Ti2 | One degree three vertex adjacent to a center.

Table 7. Properties of T7; and T71s.

Proof. (1) Some structural properties of 777 and T2 are in Table 7.

Let T be a 4-x,-critical tree in D5(1,1). Without loss of generality, we can
assume that 1" does not contain Tj; or Tj2 as they are 4-y,-critical trees in
Ds5(1,1). Then T has the property that degree of at least one of the centers is
two, as 177 is not a subtree.

If vy has degree two, then there can be no degree three neighbor to v, as
T2 is not a subtree. The maximal tree that can be obtained as T'N T} can be
packing colored using 3 colors, as in Figure 22. The tree 1" can be constructed
from T N Ty by attaching pendant vertices or paths of length two at v;. The
packing coloring shown in Figure 22 can be extended to entire T" by coloring
the newly added pendant vertices, which are at a distance of two from vy, with
color 2, and coloring all other newly added vertices with color 1. Thus, a packing
coloring for T is obtained using only three colors. This contradicts 4-x ,-criticality
of T.

Figure 22. A packing 3-coloring.
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An analogous argument holds when v; has degree two in 1. Thus, if T' €
Ds(1,1) is 4-x,-critical tree, then T is isomorphic to T or Tio.

(2) The tree T3 has the following properties:
(i) the degrees of both centers are equal to 4;

(ii) one of the centers has a neighbor of degree three.

Let T' be a 5-x,-critical tree in D5(1,1). Without loss of generality, we can assume
that T does not contain 7173, as indicated by Lemma 3.17. Then let us suppose
that there is a center in T that has degree less than 4. If v; has degree less than
4, then assign the following packing coloring to T: v; — 1, vo — 4, large vertices
— 2, non-large neighbor of v; — 3, pendant vertices at distance two from wvs
(except leaves of v1) — {2,3} and the remaining vertices — 1. A similar type of
packing coloring can be assigned when vy has degree less than 4. That is, T can
be colored using less than 5 colors.

Now assume that both the centers have degree four. Furthermore, assume
that there are no degree three vertices adjacent to v; nor vo. Then assign the
following packing coloring to T: v; — 3, v9 — 4, large vertices — 2, pendant
vertices of distance two from v; and ve (except the leaves of vi,v9) — 2 and
remaining vertices with 1. That is, T' can be packing colored using less than 5
colors.

Thus, if T' does not contain 773, then T" can be packing colored using 4 colors.
This contradicts that T" is 5-x,-critical in D5(1, 1). |

Case (3b). Packing coloring of T' € D5(2,1). For any tree T' € D5(1,2), we
can interchange the labeling of the two centers and end up in the case of D5(2,1).
Thus it is sufficient to study the x,-critical trees in D5(2, 1) only. Moreover, by
Observation 3.6, there is an optimal packing coloring which assigns colors 1,2
or 2,3 to the pair of large vertices adjacent to a center in T and the other large
vertex in 7' is assigned the color 1,2 or 3. The next lemma ensures the existence of
an optimal packing coloring which assigns colors 2,3 to the pair of large vertices
in T" and assigns color 2 to the other large vertex in T'.

Lemma 3.19. Let T € D5(2,1). There exists an optimal packing coloring of
T in which either a large vertex is assigned a unique color, or the large vertices
adjacent to vy (excluding vo) are colored with 2,3 and the large vertex adjacent
to ve (excluding v1) is colored with 2.

Proof. Let x,y be the two large neighbors of v; and z be the large neighbor of
v9. Let f be an optimal packing coloring of T" and let the colors assigned to x, v, z
be X,Y, Z, respectively. By Observation 3.6, we know that either X =2V =1
or X =2)Y =3, and Z € {1,2,3}. Therefore it is sufficient to show that if the
large vertices do not have a unique color assigned to them, then there exists an
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optimal packing coloring with X = 2,Y = 3 and Z = 2. Note that, whenever
1 is used to color the large vertex, either it will have a pendant vertex which
is assigned a unique color or pendant vertices will be assigned the colors 2, 3, 4.
If a pendant vertex of a large vertex is assigned a unique color, then there is a
recoloring which assigns the large vertex with that unique color, and its leaves
with 1. Then the recoloring is the required optimal packing coloring.

Case. X =2,Y =1, Z = 1. In this case, as Y, Z are both 1, the centers
will receive a unique color, say ci1, co, under f. As vy receives a unique color, we
can assume that none of its neighbors receive color 2. Now consider the following
packing coloring: ve — 4, y — co, leaves of y — 1, z — 2, leaves of z — 1. In
this packing coloring, a large vertex receives a unique color.

Figure 23. The minimal tree in D5(2, 1).

Case. X =2,Y =3, Z = 1. Suppose that 4 is a unique color assigned to
a pendant vertex of z in the tree T" under f, then consider a packing coloring:
one of the large neighbors of v; — 4, the large neighbor of vo — 2 and leaves of
all large vertices — 1. This is an optimal packing coloring with a large vertex
receiving a unique color.

Assume that 4 is not unique in 7. Therefore there exists a pendant vertex,
say w, which is at a distance 2 from v; and is colored 4. We can further assume
that the neighbour of w is 1 and there is a pendant vertex which is at distance
two from w which is colored with 2 under f. Since X = 2, Y = 3 and one
neighbor of v; is assigned 1 under f, this forces f(v1) = ¢1, which is a unique
color. Moreover, vy also has a unique color, say co, in T under f, since Z = 1 and
pendant vertices of z has colors 2, 3, 4. This is illustrated in Figure 24. Consider
the following packing coloring: y — c2, vo — 4, neighbor of w — 3, w and its
sibling — 1, z — 2, leaves of z — 1. Since c¢o # 1 apriori, we can assume that all
the non-large neighbors of vy can be colored with 1. Therefore there will be no
conflict in assigning 7Z = 2. This is the required optimal packing coloring.
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Figure 24. Tree T € D5(2,1), with X =2, Y =3,7Z = 1.

Case. X =2,Y =1,7Z =2 or Z = 3. Suppose that 4 is a unique color in the
tree T', then we can obtain another optimal packing coloring by recoloring y— 4.
Assume that 4 is not unique in 7. Therefore there exists a pendant vertex, say
w, at distance two from vy which is also colored with 4. We can assume that
the neighbour of w is colored 1, otherwise w can be recolored to 1. Also, as f
is optimal, there is a pendant vertex which is colored 2, located at distance two
away from w. Note that, vy cannot be colored using 1, 2, 3, 4 under f due to
distance condition. So f(v2) = ¢2 is a unique color. Hence, we can assume that
none of the neighbors of vy receive color 2. Moreover, as Y = 1, f(v1) = ¢; is
also a unique color.

When Z = 2, consider the following packing coloring: v; — 4, w — 3, y
— ¢1, leaves of y — 1 and remaining are same as f. This is the required packing
coloring.

When Z = 3, consider the following packing coloring: v1 — 4,z — 2, w — 3,
y— c1, leaves of y — 1 and the remaining are same as f. This is the required
packing coloring.

Case. X = 2,Y = 3, Z = 3. This case cannot occur due to distance
condition. [ |

In the light of Lemma 3.19 and Observation 3.16, we can always assume
that there exists a packing coloring of T" € D5(2,1) such that the pair of large
neighbors of v receive 2, 3 while the large neighbor of vy receives 2. A similar
reasoning of Lemma 3.12 can now be utilized to obtain the following.

Observation 3.20. Let T' € D5(2,1). If there exists a degree three vertex ad-
jacent to the center vy (excluding vo), then there is an optimal packing coloring
such that one of the large vertices receive a unique color.

Now Observation 3.20 helps restricting the class D5(2, 1) to look into for x,-
critical trees. We can focus on those trees which do have degree three vertices
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adjacent to v1. There are exactly two such y,-critical trees. We name them as
T14,T15, and describe them below.

Though the tree T4 is not 4-x,-critical in D5, by its minimality in Ds(2, 1),
it is 4-x,-critical in D5(2,1). It remains to establish that T35 is 5-)x,-critical in
Ds5(2,1).

Lemma 3.21. The tree Tis is a 5-x,-critical tree in the class of D5(2,1). More-
over, let T be any tree in D5(2,1) which does not contain a degree three vertex
adjacent to vi. Suppose T is 5-x,-critical in D5(2,1), then T is isomorphic to
Tis.

Proof. Any subtree of T15 in D5(2, 1) can only be obtained by removing the leaf
at v1 or vo. If leaf at vy is removed, then recolor as: v; — 1,v9 — 4 and the
rest same as in Figure 26. If leaf at vy is removed, then recolor as: vo — 1 and
the rest same as in Figure 26. Therefore, T'5 is 5-),-critical tree in the class of
Ds5(2,1).

Figure 25. Tree T14. Figure 26. Tree Tis.
Consider the tree T14 in Figure
25. It contains the tree Ty as Consider the tree T15 in Figure
a subtree. Thus x,(T4) = 4. 26. It contains Tjp as a subtree.
Note that Ti4 is the minimal tree Thus x,(T15) = 5.

in the class of D5(2,1).

Let T € Ds(2,1) be any 5-x,-critical tree with no degree three neighbor
adjacent to v;. Without loss of generality, we may assume that T does not
contain T15. In Tis5, the degree of center vy is four and degree of vs is three. In
T, if v; has degree less than four, then consider the following packing coloring:
v] — 1, v9 — 4, pendant vertices at distance two from ve (except the neighbors
of v; and leaves of large vertex adjacent to va) — {2, 3}, assign colors to the other
vertices in T'NT15 as in Figure 26 and remaining vertices — 1. If vy has degree
less than three, since v; cannot have any degree three neighbors, then consider
the following packing coloring: vy — 1, pendant vertices of distance two from
vy (except the leaves of large vertices) — 2, assign colors to the other vertices
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in T'NTy5 as in Figure 26 and remaining vertices — 1. In any case, there is a
packing coloring with four colors which contradicts the 5-x,-criticality of T in
D5(2, 1) |

Case (3c). Packing coloring of T' € D5(2,2). Let T € D5(2,2) be any tree.
By Observation 3.6, there exists an optimal packing coloring such that the pair
of large vertices are colored using 1,2 or 2, 3.

Lemma 3.22. Let T € D5(2,2). There is an optimal packing coloring of T with
a large vertex receiving a unique color or both pairs of large vertices receive colors
1,2.

Proof. Let f be an optimal packing coloring of T' € D5(2,2). Then every pair
of large vertices adjacent to a center is either assigned 1,2 or 2,3 under f. By
distance criterion, both the pairs cannot be assigned 2,3 under f. Let us suppose
that f assigns 1,2 to large neighbors of v; and 2,3 to large neighbors of vs.
Then the large vertex which is assigned the color 1 under f must have three
pendant vertices, which are colored 2, 3,4. Suppose 4 is uniquely assigned under
f, then we can obtain an optimal packing coloring with large vertex receiving
the unique color 4. Assume that 4 is not uniquely assigned in T'. Then there is a
pendant vertex, say w, which is at distance two from vy and is colored 4 under f.
This forces the neighbor of w to be colored 1, and there exists a pendant vertex
colored with 2 at distance two from w. Consider the packing coloring given by:
large neighbor assigned 3 under f — 1, leaves of large neighbor assigned 3 under
f—2,3,4, w — 3 and remaining is same as f.

Thus, there is an optimal packing coloring of T € D5(2,2) with both pairs of
large vertices receiving colors 1, 2. [ |

The subsequent lemma underscores the importance of having a three-degree
neighbor adjacent to a center to determine the x,-critical trees within Ds(2,2).

Lemma 3.23. Let T € D5(2,2). If T has a center which does not have a degree
three neighbor, then there is an optimal packing coloring which assigns a unique
color to one of the large vertices.

Proof. Let us suppose that the center vy in T does not have a degree three
neighbor. By Lemma 3.22, there exists an optimal packing coloring, say f, with
both pairs of large vertices receiving colors 1, 2. Strategy is to perturb the packing
coloring f in such a way that the color 4 is unique in tree, as it is already on
the leaf of large vertices under f. Consider the following packing coloring, say
f': large neighbor of vy assigned 1 under f — 3, leaves of large neighbor of v;
assigned 1 under f — 1 and remaining as in f. Under f’, 4 is assigned uniquely
to a pendant vertex which is at distance two from vy. Such an f’ is valid packing
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coloring, because v; does not have degree three neighbors. Now, we can obtain
an optimal packing coloring that assigns 4 to large vertex, which will be unique
as required. [ |

There is exactly one y ,-critical tree in D5(2,2) with both centers containing
a degree three neighbor. We name it as T1¢, and describe it below.

Consider the tree Tig in Figure 27. We want to show that Xp(Tlﬁ) > 6.
Suppose none of the large vertices are colored with 1, then at least 3 different
colors are required to color the large vertices. Then either both of the centers
are assigned unused colors or one of the center is assigned 1 and other an unused
color. In the former case, we are done. In the latter case, consider the degree
three neighbor of the center colored with 1. It cannot receive any of the used
colors, it must receive an unused color. Thus a minimum of 6 colors is required
to color Tis.

Suppose one large neighbor of v; and another large neighbor of v2 have been
assigned 1, then a minimum of 5 more colors are required to color their neighbors.
Thus, we are done in this case as well.

Suppose the pair of large neighbors of a center receive color 1, then a mini-
mum of 5 more unused colors are required to color both sets of pendant vertices
and the center.

Suppose that exactly one large vertex receives color 1, then four colors differ-
ent from 1 are required to color its neighbors. Suppose the other center receives
an unused color, then we are done. Else if the other center receives color 1, then
one of its neighbors must receive an unused color. Thus a minimum of 6 colors
is always required for packing coloring and x,(T16) = 6.

Figure 27. Tree Tig.

Observation 3.24. T is the minimal tree in the class D5(2,2) with both centers
having a degree three neighbor. Therefore, Tig is 6-x ,-critical in D5 (2, 2) with both
centers having a degree three neighbor.

Now we are ready to state the characterization of packing chromatic number
of trees in D5(> 0,> 0).
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Theorem 3.25. Let T be a tree of diameter 5. Let vy, vo be the two centers of T'.
Let m1, mo be the number of degree three vertices adjacent to vi,ve, respectively.
Let Ly and Lo be the total number of large-degree vertices adjacent to v1 and va,
respectively (excluding vy and vy themselves). Suppose that Ly > 0 and Ly > 0,
then

(L —2) + (La — 2) + 6, if Tig C T,
(L1 —2)+ (La—1)+5, ifTeg T, Tis CT and m; =0,
(L1—2)+(L2—1)+4, if Tis, T ¢ T, T4 CT and my; =0,
Xp(T) =< (L1 — 1)+ (La— 1) +5, if none of the above and Ty C T,
(L1 — 1)+ (L2 — 1) +4, if none of the above and (T1; C T or
T, CT),
(L1 —1)+ (L2 —1)+3, otherwise.

Proof. Let T € Ds(L1, La) be any tree, with L; > 0 and Ly > 0. Using Obser-
vation 3.15, 3.16, 3.20 and Lemma 3.23 we can find a subtree 7" of tree T with
at most 2 large neighbors for each center such that

Xo(T") + (L1 — 2) + (La — 2), if T € D5(2,2),
Xp(T) = XP(T/) =+ (L1 — 2) + (LQ — 1), if T e D5(2, 1),
Xp(T) + (L1 — 1)+ (L2 — 1), if TV € D5(1,1).

Thus it is sufficient prove that the packing chromatic number of T” satisfies

6, if Tig C T7,
5, if Tig ¢ T', Tis C T' and my = 0,
N (T’) _ 4, if Ty, Ty ¢ T', Th4 C T and my = 0,
’ 5, if none of the above and T3 C 17,
4, if none of the above and (717 C T" or T12 C T"),
3,

otherwise.

The lower bounds for each of the cases have been established by the discussion
on T11-T15 and by Observation 3.24. Moreover, for any tree 7" containing T7g,
extend the packing coloring of Tg in Figure 27, to T” by the following rule: every
non-center neighbor to a center — 1, every pendant vertex at distance two from
center — {2,3}. This is a valid packing coloring which proves the upper bound
when T’ contains Tig.

When T" € D5(2,2) but Ty ¢ T', then by Lemma 3.23, we can reduce T” to
the case in D5(2,1). Suppose the number of degree three vertices in 7" adjacent
to v is zero, then a good choice for packing coloring is to assign the centers
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— 4,5, the large vertices — 2,3, every pendant vertex at distance two from v;
(except leaves of large vertices and leaves of vy) — 2, every pendant vertex at
distance two from vs (except leaves of large vertices and leaves of v1) — 2,3 and
remaining vertices — 1. In this case, x,(7") < 5. Moreover, by Lemma 3.21, if
T’ does not contain T'5, then x,(7") < 4. As, any tree in D5(2,1) will contain
T4, T" will have packing chromatic number 4.

Now, suppose the number of degree three vertices in 7" adjacent to vy is
non-zero, then by Observation 3.20, we can reduce 7" to the case in Ds(1,1).
A good choice of coloring in this case is to assign the centers — 4,5, the large
vertices — 2, every pendant vertex at distance two from v; (except leaves of large
vertices and leaves of v9) — 2,3, every pendant vertex at distance two from v
(except leaves of large vertices and leaves of v1) — 2,3 and remaining vertices
— 1. Thus, we have x,(T") < 5. By Proposition 3.18, we can infer that if 7"
does not contain Ti3, then the upper bound for packing chromatic number is 4.
Finally, if 7" does not contain 171 or Tis, then 3 colors are sufficient for packing
coloring T". [ ]

Theorems 3.4, 3.14 and 3.25 utilize structural properties of the trees with
diameter 5, which allow us to determine its packing chromatic number.

Remark 3.26. Suppose the adjacency list representation (refer to [14]) of a
diameter 5 tree is given. Its centers can be determined as follows. Start by
removing the pendant vertices, that is, remove all vertices that have adjacency
list of size one. Repeating the above step once again, leaves a path, whose vertices
are the two centers of the tree. Thus, centers can be identified in O(n?), where
n is the number of vertices of the tree.

Moreover, we also check for containment of a diameter 5 tree in an another
tree of diameter 5. Since the centers can be obtained using Remark 3.26 in
polynomial time for both the trees, we can implement the Depth First Search
(DFS) algorithm (refer to [14]) to compare the structure of the two trees and
determine containment. Thus, for any tree of diameter 5, its packing chromatic
number can be determined in polynomial time with respect to the number of
vertices.

4. s-SHIFTED PACKING COLORING OF INFINITE PATH

In this section, we give an upper bound for the s-shifted packing chromatic num-
ber of an infinite path. An infinite path Py is a tree with vertex set V(Pa) = Z
and the edge set F(Px) = {{i,i+ 1} | i € Z} C Z x Z. The infinite path can be
packing colored using the following packing coloring scheme

...12131213....
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Therefore, the packing chromatic number of the infinite path is x,(Px) = 3.
For a positive integer s, fix the color palette Ty = {s,s + 1,...}. Define the
s-shifted packing chromatic number of any graph G, denoted by XZ(G), as the
least positive integer k, such that the graph G can be packing colored using the
colors {s,s+1,...,k} C Ts.

For example, a 2-shifted packing coloring of path P;g is given by

235246237245236247.

In the following, we will introduce a specialized packing coloring for paths, which
will aid in providing an upper bound for the shifted packing coloring of P..

Definition. A packing coloring of a path P, is called cyclic, if it can be extended
to a packing coloring for the cycle C,, and colors used in the packing coloring are
from the set {1,...,n —1}.

Example 4.1. The packing coloring of Py given by 1213 is cyclic while 1231 and
1214 are some packing colorings of P, which are not cyclic.

Observe that P,, for n € {1,2,3}, does not have a cyclic packing coloring.

Lemma 4.2. Let P C Py be any induced finite subpath having at least four
vertices. Suppose there is a packing coloring of P which is cyclic, then it can be
extended to a packing coloring of Ps.

Proof. Without loss of generality, let V(P) = {1,...,n}, n > 4. Let f be a
cyclic packing coloring of P. Define a function f for Py, given by

f(m) := f(x), where m = x +in for some ¢ € Z and x € {1,...,n}.

We prove that f is a packing coloring. Let m1, mo be any two distinct vertices of
P such that f(ml) = f(mQ) Let my = x+141n and mo = y+1i9n, where z,y are
vertices of P and i1, io are some integers. If x = y, then the distance between m;y
and mg in Py is at least n. Since f is cyclic, we have d(my,ma) > n > f(x). If
x # y and i) = dg, then d(my,me) = d(z,y) > f(x) = f(y), since f is a packing
coloring of P. If x # y and i1 # i, then d(my, mg) > min{d(z,y),n —d(z,y)} >
f(z) = f(y), since f is a packing coloring of the cycle on n-vertices. Thus f is
the required packing coloring of P,, which is induced by f. [ |

Note that the 2-shifted packing coloring of P;g given above is cyclic. This is
because, in cycle Cig with the same coloring, distance between any two vertices
colored 2 is 3, distance between any two vertices colored 3,4 is 6 and distance
between any two vertices colored 5,6,7 is 9. By Lemma 4.2, it can be extended
to a packing coloring of P,,. Therefore, an upper bound for 2-shifted packing
chromatic number of Py, is 7, that is, Py, can be packing colored using the colors
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from {2,...,7}. Sloper [13] showed that there is no packing coloring using only
colors 2 through 6 in a path of length 35 or greater. Hence X,Q)(Poo) ="7.

We would like to provide an upper bound for the s-shifted packing chromatic
number of P, for any positive integer s. It is sufficient to provide a valid packing
coloring with colors chosen from the modified color palette, Ts. The strategy
involves constructing a cyclic packing coloring for a finite length path that can
seamlessly expand to an infinite path using Lemma 4.2. The coloring scheme for
shifted packing coloring for a finite path is given in the following lemma.

Theorem 4.3. Let s € Z be a positive integer and let P be a path with 12(s+ 1)
vertices such that V(P) ={1,...,12(s+1)}. Then

<3| val3)+ 5]

Proof. To establish an upper bound for the s-shifted packing chromatic number
of P, it is sufficient to construct a packing coloring for P using colors from the
palette Ts = {s,s + 1,...}. Construct the packing coloring f as follows.

o Set f(1+i(s+1)) =sforallie{0,...,11}. This ensures that vertices of P
are optimally packing colored using the color s.

e After each vertex colored s, there is a sequence of s uncolored vertices before
encountering another vertex colored s under f. Refer to this group of s con-
secutive uncolored vertices as a block in P. Thus, there are 12 such blocks
in P.

e For positive integers 4, j,[ satisfying 1 < j < 741 <12 and 1 <14 < s, the
distance between the " vertex of the j block and *" vertex of (5 +1)"* block
is {(s +1). See Figure 28 for reference.

3(s+1)

a(s+1)

Figure 28. Distance between the i** vertices.

e Coloring every second block.

For every 1 < j < 10 and 1 < i < s, the distance between the i*" vertex of j*
block and i vertex of (j+2)"? block is 2(s+1). Let A = {s+1,...,2s+1} C T.
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To assign colors to vertices, partition A into two subsets Ai, As, of equal size
and collect the remaining element of A in A’, if any. That is,

A:AlLJAQUA/

where [A1| = |Ag| = |£2}]. If A’ is non-empty, then assume that A’ = {2s+1}.

For k € {1,2}, in every alternate block, starting from the k%" block, assign
the first L%J uncolored vertices with colors from Ay. If s > 1, then L%J < s
and hence there are s — L%J = L%J uncolored vertices are remaining in each

block.

e Coloring every third block.

Forevery 1 < j <9and1 <1 < s, the distance between the it" vertex of jth block
and i'" vertex of (j+3)" block is 3(s+1). Let B = {25+2,...,35+2}UA’ C T,.
To assign colors to uncolored vertices, partition B into three subsets B1, B, B3,
of equal size and collect the remaining elements of B in B’. That is,

B:B1|_|B2|_|B3|_|B,

where |By| = [By| = [Bs| = [5| — [£]. If B’ is non-empty, then assume that B’
contains the largest elements of B.

For k € {1,2,3}, in every third block, starting from the k** block, assign
the first L%J — L%J many uncolored vertices with colors from Bg. If s > 5, then
s—(|A1[+|B1]) = s—([Z2 |+ 2] - |£]) = | £] uncolored vertices are remaining
in each block.

e Coloring every fourth block.

For every 1 < 7 < 8 and 1 <1 < s, the distance between the ith vertex of jth
block and " vertex of (j +4)™ block is 4(s +1). Let C = {35 +3,...,4s+3} U
B’ ¢ T,. To assign colors to uncolored vertices, partition C into four subsets
Cq,C,, C3,Cy, of size equal to LgJ and collect the remaining elements of C in
C’. That is,

CzclL|CQ|_JCg|_JC4|_JCI

where |Cy| = |Ca| = |C3]| = |C4| = | £|. Let the subsets Cy, Cz, C3, Cy4 have the
smallest 4 x L%J elements of C. Set C' = C \ U Cx.

For k € {1,2,3,4}, in every fourth block, starting from the k** block, assign
the remaining L%J many uncolored vertices with colors from Cj. Thus we have
|A1]l+ By +|Ci| = (|Z2]) + ([5] — [£]) + (|£]) = s, for all positive s € Z.
Therefore, the path P can be packing colored using colors from A, B and C for
all positive s € Z.

For any positive integer s, the total number of colors used for packing coloring
of P, excluding the color s, using the above coloring scheme is 2|A;| + 3|B;| +
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4G =2([2 ) +3([5] - []) +4([5]) =2([=2]) +3(|5]) + | £] - Therefore,
the s-shifted packing chromatic number of P is bounded above by

s+1 s s
X5(P) < s+ 2|A1] +3B1| +4|Ci| =3 I EIHE
g 2 2 6 .
Let us illustrate our shifted packing coloring scheme for a finite path using

an example.

Example 4.4. Consider s = 7. We want to provide a 7-shifted packing coloring
for path P on 12 x 8 = 96 vertices using colors from the color palette Ty =
{7,8,...}. Coloring schema is as follows.

e Let f be the packing coloring that we want to define as a function from V (P) —
T7. Set f(148i) =7 for alli € {0,...,11}.

e There are 12 blocks in P with each block containing 7 uncolored vertices.

e We will represent the coloring f of P in 4 lines, where each line consists of
24 symbols/colors, with _ representing that the vertex is yet to be assigned

a color under f. The leftmost vertex in a line follows immediately after the
rightmost vertex in the preceding line.

T ___ T __ T
T ___ T __ T
T ___ T __ T
7 7 7

e For 1 < j <10 and 1 <1 <7, the distance between the it vertex of the jth
block and the i** vertex in the j 4+ 2"¢ block is 16.

e We can assign colors in A = {8,...,15} C Ty, to ith vertex in alternative
blocks, for some 1 < i < L%J Partition A into Aj and Ay, such that |[A¢| =
|As| = |5 | = 4. Here, we have A; = {8,9,10,11} and Ay = {12,13,14, 15}.

e For j € {1,2}, in every alternate block, starting from the j** block, assign the

first L%IJ = 4 vertices with colors from A ;.

7891011 712131415 7 8 91011
712131415 78 91011 712131415
7891011 712131415 78 91011 __
712131415 78 91011 712131415

e For 1 < j<9and 1< <7, the distance between the it" vertex of the jth
block and the i*" vertex in the j + 3" block is 24.
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e We can assign colors in B = {16,...,23} C Ty, to i*" vertex in every third
block, for some L%J =4 <i1<4+ L%J - L%J = 6. Partition B into B1,B2,B3
and B/, such that [Bi| = |By| = [Bs| = [£| — [§] = 2. Here, we have
B, = {16,17}, By = {18,19}, By = {20,21} and B’ = {22, 23}.

e For j € {1,2,3}, in every third block, starting from the j** block, assign the

first L%J — L%J = 2 uncolored vertices with colors from B;.

78910111617 _ 7121314151819 _ 7 8 9101120 21 _
7121314151617 _ 7 8 910111819 _ 71213141520 21 _
78910111617 _ 7121314151819 _ 7 8 9101120 21 _
7121314151617 _ 7 8 910111819 _ 71213141520 21 _

e For 1 < j <8and 1 <i<7, the distance between the i*" vertex of the j*"
block and the i** vertex in the j + 4" block is 32.

e We can assign colors in C = B’ U {24,...,32} C Ty, to i" vertex in every
fourth block, for some 1 < 7 < 7. Partition C into C;1,C5,C3,C4 and C/,
such that [Cy| = |Cy| = |Cs| = |C4| = [{] = 1. Here, we have C; = {22},
Cs = {23}, C3 = {24}, C; = {25} and C’ = {26,....,32}.

e For j € {1,2,3,4}, in every fourth block, starting from the 4t block, assign
the L%J = 1 uncolored vertex with color from C;.

78 91011161722 712131415181923 7 8 910112021 24
71213141516 1725 7 8 91011181922 71213 14 1520 21 23
7891011161724 712131415181925 7 8 910 11 20 21 22
712131415161723 7 8 91011181924 71213 14 1520 21 25

Thus f is a packing coloring of the path P. The 7-shifted packing chromatic
number of P is bounded above by 25.

In the following theorem, we give a packing coloring of infinite path using
colors from the color palette T, for some positive integer s. Hence, we will
establish an upper bound for the s-shifted packing chromatic number of the
infinite path P.,. The coloring scheme for the packing coloring of P, will use
the similar idea as demonstrated in the example.

Theorem 4.5. Let Py, be an infinite path. Let s € Z be a positive integer. Then,

X5(Px) <3 f;lJ va2]+ 2],
Proof. The packing coloring obtained in Lemma 4.3 is a cyclic packing coloring.
In the cycle with 12(s + 1) vertices, the same coloring ensures that the distance
between any two vertices colored s is s + 1. Additionally, the distance between
any two vertices colored with one of the colors from A is 2(s + 1), from B is
3(s+ 1), and from C is 4(s + 1). The required result follows by Lemma 4.2. =




36 K.M. HARITH, A.V. JAYANTHAN AND R. RAao B.V.

5. ROLE OF LARGE-DEGREE VERTICES IN PACKING COLORING OF A TREE

In this section, we obtain an upper bound on the packing chromatic number of a
tree, based on the number of large-degree vertices. For a tree T, let £(T') denote
the set of all large vertices in T, i.e.,

L(T) = {v e V(T) | deg(v) > 4}.

To begin with, we obtain an upper bound for the packing chromatic number of
a lobster tree in terms of the number of large-degree vertices using Theorem 4.5.

We set up the notations as follows. For a lobster tree T', let w be its spine.
Let K = L(T) \ V(w) and let V'(w) be the set of all vertices in the spine which
is adjacent to at least one of the large vertices in K, i.e.,

Vw)={veV(w)| Nv)nk # 0} C V(w).
Now define ¢ = |[K| — |V (w)].
Proposition 5.1. Let T be any lobster tree and let ¢ be as defined above. Then,
Xp(T) < ¢+ 14.

Proof. Let T be a lobster with w as the spine. Let K and V’'(w) be defined as
earlier for lobster T'. Assign the following coloring: pendant vertices adjacent to
spine w — 1, pendant vertices adjacent to vertices in C — 1, all the non-spine
vertices having degree two or three — 1, those pendant vertices adjacent to a non-
spine vertex of degree two or degree three — {2, 3}, the spine w — {4,...,14} (as
spine is a path, we shall use Theorem 4.5) and finally it remains to assign colors
to large vertices. For each vertex v in V/(w), assign for at most one large vertex
neighboring v with 2 and for the remaining large neighbors of v assign unique
colors. This is a valid packing coloring for T and therefore, we obtain an upper
bound for the packing chromatic number of T" as x,(T") < ¢ + 14. ]

In Figure 29, we illustrate the packing coloring for the lobster tree T as
described in Proposition 5.1. For the tree T, ( = |[K| — |V/(w)] = 4 -3 = 1.
Consequently, we derive an upper bound for the packing chromatic number of T,
which is x,(T") < 15.

Remark 5.2. In [1], the authors provide an upper bound for the packing chro-
matic number of any lobster, T', expressed as an exponential function on the
maximum amongst the number of large neighbors for a vertex on the lobster’s
spine. This bound is particularly effective for lobsters with a small number of
large neighbors distributed across various vertices of the spine. In other words,
for vertices v € V'(w), the quantity |N(v)NK]| is bounded by sub-linear factors of
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Figure 29. A packing coloring of lobster tree T'.

V(T'). However, this bound is less effective when many large neighbors are adja-
cent to a single spine vertex while other spine vertices have fewer large neighbors.
In such cases, the bound in Proposition 5.1 is more suitable.

The number of large vertices in any tree can also provide an upper bound for
its packing chromatic number. This can be done with the support of a crucial
result of Sloper, in [13], where they give a packing coloring for any binary tree
using at most seven colors.

Theorem 5.3 (Theorem 15, [13]). Any complete binary tree can be packing col-
ored with 7 colors or fewer.

We illustrate the packing coloring of complete binary tree of height three
below.

Figure 30. Packing coloring of complete binary tree of height three using Sloper’s color-
ing.

Sloper’s coloring schema utilizes color 6 at height five from the root and
color 7 at height seven from the root. The complete coloring schema can be
found in [13].

Note that binary trees do not contain any large-degree vertex. Using Theorem
5.3, we now establish an upper bound for the packing chromatic number, x,(T),
based on the number of large-degree vertices it contains. Let n = |L£(T)|.
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Theorem 5.4. For any tree T, x,(T) < 2n+7.

Proof. Let T be a tree. Pick any vertex v € V(T') and root the tree at v. Call
the rooted tree T". Identify all maximal vertex disjoint binary subtrees of 77, i.e.,
subtrees in which every vertex has degree at most 3 and which are not contained
in any larger such subtree. Equivalently, each connected component remaining
after the removal of all the large vertices from the rooted tree, is a maximal
binary subtree. Assign packing coloring to each of these subtrees using Theorem
5.3 with at most 7 colors. Now it remains to show that the packing coloring of
any two distinct binary subtrees of 77 do not conflict and we need to assign colors
to the large vertices in T".

Furthermore, in the packing coloring schema of a binary tree in Theorem
5.3, the minimum distance between the root and the first occurence of a vertex
colored with a color from {1,...,7} is listed in Table 8.

’ Color ‘ Distance from the root
1 0

g O UL A W N
B S, B SURY JUR S

Table 8. Minimum distances.

Observe that any two maximal binary subtrees By and Bs in T are at distance
at least two apart. Moreover, if the distance between B; and By is exactly
two, then they are connected via a common large-degree vertex. By distance
conditions listed in the table, there will be no conflicts between coloring both
subtrees By, By with the same coloring as in Theorem 5.3. Assign unique colors
to all the large vertices in T”. If the parent of large vertex is again a large vertex,
then both receive unique colors. If the parent of the large vertex is not a large
vertex, then it is a part of some binary subtree.

The color assigned to this parent of large vertex, if it is 3 or 5, then there
can be a conflict in the coloring. We modify the packing coloring such that every
parent of a large vertex is given a unique color again. This results in a valid
packing coloring for the tree and thus, we obtain the required bound. [ |

While we believe that the above bound is sharp, we note that there are trees T’
for which x,(7T") is a constant with 7 being unbounded. For example, a caterpillar
where every vertex in the spine is a large-degree vertex can be packing colored



BouNDS FOR PACKING CHROMATIC NUMBER OF SOME SUBCLASSES ... 39

using exactly 7 colors. In the following, we obtain a more general class of trees
for which the packing chromatic number is bounded, with 7 being unbounded.

A tree T is said to be r-sparse, if for every u # v € L(T), d(u,v) > r+1. We
show that trees that are r-sparse for sufficiently large r have packing chromatic
number independent of 7.

Corollary 5.5. Forr > 8, any r-sparse tree T' has x,(T) < 8.

Proof. Utilize the packing coloring scheme illustrated in Theorem 5.4. Since the
tree T' is r-sparse, for r > 8, then all the large vertices can be assigned the color
8. Thus, we have x,(T) < 8. ]

6. BOUNDED WIDTH TREES

We have observed that the packing chromatic number is constant for caterpillars
but unbounded for lobsters. Since lobsters include caterpillars, we identify a new
class of trees in this section that encompasses caterpillars while maintaining a
bounded packing chromatic number.

Let T be a tree. We define the width of T as follows. For a vertex v, let T'(v)
denote the breadth-first tree of T starting at v. For 1 < i < n, the i-th layer in
T'(v) is the set of vertices in T'(v) that are at a distance of exactly ¢ from v. Let
wy be the maximum number of non-leaf nodes in any layer of T'(v). Define the
width of T" as the minimum value of w,, where the minimum is taken over all
vertices v in 1.

For w > 1, let T, denote the set of all trees of width at most w. Observe
that 7p is exactly the set of all caterpillars. Therefore, x,(71) = 7.

Examples of trees with
widths of two and three are
provided. Note that neither
of these trees are lobster
trees.  Additionally, there
exists a class of lobsters with
unbounded width. Both the
class of bounded-width trees
and the class of lobsters
include caterpillars, though Width 2. Width 3.
they are not subsets of each

other. Figure 31.

Theorem 6.1. For any T € Ty, we have x,(T) < 22w+,
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Proof. Let T be a tree of width w. Let v be a vertex in T such that the BFS
tree of T rooted at v has at most w non-leaf vertices in any layer.

Firstly, we assign the color 1 to every leaf. Now, it is sufficient to provide
a packing coloring of the non-leaf vertices of T', using colors from the palette
{2,3,... }.

Let d be the height (i.e., the maximum length of any root to leaf path) of
T, excluding the leaves of T. The non-leaf vertices of T' can be drawn into a
(d+1) x w grid as follows.

Let G be the (d + 1) x w grid, that is, G has d 4+ 1 rows, with exactly w
squares. Place the root of the tree T on the top row leftmost entry. Next, place
all the non-leaf vertices at layer ¢ of T' in the squares on ¢ + 1-th row in the order
given by a BFS traversal starting from v, filling the leftmost squares first.

For example, consider the following width 3 tree with vertex shaded black as
the root. The height of this tree after deleting the leaf nodes is 4. Therefore, we
embed the rooted tree into a grid G of size 5 x 3 as illustrated.

For 1 < i < w, let P; denote the subgraph of T in the i-th vertical column
of the grid G. Note that each P; comprises a collection of path graphs and is
a subgraph of P,,. Consequently, any packing coloring of P, can naturally be
restricted to obtain a packing coloring for each P;. To maintain the distance
property of the packing coloring in the tree T', we shall utilize Theorem 4.5 and
color each P; with a disjoint color palette.

®

Q
00

A tree of Width 3. BFS Traversal of the Grid G containing the
rooted tree without leaves. rooted tree.

Figure 32.

In order to obtain a packing coloring of T', use the following coloring schema.

Let 51 = XZ(POO) =7 and s; = X;iflJrl(Poo) for ¢ > 1. Color P; with colors
from {2,...,s;1} treating it as a path. Similarly, color P; with colors from {s;_; +
1,...,s;} treating it as a path. Note that, every non-leaf vertex of T' is part of

exactly one of the P;’s. Color every leaf vertex with 1. Let f be the resulting
coloring of T'. Consider any two non-leaf vertices v and v in T'. Suppose d(u,v) =
j. If uw and v do not lie in any P;, clearly, u and v get different colors. If they lie
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in some P;, then either the color of u and v is less than j or they have different
colors. Thus f is a valid packing coloring of 7. The number of colors required
for this packing coloring is s, which can be obtained using a simple induction
on Theorem 4.5. Observe that, we have

e <35 a3+ 3] o

As a base case, we also have that s; = 7 < 23, and thus
Sw = X;w71 (Poo) <Adsy—1 < 22w+1

by induction. [ |
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