DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2024): 0.8

5-year Journal Impact Factor (2024): 0.7

CiteScore (2024): 2.1

SNIP (2024): 1.162

Discussiones Mathematicae Graph Theory

Article in press


Authors:

S.-P. Wang

Shipeng Wang

Jiangsu University

email: spwang22@ujs.edu.cn

Z.-Q. Zhang

Zhiqi Zhang

Department of Mathematics, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China

email: hongbin_keith@sina.com

Title:

Generalized Turán problems for disjoint even wheels, and for disjoint bowties

PDF

Source:

Discussiones Mathematicae Graph Theory

Received: 2024-10-03 , Revised: 2025-06-28 , Accepted: 2025-07-03 , Available online: 2025-08-20 , https://doi.org/10.7151/dmgt.2596

Abstract:

Given graphs $T$ and $F$, the generalized Turán number $ex(n,T,F)$ is the maximum possible number of copies of $T$ in an $F$-free graph on $n$ vertices. Let $W_{n}$ be the wheel graph obtained from a cycle $C_{n-1}$ and an extra vertex $v$ by joining $v$ and all vertices of $C_{n-1}$. Let $\ell \cdot F$ be the graph consisting of $\ell$ vertex-disjoint copies of $F$. A graph consisting of two triangles which intersect in exactly one common vertex is called a bowtie and denoted by $F_{2}$. In this paper, we determine the exact values of $ex(n,K_{r},(\ell+1) \cdot W_{2k})$ for $4 \leq r \leq \ell+3$, and $ex(n,K_{r},(\ell+1) \cdot F_{2})$ for $3 \leq r \leq \ell+2$, and characterize all their extremal graphs.

Keywords:

generalized Turán number, extremal graph, even wheel, bowtie

References:

  1. N. Alon and C. Shikhelman, Many $T$ copies in $H$-free graphs, J. Combin. Theory Ser. B 121 (2016) 146–172.
    https://doi.org/10.1016/j.jctb.2016.03.004
  2. J.A. Bondy and U.S.R. Murty, Graph Theory, Grad. Texts in Math. 244 (Springer London, 2008).
  3. T. Dzido, A note on Turán numbers for even wheels, Graphs Combin. 29(5) (2013) 1305–1309.
    https://doi.org/10.1007/s00373-012-1212-9
  4. P. Erdős and T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar. 10 (1959) 337–356.
    https://doi.org/10.1007/BF02024498
  5. P. Erdős, Z. Füredi, R.J. Gould and D.S. Gunderson, Extremal graphs for intersecting triangles, J. Combin. Theory Ser. B 64 (1995) 89–100.
    https://doi.org/10.1006/jctb.1995.1026
  6. Z. Füredi and D.S. Gunderson, Extremal numbers for odd cycles, Combin. Probab. Comput. 24 (2015) 641–645.
    https://doi.org/10.1017/S0963548314000601
  7. J. Gao, Z. Wu and Y. Xu, Counting cliques without generalized theta graphs (2023).
    arXiv: 2311.15289
  8. D. Gerbner, A. Methuku and M. Vizer, Generalized Turán problems for disjoint copies of graphs, Discrete Math. 342 (2019) 3130–3141.
    https://doi.org/10.1016/j.disc.2019.06.022
  9. D. Gerbner, Generalized Turán results for disjoint cliques, Discrete Math. 347(7) (2024) 114024.
    https://doi.org/10.1016/j.disc.2024.114024
  10. D. Gerbner, E. Győri, A. Methuku and M. Vizer, Generalized Turán problems for even cycles, J. Combin. Theory Ser. B 145 (2020) 169–213.
    https://doi.org/10.1016/j.jctb.2020.05.005
  11. J. Hou, C. Yang and Q. Zeng, Counting triangles in graphs without vertex disjoint odd cycles, Discrete Math. 347(7) (2024) 114015.
    https://doi.org/10.1016/j.disc.2024.114015
  12. J. Hou, H. Li, X. Liu, L.-T. Yuan and Y. Zhang, A step towards a general density Corrádi–Hajnal theorem, Canad. J. Math. (2025) 1–36.
    https://doi.org/10.4153/S0008414X25000197
  13. E.L.L. Liu and J. Wang, The generalized Turán problem of two intersecting cliques, Discuss. Math. Graph Theory 45 (2025) 565–594.
    https://doi.org/10.7151/dmgt.2544
  14. J. Ma and Y. Qiu, Some sharp results on the generalized Turán numbers, European J. Combin. 84 (2020) 103026.
    https://doi.org/10.1016/j.ejc.2019.103026
  15. V.T. Sós, Remarks on the connection of graph theory, finite geometry and block designs, in: Colloq. Internat. Teorie Combin. II, Roma, 1973, Atti dei Convegni Lincei 17, (Accad. Naz. Lincei, Rome 1976) 223–233.
  16. M. Simonovits, A method for solving extremal problems in graph theory, stability problems, in: Theory of Graphs, Proc. Colloq., Tihany, 1966, (Academic Press, New York 1968) 279–319.
  17. P. Turán, On an extremal problem in graph theory, Math. Fiz. Lapok 48 (1941) 436–452, in Hungarian.
  18. C. Xiao and O. Zamora, A note on the Turán number of disjoint union of wheels, Discrete Math. 344(11) (2021) 112570.
    https://doi.org/10.1016/j.disc.2021.112570
  19. L.-T. Yuan, Extremal graphs for odd wheels, J. Graph Theory 98 (2021) 691–707.
    https://doi.org/10.1002/jgt.22727
  20. F. Zhang, Y. Chen, E. Győri and X. Zhu, Maximum cliques in a graph without disjoint given subgraph, Discrete Math. 347(4) (2024) 113863.
    https://doi.org/10.1016/j.disc.2023.113863
  21. X. Zhu, Y. Chen, D. Gerbner, E. Győri and H.H. Karim, The maximum number of triangles in $F_k$-free graphs, European J. Combin. 114 (2023) 103793.
    https://doi.org/10.1016/j.ejc.2023.103793
  22. X. Zhu and Y. Chen, Generalized Turán number for linear forests, Discrete Math. 345(10) (2022) 112997.
    https://doi.org/10.1016/j.disc.2022.112997

Close