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Abstract

Given graphs T and F, the generalized Turdn number ex(n, T, F') is the
maximum possible number of copies of T in an F-free graph on n vertices.
Let W, be the wheel graph obtained from a cycle C,,_; and an extra vertex
v by joining v and all vertices of C,,_1. Let £- F be the graph consisting
of ¢ vertex-disjoint copies of F. A graph consisting of two triangles which
intersect in exactly one common vertex is called a bowtie and denoted by F5.

In this paper, we determine the exact values of ex(n, K., ({+1)-Way) for
4<r</L+3,and ex(n,K,,({+1)-Fy) for 3 <r < /{42, and characterize
all their extremal graphs.
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1. INTRODUCTION

We basically follow the most common graph-theoretical terminology and notation
and for concepts not defined here we refer the reader to [2]. All graphs in this
paper are simple, finite and undirected.

Let G = (V,E) be a graph with vertex set V(G) and edge set E(G). We
use e(G) to denote the number of edges of G and use d(v) to denote the degree
of v. For S C V(G), let G[S] denote the subgraph of G induced by S, and let
G — S denote the subgraph induced by V(G)\S. For simplicity, we write E(S)
and e(S) for E(G][S]) and e(G[S]), respectively. For v € V(G), let N(v, S) denote
the set of neighbors of v in S, and let deg(v, S) = |N(v,S)|. Let G[S,T] denote
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the bipartite subgraph induced by the edges with one end in S and the other in
T, and let e(S,T) = e(G[S,T)).

For any two vertex disjoint graphs G and Gs, let G1 V G5 denote the graph
obtained from G1UG2 by adding all edges between V(G1) and V(G2). Let N;(G)
denote the number of r-cliques in G. A graph G is called edge-critical if there
exists an edge e in G such that x(G — e) < x(G), where x(G) is the chromatic
number of G. Let T,(n) denote the Turdn graph, the complete r-partite graph
on n vertices with r partition classes, each of size L%J or (%W

For a graph F', we say a graph G is F-free if G does not contain a copy of F'
as a subgraph. The Turdn number of F, denoted by ex(n, F'), is the maximum
possible number of edges in an F-free graph on n vertices. In 1941, Turdn [17]
proved that T;.(n) is the unique extremal graph of ex(n, K,41). In 2015, Fiiredi
and Gunderson determined the Turan number of odd cycles.

Theorem 1 (Fiiredi and Gunderson [6]). For k > 2 and n > 4k — 2,

n

ex(n, Copq1) = {:J :

Let T, F be two graphs. The generalized Turdn number ex(n,T,F) is the
maximum possible number of copies of T in an F-free graph on n vertices. The
study of generalized Turédn problems was initiated by Alon and Shikheman [1],
there are many results focus on the generalized Turdn problems, see e.g. [9, 10,
13, 22).

Let £-F be the graph consisting of ¢ vertex-disjoint copies of F'. In 1959, Erdds
and Gallai [4] determined the Turdn number of matchings, i.e., ex(n, ({+1)-K3) =
max{ (2@'1), (n—20)0+ (5)} for n > 2¢+ 1. Recently in [11], Hou, Yang and Zeng
determined the value of ex(n, K3, (¢ + 1) - Cogy1) for £ > 1, k > 1. Zhang, Chen,
Gy6ri and Zhu [20] determined the value of ex(n, K, (¢+1)-K,) for r > 3, £ > 1.

Let £ > 2 and py,...,pr > 1 be integers. The generalized theta graph
O(p1,...,pr) consists of a pair of end vertices joined by k internally disjoint
paths of lengths py,...,pg, respectively. Recently, Gao, Wu and Xue [7] deter-
mined the value of ex(n, K,, (¢ + 1) - F) for the edge-critical generalized theta
graphs F'. Specially, Cory1 is an edge-critical generalized theta graph.

Let W, be the wheel graph obtained from a cycle C,,_1 and an extra vertex v
by joining v and all vertices of C),—1. If n is odd then we call W), odd wheel, and
we call W,, even wheel if n is even. In 2013, Dzido determined the exact value of
the Turan problem of even wheels.

Theorem 2 (Dzido [3]). For k > 3 and n > 6k — 10,

n

ot - | 2.
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In 2021, Yuan [19] determined the exact value of the Turdn number for odd
wheel. Xiao and Zamora [18] determined the value of ex(n, (¢ + 1) - Wogt1).
Recently, Hou, Li, Liu, Yuan and Zhang [12] determined the value of ex(n, (¢ +
1) - F) for edge-critical graph F with x(F) > 3, which also implies the value of
ex(n, (£ + 1) - Woy) as the even wheel Wy, is 4-edge-critical.

In 2020, Ma and Qiu extended the result of Simonovits [16] by considering
the generalized Turan number of edge-critical graphs.

Theorem 3 (Ma and Qiu [14]). Let F' be an edge-critical graph with x(F) =
r+1>m > 2 and n be sufficiently large. Then the Turdn graph T,(n) is the
unique graph attaining the mazimum number of K,,’s in an F-free graph on n
vertices.

In the same paper, they also prove a stability result.

Theorem 4 (Ma and Qiu [14]). Let F be a graph with x(F) =r+1>m > 2.
If G is an n-vertex F-free graph with N (G) > Ny (T-(n)) — o(n™), then G can
be obtained from T.(n) by adding and deleting o(n?) edges.

In this paper, we further study the function of ex(n, K,, (£ + 1) - F') by con-
sidering the case F' = Wy. Our first main result is the following.

Theorem 5. Let £ > 1, k > 2, and n be sufficiently large. If 4 <r < £+ 3, then

ex(n, Ky, ({ +1) - Way) = <f> + (T f 1) (n—1)

() |55+ (L5 o

and K¢V T3(n — {) is the unique extremal graph.

Ifr > 0+ 4, then ex(n, K., (£ + 1) - Woy) = 0(n2+ﬁ)'

A graph on 2k + 1 vertices consisting of k triangles which intersect in exactly
one common vertex is called a k-fan and denoted by F}. Specially, the F is also
called a bowtie. In 1995, Erdos, Fiiredi, Gould and Gunderson determined the
value of ex(n, Fy) and characterize the extremal graphs. We only list the case
k =2 and its extremal graph for simplicity.

Theorem 6 (Erdés, Fiiredi, Gould and Gunderson [5]). Forn > 5,

ex(n, Fy) = Vﬂ +1.

The unique extremal graph is Ty (n) which is obtained from To(n) by adding one
edge.
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In 1976, Erdds and Sés determined the value of ex(n, K3, F5).

Theorem 7 (Erdés and Sés [15]). For all n,

n, forn =10 (mod 4),
ex(n, K3, Fy) = ¢ n—1, forn =1 (mod 4),
n—2, forn =2 or 3 (mod 4).

Recently, Zhu, Chen, Gerbner, Gyéri, and Karim [21] extended it and de-
termined the value of ex(n, K3, F},) for n > 4k% and k > 3. In this paper, we
determine the value of ex(n, K, (¢ + 1) - F3) for r > 3, which is our second main
result.

Let T5(n) be the graph obtained from a bipartite Turdn graph T5(n) by
adding one edge to each its partition set, say vive and ujusz, and then deleting
the edges vius and vous.

Theorem 8. Let £ > 1 and n be sufficiently large. If 3 <r <+ 2, then

r—1

O N

and K,V T5(n — {) is the unique extremal graph.
If r > 0+ 3, then ex(n, K,,({ + 1) - F») = O(n).

ex(n, Ko, ((+1) - Fy) = <f) +< ¢ >(n—€)

In Section 2, we prove Theorem 5. In Section 3, we prove Theorem 8.

2. PROOF OF THEOREM 5

To prove Theorem 5, we need the following results.

Theorem 9 (Gerbner, Methuku and Vizer [8]).
(i) For anyr >3 and k > 2, we have ex(n, K,,Cori1) = O(n“ﬁ),

(ii) If r < €, then ex(n, K., - Copy1) = O(n?). Ifr > £+ 1, then ex(n, K, ¢ -
Cokt1) = O(nH%)-

Lemma 10. For any r > 4 and k > 2, we have

ex(n, K., WQk-) =0 (n2+ﬁ> .
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Proof. Let G be a Wyi-free graph on n vertices. For any vertex v € V(G),
G[N(v)] does not contain a cycle on 2k — 1 vertices. Then

N (G) = >y Ne—1(G[N(v)]) < Yo, ex(d(v), K1, Cop_1)

, r
< ;ex(n, K,—1,C9%1).

By Theorem 9(i), we have N,(G) = O(n2+ﬁ) as required. ]

Lemma 11. Letr > 4,k > 2 and ¢ be a constant. Assume that G is a Woy-free
graph on n vertices. For sufficiently large n, we have

N3(G) 4+ cN(G) < N3(Ts(n)),
and the equality holds if and only if G is isomorphic to T5(n).

Proof. Let G,, be a Woyi-free graph on n vertices such that N3(G,) + cN,.(Gy)
is maximum. By Lemma 10, we have N,.(G,) = o(n?). Since T3(n) is Wox-free
and N;.(T3(n)) = 0 and by the choice of G, N3(T3(n)) < N3(Gp) + cN-(Gy), it
follows that N3(G,) > N3(Ts(n)) — o(n®). By Theorem 4, there is a spanning
tripartite subgraph (say G’,) of G, which is almost balanced by deleting o(n?)
edges. Let (V1, V2, V3) be the partition of GJ,.

Define

(1> f(n) - N?)(Gn) + CNT‘(GTL) - NS(T3(n))'

Clearly f(n) > 0. We will show that if G,, contains a K, with r > 4, then
f(n—1) = f(n) > 1 for sufficiently large n.

For all distinct i, j € {1,2,3}, let L] = {v € V; | deg(v
For all distinct 4,,t € {1,2,3}, let L; = {v € V; | deg(v, V

]
) > ooz ) | V| and
deg(v, Vi) > (1 — 1555 ) [Vel}. Let L =Ly U Ly U L3, and 1ot S

V(Gn)\ L,

Claim 12. For different i,j € {1,2,3} and n > ni, where ny is a sufficiently
large integer, |L]| > (1 — 35)|Vil.

)= (1= ) V1)
L

Proof. By contradiction without loss of generality, we may suppose that |L%| =
z|Vi| with z < 1 — 120 Since deletlng an edge of G, can destroy at most n — 2
triangles, it follows that deleting o(n?) edges will destroy o(n?) triangles. Recall

that N3(G) > N3(Ts(n)) — o(n?). Thus
N3(GL) = N3(Gr) = o(n®) = N3(T3(n)) — o(n?).
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On the other hand,

1
Na(G3) < LERIValIl + (V] - 1221) (1 1 ) Malval

_ <x+<1 2 <1 _ 101%)) VAllVal Vi

< 1_¥ anr (n?)
= 120- 100k ) 27 " O\ )

a contradiction for n > nq, where n; is a large integer. Thus the claim holds.

It follows from Claim 12 that |L;| = |LINLL| > |LI|+|LY| - |Vi| > (1 &) |Vil.
This implies that [S| < &5 (|Vi] + |Va| + [V3]) = &.

Claim 13. For different i,j,t € {1,2,3} and n > max{4k,n1}, and for any set
T C L; U L; with |T| < 2k, it holds that | (,er N(z, Lt)| > k.

Proof. By the definition of T, each vertex in T has at most ﬁﬂ/}] non-
neighbors in L;. Then

2k 1 1
— V> 1= = |Vi|—=V,| >k

for n > 4k. 0

> |Ls| —

() N(z, L)

zeT

Claim 14. For eachi € {1,2,3} and n > max{4k,n;}, L; is an independent set.

Proof. Suppose not, we may assume that zixs is an edge in G,[L1] without
loss of generality. By Claim 13, we assume that {u1,...,ux_1} C N(x1,L2) N
N (z2, Lz). By Claim 13, we further assume that {vy, ..., vp—2} C( ﬂf;ll N(u;, L1))
\{z1,z2}. Thus zjujvy - - vp_oug_122x1 is a cycle of length 2k — 1. By Claim 13,

we choose a common neighbor y of uy,...,ux_1,v1,...,0_2,%1,22 in L3, but
then the set {ui,...,ux—1,01,...,Vk—2,21,22,y} forms a copy of Wy with cen-
ter y, a contradiction. Thus the claim holds. 0

Claim 15. §(G,) < 22.

Proof. Suppose, by contradiction, that §(G,) > 2*. Recall that |S| < Z. Thus
for any vertex v in G,, we have deg(v, L) > %” - = %L Let {v1,v9,v3,v4} be
the vertex set of a K, in G, as G, contains a K, with r > 4. By Claim 14, each
L;(i =1,2,3) is an independent set of G,,. By symmetry, we may distinguish the
following four cases.

Case 1. v1 € S, vy € L1, v3 € L3, vg € Lo. By Claim 13, we assume that
{y1, .-, yk—2} C N(v2, L3) N N(va, L3) \ {vs}. Set T' = {vs,v4,y1,...,yk—2}. By
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Claim 13, we further assume that {z1,...,zx—2} C (N,er N(v,L1)) \ {v2}. But
then the set T'U {z1,...,xp_2,v1,v2} forms a copy of Wy, with center vy (see
Figure 1, the thick solid lines form the cycle Co;_1 in Wag), a contradiction.

Figure 1. The illustration of Case 1.

Case 2. {v1, vo} C S, v3 € L1, vq4 € Ly. Recall that deg(v, L) > % for
any vertex v in Gy,. This implies that deg(v, L1 U Lg) > %‘ — [5] > % for each
v € S. Without loss of generality, we may further assume that deg(vy, L1) > 5.
Note that deg(vg, L1) > (1 — ﬁ)\Vﬂ — %\Vl\ > (1 — %) L%J It follows that
v1 and v4 have a common neighbor z; in L;. By Claim 13, we assume that
{yl, . ,yk_g} C N(x1,Ls) N N(vs, L3) N N(vg, L3). Set T = {’U4, Ylye o ,yk_g}.
By Claim 13, we further assume that {zs, ..., zx_2} € (N,er N(v, L1))\{vs, 21}
But then the set TU{x1,...,xx_2,v1,v2,v3} forms a copy of Wa with center vy
(see Figure 2, the thick solid lines form the cycle Co—1 in Way), a contradiction.

U1 ) ( V3 \L1 L2

Figure 2. The illustration of Case 2.

Case 3. {vi,v2,v3} C S, vy € L. Without loss of generality, we may assume
that vy € L2. Note that for each v;(i = 1,2,3) we have deg(v;, L1 U L3) > %.
Without of loss of generality, we may further assume that deg(vq, L1) > {5 and
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deg(ve, L1) > 15+ Note that deg(vg, L1) > (1 — Tlokﬂvﬂ — %]Vl\ > (1 L ) L@J

30/ L3
It follows that v; and vy have a common neighbor z; in L. Similarly, vo and vy
have a common neighbor z2 in L;. By Claim 13, we assume that {y1,...,yg—2} C

N(zy,L3) N N(xz2,Ls) N N(vg, L3). Set T = {1}4, Yly - ,yk_g}. By Claim 13, we
further assume that {zs,...,z5-1} € (Nyer N(v,L1)) \ {21, z2}. But then the
set T U{z1,...,25_1,v1,v2} forms a copy of Wy, with center vy (see Figure 3,
the thick solid lines form the cycle Co;_1 in Wyg), a contradiction.

Figure 3. The illustration of Case 3.

Case 4. {v1,v2,v3,v4} C S. Since each v;(i = 1,2,3,4) has degree at least %L

in L, it follows that Z?Zl deg(v;, L) > %” If every vertex in L has at most

two neighbors in {v;,ve,v3,v4}, then Z?Zl deg(v;, L) < 2n, a contradiction.
Hence there exists a vertex x in L which is adjacent to at least three vertices
in {v1,v2,v3,v4}. We may assume that the set {z,v1, vy, v3} forms a copy of Ky,
and by Case 3 we are done. Thus the claim holds. 0O

By Claim 15, there exists a vertex v € G, such that d(v) < 3. Since G, is
Woi-free, G,[N (v)] is Cox_1-free. By Theorem 1, the number of edges in G,,[N (v)]
is at most 1(d(v))%. By Theorem 9(i), the number of copies of (r — 1)-cliques in

Gr[N(v)] is O ((d(v))Hﬁ) < ;—(fc for all n > ng, where ns is a sufficiently large

integer. If we delete v from G,,, it will destroy at most %(d(v))2 triangles and 5%20
copies of r-cliques. Let G’ = G, — v. By the definition of f(n), we have

f(n=1) = f(n)
> N3(G') + N (G') = N3(Ts(n — 1)) — (N3(Gn) + Np(Gn) — N3(T3(n)))
> 5] [5] — (Ma(Ga) = NG(G) = (N; (Gn) = N (@)

n n n TL2
> 5] [5] -1 -5 >t

for all n > ng, where nj3 is a sufficiently large integer.
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Let n4y = max{ni, 4k, n2,n3}. For n > n4, we conclude that if G,, contains a
K., then

(2) Fn—1) = f(n) > 1.

Claim 16. For any positive integer n' > ny, if G,y is K.-free, then Gy, is K.-free
for alln >n'.

Proof. Suppose not, and let n* be the smallest integer after n’ satisfies G,
contains a K,. Hence G,~_1 is K,-free. By (2) we have

0< f(n") < f(n* —1) =1 =N3(Gpe—1) — N3(T3(n" — 1)) — 1.

Since Woy, is 4-edge-critical, we have N3(Gp+—1) < N3(T3(n* —1)) by Theorem 3,
then f(n*) < 0, a contradiction. Thus the claim holds. 0

Then there exists an integer ns > ng4 such that G,, is K,-free. Otherwise, G;
contains a K, for each i > ng. Let N > (') + ¢("4) + ng. Then by (2) and (1),

0<fIN)<f(N=1)=1<f(N=2)=2<--- < f(ng) = (N —ng)

< <24> + c(i‘l) — (N —ny) <0,

a contradiction. Thus by Claim 16, G, is K,-free for n > ns. Since Wy is
4-edge-critical, by Theorem 3 we have N3(G,) + cN;(Gy) < N3(T3(n)) for all
n > ng, and the equality holds if and only if G,, is isomorphic to T3(n). This
completes the proof of Lemma 11. [ ]

Now we prove Theorem 5.

Proof of Theorem 5. Let G be an (£ + 1) - Wy,-free graph on n vertices that
maximizes N, (G). We distinguish two cases.

Case 1. 4 <r </{+3. Let L be a smallest set in V(G) such that G’ =G — L
is Wop-free. Then |L| < £|Wyg|. Define
L= {v e L|((2k—1)¢+1)-Cy_1 € G'[N()N V(G')]}

and L2 =L \ Ll.

Claim 17. |L;| =¢.

Proof. Suppose first that |Li| > ¢+ 1, and let {v1,...,v41} € L;. We can
recursively find ¢ + 1 disjoint copies of Wy, such that each one is from G[{v;} U

(N(v;)) " V(G")] for i = 1,...,£ + 1. Indeed, assume we have found j < ¢
disjoint copies of Woy,. Pick a vertex in L; we have not selected, say vj41. By the
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definition of L1, G'[N(vj+1) NV (G")] contains at least (2k—1)¢+1 vertex disjoint
copies of Cyi_1, then there are at least (2k — 1)¢ + 1 — (2k — 1)j unused vertex
disjoint copies of Cox—1 in G'[N(vj11) NV(G')]. Thus we can find the (j 4 1)-th
copy of Woy.

Suppose now that |Li| < £—1. Since G’ is Woi-free, by Theorem 3, N3(G') <
% + o(n3). Then the r-cliques R in G — Ly can be divided to three cases.

e |[RNG’'| <2. The number of this kind of r-cliques is O(n?).

e |R N G’'| = 3. The number of this kind of r-cliques is at most (f:é) (n_2‘7L|)3 +

o(n?).
e |RNG’| > 4. The number of this kind of r-cliques is O(n2+ﬁ) by Lemma 10.
For any vertex v € Ly, G'[N(v) N V(G")] is ((2k — 1)¢ + 1) - Co_1-free by
definition of Ly. By Theorem 9(ii), the number of i-cliques in G'[N(v) N V(G’)]

is O(n?). Hence, the number of r-cliques consisting of the vertex v, i vertices in
V(G') and r — 1 — i vertices in L — v is O(n?). Then

TN (n— L3
NA(G) < (f - ;) IV 4 o)

n — 3
< <’I“ f 3> ( 276) + 0(77,3) ZNT(Kg VT3(n—1))

for sufficiently large n, contradicting the choice of G. Thus the claim holds.
Claim 18. |Lg| = 0.

Proof. Suppose not, and let v € Ly. By the definition of L, there is a copy, say
S, of Wy containing v in G — (L \ {v}). Since there are exactly ¢ vertices in L;
from Claim 17, we can recursively find ¢ vertex disjoint copies of Wa in G —V(5)
similarly as in the proof of Claim 17. Together these copies with S form ¢ + 1
vertex disjoint copies of Wy, a contradiction. Thus the claim holds. 0O

By Claims 17 and 18, we have L = L;. By Theorem 2 and Lemma 11, we have

-3

Il
N
RN
N N N
+
</\<—\/\
|~
—
~
3
|
=
+
TN
=
|~
)
~__
20
Q
+
3|
[~
w|C
o I
Z
Q
+
o
=
J
—
Q
=
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where ¢; = (r—3) (f) / (ng) and the equality holds if and only if G = K,VT5(n—/).

Case 2. r > £+ 4. By the similar analysis as in Claim 17, we can obtain that
|L1| < ¢ and the number of copies of r-cliques containing vertices in La is O(n?).
Since r > £+4, it follows that » —¢ > 4 for each i € {0, ...,|L;|}. By Lemma 10,
we obtain that

|L1] |L1]

NG < 3 (’L”)Nr_i(G’) <3 ('Lz.l')exm, Koo Woi) = O (n*7557)

i

Hence, ex(n, K,,({ + 1) - Wy) = O(n2+ﬁ). Thus the proof of Theorem 5 is
complete. m

3. PROOF OF THEOREM &

In this section we will prove Theorem 8. First we prove the following useful
lemmas.

The book graph B; is the graph consisting of t — 2 > 1 triangles, all sharing
one edge. We call the vertices of degree two of a book graph the page vertices.

Lemma 19. Let ¢ > 0 be a constant and let G be an Fa-free graph on n vertices.
For sufficiently large n, we have

2
e(G) + cN3(G) < {ZJ +ec(n—4),
and the equality holds if and only if G is isomorphic to T3 (n).

Proof. Assume that G is an F)-free graph on n vertices such that e(G) +
cN3(G) > VTQJ +c¢(n—4). By Theorem 7 we have N3(G) < n. If e(G) = {"TQJ +1,
then by Theorem 6, G is isomorphic to T, (n). But then e(G) + cN3(G) <
L”{J +1+c {%1 < L”TQJ + c¢(n — 4) for sufficiently large n, a contradiction. Thus

(3) VfJ —de<e(G) < MZJ . n—4 < N3(G) < n.

Claim 20. G is K4-free.
Proof. Suppose, otherwise, that G contains a Ky. Set V(K4) = S. Since G — S
is Fy-free, by Theorem 6, e(G — 5) < L%J + 1. Since e(G) > {%J —4e, it

follows that e(S,V(G)\ S) > L”TQJ —4c— (L%J + 1) —6=2n—11—4c. On
the other hand, every vertex in G — S is adjacent to at most one vertex in S as
G is Fy-free, but then e(S,V(G) \ S) < n — 4, a contradiction. 0
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Since G is Fb-free, any two books Bjp, By of G satisfy that By C By or
By C By or V(B1)NV(Bs) = 0. Let By,...,B; be all vertex disjoint book
graphs in G such that each B; has page vertices as large as possible. Since each
Bi(i =1,...,t) contains exactly |B;| — 2 triangles and by Claim 20, By U---U B;
contains exactly 3¢_, | B;| — 2t triangles. It follows that N3(G) = Y2¢_, | Bi| — 2t.
Since Y¢_ | |Bi| < n and by (3), we have t < 2.

If t = 1, then by Claim 20, e(By) = 2|B1| — 3. By the choice of B;, all
triangles in G are contained in Bj. Since N3(G) > n—4, G —V(Bj) has at most
two vertices, it follows that e(G) < 2|B1| — 3+ 2|B1| + 1 < 4n — 2, contradicting
(3)-

Thus we have t = 2. Then B; U Bs contains at most n — 4 triangles. By
(3) we obtain that N3(G) = n — 4 and |By| 4+ |Bz| = n. Recall that e(G) +
cN3(G) > [%J +¢(n —4). Then e(G) = MTQJ Let V(B1) = {z1, 22} U S1 and
V(B2) = {y1,y2} U S, where S; is the set of page vertices of B;. Clearly |S;| > 2
for each ¢ = 1,2. Since G is Ky-free, we have e(B)) + e(Bz) = 2n — 6. Since G is
Fy-free, it follows that e({x1,z2}, {y1,92}) < 2. Thus

e({z1, 22}, S2) + e({y1, 42}, S1) + e(S1, S2)
2

Y @) - e+ eB) ~ eformad ) 2 || - en-6) -2
Note that |S1|+]S2| = n—4. It follows that e(S7, S2) < [%J = L%QJ —2n+4
and the equality holds if and only if |Si| is almost equal to |Sz|. We further
claim that e({z1,z2},S2) + e({y1,y2}, S1) = 0. Otherwise, let z € Sy such that
x1z € E(G) without loss of generality. Since G is Fy-free, z is non-adjacent to
any of 57, it follows that

e({z1, 2}, 52) +e({y1,y2}, S1) + e(S1, 52)
2

2
< MJ — 44— S +1< MJ —2n+3,

contradicting (4). Hence G is isomorphic to 75 (n). The proof of Lemma 19 is
complete. [ |

Lemma 21. Let ¢ be a constant, and let G be an Fy-free graph on n wvertices
such that G contains a K4. For sufficiently large n, we have

e(G) + Ny (G) < ﬁJ .

Proof. Let G be an Fy-free graph on n vertices such that Ky C G and e(G) +
cNy(G) is maximum. It suffices to show e(G)+cNy(G) < L”{J . By contradiction,
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suppose that e(G) + eNy(G) = |%|. Define f(n) = e(G) + eNi(@) — | |.
Then f(n) > 0. Since G is Fy-free, it follows that any two K4's in G cannot

intersect, implying that the number of the copies of Ky in G is at most L%J

2

Thus e(G) > L%J — O(n). By Theorem 4, G has a bipartite spanning subgraph

G’ which is almost balanced by deleting o(n?) edges. Then e(G’) > L%QJ —o(n?).
Let (V1,V2) be the partition of G’. Define

1
L= {v e Vi | deg(v, Vo) > <1 — 1000) |V2]},

1
Ls = { € Vi | deg(v, V1) > (1 - 1000) |v1|},
and S = (V1\L1) U (VQ\LQ)

Claim 22. For each i = 1,2 and n > nyi, where ny is a sufficiently large integer,
|Li| > (1— z55)|Vi|. Consequently, for each v € L; we have deg(v, L3—;) > 0.49n.

Proof. By contradiction, suppose that |Li| = z|Vi| with z < 1 — &5 without

loss of generality. Then

/ (1oL
(6" < 1EalVal + (Vi = [2al) (1 g5 ) 17

1 1 n? 5
- 1-a2)(1-—— <(1-——
<x+( x)< 1000)) Villvel < ( 500 x 1000) 7 o),

contradicting e(G") > LZ—?J — o(n?) for n > ny, where n; is a large integer. Thus

|Li| > (1 — 555)|Vi| for each i =1,2.
For each v € L;, we have deg(v, L3_;) > (1 - ﬁ)ﬂ/g,i\ - Wloﬂfg,i] > 0.49n.

Hence the claim holds. 0
Claim 23. 0(G) < 0.26n.

Proof. Suppose, by contradiction, that §(G) > 0.26n. By Claim 22, we have
|S| = 23:1 |Vi\ Li| <0.002n. Then deg(v, L1UL2) > 0.26n—0.002n = 0.258n for
any v € V(G). Let V(Ky) = {v1,v2,v3,v4} as G contains a Ky. If {vy,v2} C L,
then there is a common neighbor u ¢ {vy,va, v3,v4} in L3_;, and {u, vy, va, v3,v4}
forms a copy of F. Hence each L;(i = 1,2) contains at most one vertex of
{v1,v2,v3,v4}. By symmetry, we may distinguish the following two cases.

Case 1. {v1, va} C S, v3 € L1, vg4 € La. Since deg(vy, L1 U La) > 0.258n,
by the average principle, we may assume that deg(vi, La) > 0.129n without loss
of generality. By Claim 22, we have |N(vi, Lo \ {va}) N N(vs, Lo \ {va})| >
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0.1297 4+ 0.49n — 1 — “/2‘ > 0. Let u € N(Ul, Lo \ {’1)4}) N N(’Ug, Lo \ {1}4}). Then
{v1,v2,v3,v4,u} forms a copy of F», a contradiction.

Case 2. {v1, va, v3} C S. If there exists a vertex in {vq, v, v3}, say vy, such
that N(vi, L1\ {va}) # 0 and N(v1, Lo\ {va}) # 0. Recall that deg(vy, L1 ULg) >
0.258n. Without loss of generality, we may assume that uy € N(vy, L1\ {vs4}) and
deg(v1, La) > 0.129n. By Claim 22, we have |N (v, Lo \{va}) N (uy, La\{v4})| >
0.129n 4 0.49n — |Va| — 1 > 0. Let ug € N(vi, Lo \ {va}) N N(u1, Lo \ {va}). But
then {v1,ve,vs,u1,us} forms a copy of Fs, a contradiction.

Hence each vertex in {v1, v2, v3} has no neighbors in one of L1 \{v4}, La\{v4}.
Then there are at least two of {v1,v2,vs}, say v1,ve, such that the neighbors of
them in L\ {v4} are all in Ly \ {va}. Recall that deg(v, L1 U L2) > 0.258n for any
vertex v of G. Then |N(vi, Ly \ {va}) N N(ve, L1\ {va})| > 0.516n — |L;|—1 > 0.
Let u € N(v1,L;1 \ {va}) N N(va, L1 \ {va}). But then {v1,v2,v3,v4,u} forms a
copy of Fy, a contradiction. Thus the claim holds. 0O

By Claim 23, there exists a vertex v € V(G) such that d(v) < 0.26n. If we
delete v from G, it will destroy at most 0.26n edges and at most one copy of Ky
as GG is Fy-free. Let G* = G — v. Then

(et +ema) - [ A5 ] ) = s

— (e(G*) — (@) + c(N(G*) — Na(G)) — W;DQJ N VFJ

2n — 2
>

—0.26n—c>023n+1

(n— 1)

for sufficiently large n. By Theorem 6, e(G*) < J + 1. This implies that

0.23n < cNy(G*). Let Ti be the vertex set of all disjoint K4 in G* and let
Ty = V(G*) \ Ti. Then we have 2222 < |T}| = 4N} (G*) < n. Since G is Fy-free,
it follows that the edges between any two K4’s are at most four, implying that

e(Ty) < 3|Tn| +4( ) By Theorem 6 we have e(T3) < L%J + 1. Note

that for any vertex in 7o and any copy of K4 in 717, there is at most one edge
between them. It follows that e(71, 1) < Ny(G*)|Tz| = %(n —1—|T1]). Hence,

S(G*) = €<T1> + €(T2) + 6(T1, TQ)

<gmi(F) ¢ [BE e By

n? T nT 2 Til(n —2n
ST | 1’ |41|+0(n2)§ ‘1‘(7)—1-

<(3- 0?) +on?),
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contradicting e(G*) > e(G) — 0.26n > L%J — o(n?) for sufficiently large n. The

proof of Lemma 21 is complete. [
Now we prove Theorem 8.

Proof of Theorem 8. Let G be an (£ + 1) - Fy-free graph on n vertices that
maximizes N, (G). We distinguish two cases.

Case 1. 3 <r < {+2. Let L be the smallest set in V(G) such that G’ = G—L
is Fy-free. Then |L| < ¢|F|. Define

L= {v eL|(40+2) Ky C G'N(w)N V(G')]}
and L2 =L \ Ll.
Claim 24. |L;| =¢.

Proof. Suppose first that |Li| > ¢+ 1, and let {v1,...,v41} € L. We can
recursively find ¢ + 1 disjoint copies of F such that each one is from G[{v;} U
(N(v))NV(G"))] fori =1,...,+1. Indeed, assume we have found j < ¢ disjoint
copies of Fy. Pick a vertex in L; we have not selected, say vj;1. By the definition
of L1, G'[N(vj41) N V(G')] contains at least 4¢ + 2 vertex disjoint edges, then
there are at least 4¢+2 —4; unused vertex disjoint edges in G'[N (v;j4+1) NV (G')].
Thus we can find the (j + 1)-th copy of F.

Suppose now that |L1| < ¢ — 1. Since G’ is Fy-free, by Theorem 6 we have
e(G') < LWJ + 1. By Theorem 7, the number of triangles in G’ is O(n).
Since G’ is Fy-free, it follows that any two K4’s in G’ cannot intersect, implying
that the number of the copies of Ky in G’ is O(n). Note that G’ is K5-free, the
r-cliques R in G — Lo can be divided to three cases.

e |[RNG'| < 1. The number of this kind of r-cliques is O(n).
e |[R N G’'| =2. The number of this kind of r-cliques is at most

-1 n—|L[)?
([ +1)-
e [RNG'| =3 or 4. The number of this kind of r-cliques is O(n).
For any vertex v € Lo, G'[N(v) N V(G")] is (4¢ + 2) - Ko-free by definition of
Lo. By Erdés-Gallai matching theorem, the number of edges in G'[N (v) NV (G')]

is O(n). Therefore, the number of r-cliques consisting of the vertex v, ¢ vertices
in V(G') and r — 1 — i vertices in L — v is O(n) for each i = 1,2,3,4. Then

N (G) < (f:;) {("]"LWJ +0(n)

<(,5) |5 s v - o)
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for sufficiently large n, contradicting the choice of G. Thus the claim holds.
Claim 25. |Ls| = 0.

Proof. Suppose not, and let v € Ly. By the definition of L, there is a copy, say
S, of F» containing v in G — (L \ {v}). Since there are exactly ¢ vertices in L;
from Claim 24, we can recursively find ¢ vertex disjoint copies of F» in G —V(5),
similarly as in the proof of Claim 24. Together these copies with S form ¢+ 1
vertex disjoint copies of Fs, a contradiction. Thus the claim holds. 0O

By Claims 24 and 25, we obtain that L = L.

Claim 26. ¢(G') < L%J

Proof. Suppose, otherwise, that e(G’) = L%J + 1 and G’ is isomorphic to

T5"(n — £) by Theorem 6. Clearly G’ is K4-free. Then

A (S BRI
)+ e-ae (1) [E5] o (Jre

for sufficiently large n, contradicting the choice of G. Thus the claim holds.

By Claim 26 and Lemma 21, we have e(G’) + cNy(G') < {%J for any
constant ¢ and sufficiently large n. Therefore by Lemma 19 we have

NH(G)

<(D)+ (L )m-0+ (L) (L e+ (1, Jwaen
= <f> + (r f 1) (n—10)+ (7"22)(6(0') + aN3(G') + e(G) + coN3(G))

< (f) + (Tf1>(n—e)+ (752) ( {(”;E)QJ VYe(n—t—4)+ V”;OQJ )
N AN S AN
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where ¢; = 2(Tf3)/(£2) and cp = 2(rf4)/(£2), and the equality holds if and

only if G = K,V T5(n—1{).

Case 2. r > £+ 3. By a similar analysis as in Claim 24, we can obtain that
|Li| < ¢, and the number of copies of r-cliques containing vertices in Ly is O(n).
Recall that the number of copies of K3’s and K4's in G’ is O(n). Note that G’ is
Kx-free. Then

| L1

N (G — Ly) < (TL1|3)N3(G/) + (T 4

>N4(G’) < O(n).

Hence, ex(n, K,,({ + 1) - F3) = O(n). The proof of Theorem 8 is complete.  m
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