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Abstract

Given graphs T and F , the generalized Turán number ex(n, T, F ) is the
maximum possible number of copies of T in an F -free graph on n vertices.
Let Wn be the wheel graph obtained from a cycle Cn−1 and an extra vertex
v by joining v and all vertices of Cn−1. Let ℓ · F be the graph consisting
of ℓ vertex-disjoint copies of F . A graph consisting of two triangles which
intersect in exactly one common vertex is called a bowtie and denoted by F2.

In this paper, we determine the exact values of ex(n,Kr, (ℓ+1) ·W2k) for
4 ≤ r ≤ ℓ+ 3, and ex(n,Kr, (ℓ+ 1) · F2) for 3 ≤ r ≤ ℓ+ 2, and characterize
all their extremal graphs.
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1. Introduction

We basically follow the most common graph-theoretical terminology and notation
and for concepts not defined here we refer the reader to [2]. All graphs in this
paper are simple, finite and undirected.

Let G = (V,E) be a graph with vertex set V (G) and edge set E(G). We
use e(G) to denote the number of edges of G and use d(v) to denote the degree
of v. For S ⊆ V (G), let G[S] denote the subgraph of G induced by S, and let
G − S denote the subgraph induced by V (G)\S. For simplicity, we write E(S)
and e(S) for E(G[S]) and e(G[S]), respectively. For v ∈ V (G), let N(v, S) denote
the set of neighbors of v in S, and let deg(v, S) = |N(v, S)|. Let G[S, T ] denote
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the bipartite subgraph induced by the edges with one end in S and the other in
T , and let e(S, T ) = e(G[S, T ]).

For any two vertex disjoint graphs G1 and G2, let G1 ∨G2 denote the graph
obtained from G1∪G2 by adding all edges between V (G1) and V (G2). Let Nr(G)
denote the number of r-cliques in G. A graph G is called edge-critical if there
exists an edge e in G such that χ(G − e) < χ(G), where χ(G) is the chromatic
number of G. Let Tr(n) denote the Turán graph, the complete r-partite graph
on n vertices with r partition classes, each of size

⌊
n
r

⌋
or

⌈
n
r

⌉
.

For a graph F , we say a graph G is F -free if G does not contain a copy of F
as a subgraph. The Turán number of F , denoted by ex(n, F ), is the maximum
possible number of edges in an F -free graph on n vertices. In 1941, Turán [17]
proved that Tr(n) is the unique extremal graph of ex(n,Kr+1). In 2015, Füredi
and Gunderson determined the Turán number of odd cycles.

Theorem 1 (Füredi and Gunderson [6]). For k ≥ 2 and n ≥ 4k − 2,

ex(n,C2k+1) =

⌊
n2

4

⌋
.

Let T, F be two graphs. The generalized Turán number ex(n, T, F ) is the
maximum possible number of copies of T in an F -free graph on n vertices. The
study of generalized Turán problems was initiated by Alon and Shikheman [1],
there are many results focus on the generalized Turán problems, see e.g. [9, 10,
13, 22].

Let ℓ·F be the graph consisting of ℓ vertex-disjoint copies of F . In 1959, Erdős
and Gallai [4] determined the Turán number of matchings, i.e., ex(n, (ℓ+1)·K2) =
max{

(
2ℓ+1
2

)
, (n− ℓ)ℓ+

(
ℓ
2

)
} for n ≥ 2ℓ+1. Recently in [11], Hou, Yang and Zeng

determined the value of ex(n,K3, (ℓ+ 1) ·C2k+1) for ℓ ≥ 1, k ≥ 1. Zhang, Chen,
Győri and Zhu [20] determined the value of ex(n,Kr, (ℓ+1) ·Kr) for r ≥ 3, ℓ ≥ 1.

Let k ≥ 2 and p1, . . . , pk ≥ 1 be integers. The generalized theta graph
Θ(p1, . . . , pk) consists of a pair of end vertices joined by k internally disjoint
paths of lengths p1, . . . , pk, respectively. Recently, Gao, Wu and Xue [7] deter-
mined the value of ex(n,Kr, (ℓ + 1) · F ) for the edge-critical generalized theta
graphs F . Specially, C2k+1 is an edge-critical generalized theta graph.

Let Wn be the wheel graph obtained from a cycle Cn−1 and an extra vertex v
by joining v and all vertices of Cn−1. If n is odd then we call Wn odd wheel, and
we call Wn even wheel if n is even. In 2013, Dzido determined the exact value of
the Turán problem of even wheels.

Theorem 2 (Dzido [3]). For k ≥ 3 and n ≥ 6k − 10,

ex(n,W2k) =

⌊
n2

3

⌋
.
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In 2021, Yuan [19] determined the exact value of the Turán number for odd
wheel. Xiao and Zamora [18] determined the value of ex(n, (ℓ + 1) · W2k+1).
Recently, Hou, Li, Liu, Yuan and Zhang [12] determined the value of ex(n, (ℓ +
1) · F ) for edge-critical graph F with χ(F ) ≥ 3, which also implies the value of
ex(n, (ℓ+ 1) ·W2k) as the even wheel W2k is 4-edge-critical.

In 2020, Ma and Qiu extended the result of Simonovits [16] by considering
the generalized Turán number of edge-critical graphs.

Theorem 3 (Ma and Qiu [14]). Let F be an edge-critical graph with χ(F ) =
r + 1 > m ≥ 2 and n be sufficiently large. Then the Turán graph Tr(n) is the
unique graph attaining the maximum number of Km’s in an F -free graph on n
vertices.

In the same paper, they also prove a stability result.

Theorem 4 (Ma and Qiu [14]). Let F be a graph with χ(F ) = r + 1 > m ≥ 2.
If G is an n-vertex F -free graph with Nm(G) ≥ Nm(Tr(n))− o(nm), then G can
be obtained from Tr(n) by adding and deleting o(n2) edges.

In this paper, we further study the function of ex(n,Kr, (ℓ+ 1) · F ) by con-
sidering the case F = W2k. Our first main result is the following.

Theorem 5. Let ℓ ≥ 1, k ≥ 2, and n be sufficiently large. If 4 ≤ r ≤ ℓ+ 3, then

ex(n,Kr, (ℓ+ 1) ·W2k) =

(
ℓ

r

)
+

(
ℓ

r − 1

)
(n− ℓ)

+

(
ℓ

r − 2

)⌊
(n− ℓ)2

3

⌋
+

(
ℓ

r − 3

)
N3(T3(n− ℓ)),

and Kℓ ∨ T3(n− ℓ) is the unique extremal graph.

If r ≥ ℓ+ 4, then ex(n,Kr, (ℓ+ 1) ·W2k) = O
(
n2+ 1

k−1
)
.

A graph on 2k+1 vertices consisting of k triangles which intersect in exactly
one common vertex is called a k-fan and denoted by Fk. Specially, the F2 is also
called a bowtie. In 1995, Erdős, Füredi, Gould and Gunderson determined the
value of ex(n, Fk) and characterize the extremal graphs. We only list the case
k = 2 and its extremal graph for simplicity.

Theorem 6 (Erdős, Füredi, Gould and Gunderson [5]). For n ≥ 5,

ex(n, F2) =

⌊
n2

4

⌋
+ 1.

The unique extremal graph is T+
2 (n) which is obtained from T2(n) by adding one

edge.
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In 1976, Erdős and Sós determined the value of ex(n,K3, F2).

Theorem 7 (Erdős and Sós [15]). For all n,

ex(n,K3, F2) =


n, for n ≡ 0 (mod 4),

n− 1, for n ≡ 1 (mod 4),
n− 2, for n ≡ 2 or 3 (mod 4).

Recently, Zhu, Chen, Gerbner, Győri, and Karim [21] extended it and de-
termined the value of ex(n,K3, Fk) for n ≥ 4k3 and k ≥ 3. In this paper, we
determine the value of ex(n,Kr, (ℓ+ 1) · F2) for r ≥ 3, which is our second main
result.

Let T ∗
2 (n) be the graph obtained from a bipartite Turán graph T2(n) by

adding one edge to each its partition set, say v1v2 and u1u2, and then deleting
the edges v1u2 and v2u1.

Theorem 8. Let ℓ ≥ 1 and n be sufficiently large. If 3 ≤ r ≤ ℓ+ 2, then

ex(n,Kr, (ℓ+ 1) · F2) =

(
ℓ

r

)
+

(
ℓ

r − 1

)
(n− ℓ)

+

(
ℓ

r − 2

)⌊
(n− ℓ)2

4

⌋
+

(
ℓ

r − 3

)
(n− ℓ− 4),

and Kℓ ∨ T ∗
2 (n− ℓ) is the unique extremal graph.

If r ≥ ℓ+ 3, then ex(n,Kr, (ℓ+ 1) · F2) = O(n).

In Section 2, we prove Theorem 5. In Section 3, we prove Theorem 8.

2. Proof of Theorem 5

To prove Theorem 5, we need the following results.

Theorem 9 (Gerbner, Methuku and Vizer [8]).

(i) For any r ≥ 3 and k ≥ 2, we have ex(n,Kr, C2k+1) = O
(
n1+ 1

k

)
.

(ii) If r ≤ ℓ, then ex(n,Kr, ℓ · C2k+1) = Θ(n2). If r > ℓ + 1, then ex(n,Kr, ℓ ·
C2k+1) = O

(
n1+ 1

k

)
.

Lemma 10. For any r ≥ 4 and k ≥ 2, we have

ex
(
n,Kr,W2k

)
= O

(
n2+ 1

k−1

)
.
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Proof. Let G be a W2k-free graph on n vertices. For any vertex v ∈ V (G),
G[N(v)] does not contain a cycle on 2k − 1 vertices. Then

Nr(G) =

∑
v Nr−1(G[N(v)])

r
≤

∑
v ex(d(v),Kr−1, C2k−1)

r

≤ n

r
ex

(
n,Kr−1, C2k−1

)
.

By Theorem 9(i), we have Nr(G) = O
(
n2+ 1

k−1
)
as required.

Lemma 11. Let r ≥ 4, k ≥ 2 and c be a constant. Assume that G is a W2k-free
graph on n vertices. For sufficiently large n, we have

N3(G) + cNr(G) ≤ N3(T3(n)),

and the equality holds if and only if G is isomorphic to T3(n).

Proof. Let Gn be a W2k-free graph on n vertices such that N3(Gn) + cNr(Gn)
is maximum. By Lemma 10, we have Nr(Gn) = o(n3). Since T3(n) is W2k-free
and Nr(T3(n)) = 0 and by the choice of Gn, N3(T3(n)) ≤ N3(Gn) + cNr(Gn), it
follows that N3(Gn) ≥ N3(T3(n)) − o(n3). By Theorem 4, there is a spanning
tripartite subgraph (say G′

n) of Gn which is almost balanced by deleting o(n2)
edges. Let (V1, V2, V3) be the partition of G′

n.

Define

f(n) = N3(Gn) + cNr(Gn)−N3(T3(n)).(1)

Clearly f(n) ≥ 0. We will show that if Gn contains a Kr with r ≥ 4, then
f(n− 1)− f(n) > 1 for sufficiently large n.

For all distinct i, j ∈ {1, 2, 3}, let Lj
i =

{
v ∈ Vi | deg(v, Vj) ≥

(
1− 1

100k

)
|Vj |

}
.

For all distinct i, j, t ∈ {1, 2, 3}, let Li =
{
v ∈ Vi | deg(v, Vj) ≥

(
1− 1

100k

)
|Vj | and

deg(v, Vt) ≥
(
1− 1

100k

)
|Vt|

}
. Let L = L1 ∪ L2 ∪ L3, and let S = V (Gn) \ L.

Claim 12. For different i, j ∈ {1, 2, 3} and n ≥ n1, where n1 is a sufficiently
large integer, |Lj

i | ≥
(
1− 1

120

)
|Vi|.

Proof. By contradiction, without loss of generality, we may suppose that |L2
1| =

x|V1| with x < 1 − 1
120 . Since deleting an edge of Gn can destroy at most n − 2

triangles, it follows that deleting o(n2) edges will destroy o(n3) triangles. Recall
that N3(Gn) ≥ N3(T3(n))− o(n3). Thus

N3(G
′
n) ≥ N3(Gn)− o(n3) ≥ N3(T3(n))− o(n3).
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On the other hand,

N3(G
′
n) < |L2

1||V2||V3|+
(
|V1| − |L2

1|
)(

1− 1

100k

)
|V2||V3|

=

(
x+ (1− x)

(
1− 1

100k

))
|V1||V2||V3|

≤
(
1− 1

120 · 100k

)
n3

27
+ o(n3),

a contradiction for n ≥ n1, where n1 is a large integer. Thus the claim holds.

It follows from Claim 12 that |Li| =
∣∣Lj

i∩Lt
i

∣∣ ≥ ∣∣Lj
i

∣∣+∣∣Lt
i

∣∣−|Vi| ≥
(
1− 1

60

)
|Vi|.

This implies that |S| ≤ 1
60(|V1|+ |V2|+ |V3|) = n

60 .

Claim 13. For different i, j, t ∈ {1, 2, 3} and n ≥ max{4k, n1}, and for any set
T ⊂ Li ∪ Lj with |T | ≤ 2k, it holds that

∣∣⋂
x∈T N(x, Lt)

∣∣ ≥ k.

Proof. By the definition of T , each vertex in T has at most 1
100k |Vt| non-

neighbors in Lt. Then∣∣∣∣∣⋂
x∈T

N(x, Lt)

∣∣∣∣∣ ≥ |Lt| −
2k

100k
|Vt| ≥

(
1− 1

60

)
|Vt| −

1

50
|Vt| ≥ k

for n ≥ 4k.

Claim 14. For each i ∈ {1, 2, 3} and n ≥ max{4k, n1}, Li is an independent set.

Proof. Suppose not, we may assume that x1x2 is an edge in Gn[L1] without
loss of generality. By Claim 13, we assume that {u1, . . . , uk−1} ⊆ N(x1, L2) ∩
N(x2, L2). By Claim 13, we further assume that {v1, . . . , vk−2}⊆

(⋂k−1
i=1 N(ui, L1)

)
\{x1, x2}. Thus x1u1v1 · · · vk−2uk−1x2x1 is a cycle of length 2k−1. By Claim 13,
we choose a common neighbor y of u1, . . . , uk−1, v1, . . . , vk−2, x1, x2 in L3, but
then the set {u1, . . . , uk−1, v1, . . . , vk−2, x1, x2, y} forms a copy of W2k with cen-
ter y, a contradiction. Thus the claim holds.

Claim 15. δ(Gn) <
3n
5 .

Proof. Suppose, by contradiction, that δ(Gn) ≥ 3n
5 . Recall that |S| ≤ n

60 . Thus
for any vertex v in Gn we have deg(v, L) ≥ 3n

5 − n
60 = 7n

12 . Let {v1, v2, v3, v4} be
the vertex set of a K4 in Gn as Gn contains a Kr with r ≥ 4. By Claim 14, each
Li(i = 1, 2, 3) is an independent set of Gn. By symmetry, we may distinguish the
following four cases.

Case 1. v1 ∈ S, v2 ∈ L1, v3 ∈ L3, v4 ∈ L2. By Claim 13, we assume that
{y1, . . . , yk−2} ⊆ N(v2, L3) ∩N(v4, L3) \ {v3}. Set T = {v3, v4, y1, . . . , yk−2}. By
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Claim 13, we further assume that {x1, . . . , xk−2} ⊆ (
⋂

v∈T N(v, L1)) \ {v2}. But
then the set T ∪ {x1, . . . , xk−2, v1, v2} forms a copy of W2k with center v4 (see
Figure 1, the thick solid lines form the cycle C2k−1 in W2k), a contradiction.

v2 x1 . . . xk−2

v1

v3S y1 . . .

v4

yk−2

L1

L2

L3

Figure 1. The illustration of Case 1.

Case 2. {v1, v2} ⊆ S, v3 ∈ L1, v4 ∈ L2. Recall that deg(v, L) ≥ 7n
12 for

any vertex v in Gn. This implies that deg(v, L1 ∪ L2) ≥ 7n
12 − ⌈n3 ⌉ > n

5 for each
v ∈ S. Without loss of generality, we may further assume that deg(v1, L1) >

n
10 .

Note that deg(v4, L1) ≥
(
1 − 1

100k

)
|V1| − 1

60 |V1| ≥
(
1 − 1

30

) ⌊
n
3

⌋
. It follows that

v1 and v4 have a common neighbor x1 in L1. By Claim 13, we assume that
{y1, . . . , yk−2} ⊆ N(x1, L3) ∩ N(v3, L3) ∩ N(v4, L3). Set T = {v4, y1, . . . , yk−2}.
By Claim 13, we further assume that {x2, . . . , xk−2} ⊆

(⋂
v∈T N(v, L1)

)
\{v3, x1}.

But then the set T ∪ {x1, . . . , xk−2, v1, v2, v3} forms a copy of W2k with center v4
(see Figure 2, the thick solid lines form the cycle C2k−1 in W2k), a contradiction.

v1

v2

v3

v4

x1 x2 . . . xk−2

S y1 y2 yk−2. . .

L1

L2

L3

Figure 2. The illustration of Case 2.

Case 3. {v1, v2, v3} ⊆ S, v4 ∈ L. Without loss of generality, we may assume
that v4 ∈ L2. Note that for each vi(i = 1, 2, 3) we have deg(vi, L1 ∪ L3) > n

5 .
Without of loss of generality, we may further assume that deg(v1, L1) >

n
10 and



8 S.-P. Wang and Z.-Q. Zhang

deg(v2, L1) >
n
10 . Note that deg(v4, L1) ≥ (1− 1

100k )|V1| − 1
60 |V1| ≥

(
1− 1

30

) ⌊
n
3

⌋
.

It follows that v1 and v4 have a common neighbor x1 in L1. Similarly, v2 and v4
have a common neighbor x2 in L1. By Claim 13, we assume that {y1, . . . , yk−2} ⊆
N(x1, L3) ∩N(x2, L3) ∩N(v4, L3). Set T = {v4, y1, . . . , yk−2}. By Claim 13, we
further assume that {x3, . . . , xk−1} ⊆

(⋂
v∈T N(v, L1)

)
\ {x1, x2}. But then the

set T ∪ {x1, . . . , xk−1, v1, v2} forms a copy of W2k with center v4 (see Figure 3,
the thick solid lines form the cycle C2k−1 in W2k), a contradiction.

v1

v2

v3

v4

x1 . . . xk−1

S y1 y2 yk−2

x2

. . .

x3
L1

L2

L3

Figure 3. The illustration of Case 3.

Case 4. {v1, v2, v3, v4} ⊆ S. Since each vi(i = 1, 2, 3, 4) has degree at least 7n
12

in L, it follows that
∑4

i=1 deg(vi, L) ≥ 7n
3 . If every vertex in L has at most

two neighbors in {v1, v2, v3, v4}, then
∑4

i=1 deg(vi, L) < 2n, a contradiction.
Hence there exists a vertex x in L which is adjacent to at least three vertices
in {v1, v2, v3, v4}. We may assume that the set {x, v1, v2, v3} forms a copy of K4,
and by Case 3 we are done. Thus the claim holds.

By Claim 15, there exists a vertex v ∈ Gn such that d(v) < 3n
5 . Since Gn is

W2k-free, Gn[N(v)] is C2k−1-free. By Theorem 1, the number of edges inGn[N(v)]
is at most 1

4(d(v))
2. By Theorem 9(i), the number of copies of (r − 1)-cliques in

Gn[N(v)] is O
(
(d(v))1+

1
k−1

)
≤ n2

50c for all n ≥ n2, where n2 is a sufficiently large

integer. If we delete v from Gn, it will destroy at most 1
4(d(v))

2 triangles and n2

50c
copies of r-cliques. Let G′ = Gn − v. By the definition of f(n), we have

f(n− 1)− f(n)

≥ N3(G
′) + cNr(G

′)−N3(T3(n− 1))− (N3(Gn) + cNr(Gn)−N3(T3(n)))

≥
⌊n
3

⌋ ⌊n
3

⌋
− (N3(Gn)−N3(G

′))− (cNr(Gn)− cNr(G
′))

≥
⌊n
3

⌋ ⌊n
3

⌋
− 1

4
(
3n

5
)2 − n2

50
> 1

for all n ≥ n3, where n3 is a sufficiently large integer.
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Let n4 = max{n1, 4k, n2, n3}. For n ≥ n4, we conclude that if Gn contains a
Kr, then

f(n− 1)− f(n) > 1.(2)

Claim 16. For any positive integer n′ ≥ n4, if Gn′ is Kr-free, then Gn is Kr-free
for all n ≥ n′.

Proof. Suppose not, and let n∗ be the smallest integer after n′ satisfies Gn∗

contains a Kr. Hence Gn∗−1 is Kr-free. By (2) we have

0 ≤ f(n∗) < f(n∗ − 1)− 1 = N3(Gn∗−1)−N3(T3(n
∗ − 1))− 1.

Since W2k is 4-edge-critical, we have N3(Gn∗−1) ≤ N3(T3(n
∗−1)) by Theorem 3,

then f(n∗) < 0, a contradiction. Thus the claim holds.

Then there exists an integer n5 ≥ n4 such that Gn is Kr-free. Otherwise, Gi

contains a Kr for each i ≥ n4. Let N >
(
n4

3

)
+ c

(
n4

r

)
+ n4. Then by (2) and (1),

0 ≤ f(N) < f(N − 1)− 1 < f(N − 2)− 2 < · · · < f(n4)− (N − n4)

<

(
n4

3

)
+ c

(
n4

r

)
− (N − n4) < 0,

a contradiction. Thus by Claim 16, Gn is Kr-free for n ≥ n5. Since W2k is
4-edge-critical, by Theorem 3 we have N3(Gn) + cNr(Gn) ≤ N3(T3(n)) for all
n ≥ n5, and the equality holds if and only if Gn is isomorphic to T3(n). This
completes the proof of Lemma 11.

Now we prove Theorem 5.

Proof of Theorem 5. Let G be an (ℓ + 1) ·W2k-free graph on n vertices that
maximizes Nr(G). We distinguish two cases.

Case 1. 4 ≤ r ≤ ℓ+3. Let L be a smallest set in V (G) such that G′ = G−L
is W2k-free. Then |L| ≤ ℓ|W2k|. Define

L1 =
{
v ∈ L | ((2k − 1)ℓ+ 1) · C2k−1 ⊆ G′[N(v) ∩ V (G′)]

}
and L2 = L \ L1.

Claim 17. |L1| = ℓ.

Proof. Suppose first that |L1| ≥ ℓ + 1, and let {v1, . . . , vℓ+1} ⊆ L1. We can
recursively find ℓ+ 1 disjoint copies of W2k such that each one is from G[{vi} ∪
(N(vi) ∩ V (G′))] for i = 1, . . . , ℓ + 1. Indeed, assume we have found j ≤ ℓ
disjoint copies of W2k. Pick a vertex in L1 we have not selected, say vj+1. By the
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definition of L1, G
′[N(vj+1)∩V (G′)] contains at least (2k−1)ℓ+1 vertex disjoint

copies of C2k−1, then there are at least (2k − 1)ℓ + 1 − (2k − 1)j unused vertex
disjoint copies of C2k−1 in G′[N(vj+1) ∩ V (G′)]. Thus we can find the (j + 1)-th
copy of W2k.

Suppose now that |L1| ≤ ℓ−1. Since G′ is W2k-free, by Theorem 3, N3(G
′) ≤

(n−|L|)3
27 + o(n3). Then the r-cliques R in G− L2 can be divided to three cases.

• |R ∩G′| ≤ 2. The number of this kind of r-cliques is O(n2).

• |R ∩ G′| = 3. The number of this kind of r-cliques is at most
(
ℓ−1
r−3

) (n−|L|)3
27 +

o(n3).

• |R∩G′| ≥ 4. The number of this kind of r-cliques is O(n2+ 1
k−1 ) by Lemma 10.

For any vertex v ∈ L2, G
′[N(v) ∩ V (G′)] is ((2k − 1)ℓ + 1) · C2k−1-free by

definition of L2. By Theorem 9(ii), the number of i-cliques in G′[N(v) ∩ V (G′)]
is O(n2). Hence, the number of r-cliques consisting of the vertex v, i vertices in
V (G′) and r − 1− i vertices in L− v is O(n2). Then

Nr(G) ≤
(
ℓ− 1

r − 3

)
(n− |L|)3

27
+ o(n3)

<

(
ℓ

r − 3

)
(n− ℓ)3

27
+ o(n3) = Nr(Kℓ ∨ T3(n− ℓ))

for sufficiently large n, contradicting the choice of G. Thus the claim holds.

Claim 18. |L2| = 0.

Proof. Suppose not, and let v ∈ L2. By the definition of L, there is a copy, say
S, of W2k containing v in G− (L \ {v}). Since there are exactly ℓ vertices in L1

from Claim 17, we can recursively find ℓ vertex disjoint copies of W2k in G−V (S)
similarly as in the proof of Claim 17. Together these copies with S form ℓ + 1
vertex disjoint copies of W2k, a contradiction. Thus the claim holds.

By Claims 17 and 18, we have L = L1. By Theorem 2 and Lemma 11, we have

Nr(G)

≤
(
ℓ

r

)
+

(
ℓ

r − 1

)
(n− ℓ) +

(
ℓ

r − 2

)
e(G′) +

(
ℓ

r − 3

)
N3(G

′) +
r−4∑
i=0

(
ℓ

i

)
Nr−i(G

′)

=

(
ℓ

r

)
+

(
ℓ

r − 1

)
(n− ℓ) +

(
ℓ

r − 2

)
e(G′) +

(
ℓ

r−3

)
r − 3

r−4∑
i=0

(N3(G
′) + ciNr−i(G

′))

≤
(
ℓ

r

)
+

(
ℓ

r − 1

)
(n− ℓ) +

(
ℓ

r − 2

)⌊
(n− ℓ)2

3

⌋
+

(
ℓ

r − 3

)
N3(T3(n− ℓ))

= Nr(Kℓ ∨ T3(n− ℓ)),
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where ci = (r−3)
(
ℓ
i

)
/
(

ℓ
r−3

)
and the equality holds if and only if G = Kℓ∨T3(n−ℓ).

Case 2. r ≥ ℓ+4. By the similar analysis as in Claim 17, we can obtain that
|L1| ≤ ℓ and the number of copies of r-cliques containing vertices in L2 is O(n2).
Since r ≥ ℓ+4, it follows that r− i ≥ 4 for each i ∈ {0, . . . , |L1|}. By Lemma 10,
we obtain that

Nr(G−L2) ≤
|L1|∑
i=0

(
|L1|
i

)
Nr−i(G

′) ≤
|L1|∑
i=0

(
|L1|
i

)
ex(n,Kr−i,W2k) = O

(
n2+ 1

k−1

)
.

Hence, ex(n,Kr, (ℓ + 1) · W2k) = O(n2+ 1
k−1 ). Thus the proof of Theorem 5 is

complete.

3. Proof of Theorem 8

In this section we will prove Theorem 8. First we prove the following useful
lemmas.

The book graph Bt is the graph consisting of t − 2 ≥ 1 triangles, all sharing
one edge. We call the vertices of degree two of a book graph the page vertices.

Lemma 19. Let c > 0 be a constant and let G be an F2-free graph on n vertices.
For sufficiently large n, we have

e(G) + cN3(G) ≤
⌊
n2

4

⌋
+ c(n− 4),

and the equality holds if and only if G is isomorphic to T ∗
2 (n).

Proof. Assume that G is an F2-free graph on n vertices such that e(G) +

cN3(G) ≥
⌊
n2

4

⌋
+c(n−4). By Theorem 7 we have N3(G) ≤ n. If e(G) =

⌊
n2

4

⌋
+1,

then by Theorem 6, G is isomorphic to T+
2 (n). But then e(G) + cN3(G) ≤⌊

n2

4

⌋
+1+ c

⌈
n
2

⌉
<

⌊
n2

4

⌋
+ c(n− 4) for sufficiently large n, a contradiction. Thus⌊

n2

4

⌋
− 4c ≤ e(G) ≤

⌊
n2

4

⌋
, n− 4 ≤ N3(G) ≤ n.(3)

Claim 20. G is K4-free.

Proof. Suppose, otherwise, that G contains a K4. Set V (K4) = S. Since G− S

is F2-free, by Theorem 6, e(G − S) ≤
⌊
(n−4)2

4

⌋
+ 1. Since e(G) ≥

⌊
n2

4

⌋
− 4c, it

follows that e(S, V (G) \S) ≥
⌊
n2

4

⌋
− 4c−

(⌊
(n−4)2

4

⌋
+ 1

)
− 6 = 2n− 11− 4c. On

the other hand, every vertex in G− S is adjacent to at most one vertex in S as
G is F2-free, but then e(S, V (G) \ S) ≤ n− 4, a contradiction.
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Since G is F2-free, any two books B1, B2 of G satisfy that B1 ⊆ B2 or
B2 ⊆ B1 or V (B1) ∩ V (B2) = ∅. Let B1, . . . , Bt be all vertex disjoint book
graphs in G such that each Bi has page vertices as large as possible. Since each
Bi(i = 1, . . . , t) contains exactly |Bi| − 2 triangles and by Claim 20, B1 ∪ · · · ∪Bt

contains exactly
∑t

i=1 |Bi|− 2t triangles. It follows that N3(G) =
∑t

i=1 |Bi|− 2t.
Since

∑t
i=1 |Bi| ≤ n and by (3), we have t ≤ 2.

If t = 1, then by Claim 20, e(B1) = 2|B1| − 3. By the choice of Bi, all
triangles in G are contained in B1. Since N3(G) ≥ n− 4, G−V (B1) has at most
two vertices, it follows that e(G) ≤ 2|B1| − 3 + 2|B1|+ 1 ≤ 4n− 2, contradicting
(3).

Thus we have t = 2. Then B1 ∪ B2 contains at most n − 4 triangles. By
(3) we obtain that N3(G) = n − 4 and |B1| + |B2| = n. Recall that e(G) +

cN3(G) ≥
⌊
n2

4

⌋
+ c(n − 4). Then e(G) =

⌊
n2

4

⌋
. Let V (B1) = {x1, x2} ∪ S1 and

V (B2) = {y1, y2} ∪S2, where Si is the set of page vertices of Bi. Clearly |Si| ≥ 2
for each i = 1, 2. Since G is K4-free, we have e(B1) + e(B2) = 2n− 6. Since G is
F2-free, it follows that e({x1, x2}, {y1, y2}) ≤ 2. Thus

(4)

e({x1, x2}, S2) + e({y1, y2}, S1) + e(S1, S2)

= e(G)− (e(B1) + e(B2))− e({x1, x2}, {y1, y2}) ≥
⌊
n2

4

⌋
− (2n− 6)− 2.

Note that |S1|+ |S2| = n−4. It follows that e(S1, S2) ≤
⌊
(n−4)2

4

⌋
=

⌊
n2

4

⌋
−2n+4

and the equality holds if and only if |S1| is almost equal to |S2|. We further
claim that e({x1, x2}, S2) + e({y1, y2}, S1) = 0. Otherwise, let z ∈ S2 such that
x1z ∈ E(G) without loss of generality. Since G is F2-free, z is non-adjacent to
any of S1, it follows that

e({x1, x2}, S2) + e({y1, y2}, S1) + e(S1, S2)

≤
⌊
n2

4

⌋
− 2n+ 4− |S1|+ 1 ≤

⌊
n2

4

⌋
− 2n+ 3,

contradicting (4). Hence G is isomorphic to T ∗
2 (n). The proof of Lemma 19 is

complete.

Lemma 21. Let c be a constant, and let G be an F2-free graph on n vertices
such that G contains a K4. For sufficiently large n, we have

e(G) + cN4(G) <

⌊
n2

4

⌋
.

Proof. Let G be an F2-free graph on n vertices such that K4 ⊆ G and e(G) +

cN4(G) is maximum. It suffices to show e(G)+cN4(G) <
⌊
n2

4

⌋
. By contradiction,
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suppose that e(G) + cN4(G) ≥
⌊
n2

4

⌋
. Define f(n) = e(G) + cN4(G) −

⌊
n2

4

⌋
.

Then f(n) ≥ 0. Since G is F2-free, it follows that any two K4’s in G cannot
intersect, implying that the number of the copies of K4 in G is at most

⌊
n
4

⌋
.

Thus e(G) ≥
⌊
n2

4

⌋
−O(n). By Theorem 4, G has a bipartite spanning subgraph

G′ which is almost balanced by deleting o(n2) edges. Then e(G′) ≥
⌊
n2

4

⌋
−o(n2).

Let (V1, V2) be the partition of G′. Define

L1 =

{
v ∈ V1 | deg(v, V2) ≥

(
1− 1

1000

)
|V2|

}
,

L2 =

{
v ∈ V2 | deg(v, V1) ≥

(
1− 1

1000

)
|V1|

}
,

and S = (V1 \ L1) ∪ (V2 \ L2).

Claim 22. For each i = 1, 2 and n ≥ n1, where n1 is a sufficiently large integer,
|Li| ≥

(
1− 1

500

)
|Vi|. Consequently, for each v ∈ Li we have deg(v, L3−i) ≥ 0.49n.

Proof. By contradiction, suppose that |L1| = x|V1| with x < 1 − 1
500 without

loss of generality. Then

e(G′) < |L1||V2|+ (|V1| − |L1|)
(
1− 1

1000

)
|V2|

=

(
x+ (1− x)

(
1− 1

1000

))
|V1||V2| ≤

(
1− 1

500× 1000

)
n2

4
+ o(n2),

contradicting e(G′) ≥
⌊
n2

4

⌋
− o(n2) for n ≥ n1, where n1 is a large integer. Thus

|Li| ≥
(
1− 1

500

)
|Vi| for each i = 1, 2.

For each v ∈ Li, we have deg(v, L3−i) ≥
(
1− 1

1000

)
|V3−i| − 1

500 |V3−i| ≥ 0.49n.
Hence the claim holds.

Claim 23. δ(G) < 0.26n.

Proof. Suppose, by contradiction, that δ(G) ≥ 0.26n. By Claim 22, we have
|S| =

∑2
i=1 |Vi\Li| ≤ 0.002n. Then deg(v, L1∪L2) ≥ 0.26n−0.002n = 0.258n for

any v ∈ V (G). Let V (K4) = {v1, v2, v3, v4} as G contains a K4. If {v1, v2} ⊆ Li,
then there is a common neighbor u /∈ {v1, v2, v3, v4} in L3−i, and {u, v1, v2, v3, v4}
forms a copy of F2. Hence each Li(i = 1, 2) contains at most one vertex of
{v1, v2, v3, v4}. By symmetry, we may distinguish the following two cases.

Case 1. {v1, v2} ⊆ S, v3 ∈ L1, v4 ∈ L2. Since deg(v1, L1 ∪ L2) ≥ 0.258n,
by the average principle, we may assume that deg(v1, L2) ≥ 0.129n without loss
of generality. By Claim 22, we have |N(v1, L2 \ {v4}) ∩ N(v3, L2 \ {v4})| ≥
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0.129n+ 0.49n− 1− |V2| > 0. Let u ∈ N(v1, L2 \ {v4}) ∩N(v3, L2 \ {v4}). Then
{v1, v2, v3, v4, u} forms a copy of F2, a contradiction.

Case 2. {v1, v2, v3} ⊆ S. If there exists a vertex in {v1, v2, v3}, say v1, such
that N(v1, L1\{v4}) ̸= ∅ and N(v1, L2\{v4}) ̸= ∅. Recall that deg(v1, L1∪L2) ≥
0.258n. Without loss of generality, we may assume that u1 ∈ N(v1, L1\{v4}) and
deg(v1, L2) ≥ 0.129n. By Claim 22, we have |N(v1, L2\{v4})∩N(u1, L2\{v4})| ≥
0.129n+ 0.49n− |V2| − 1 > 0. Let u2 ∈ N(v1, L2 \ {v4}) ∩N(u1, L2 \ {v4}). But
then {v1, v2, v3, u1, u2} forms a copy of F2, a contradiction.

Hence each vertex in {v1, v2, v3} has no neighbors in one of L1\{v4}, L2\{v4}.
Then there are at least two of {v1, v2, v3}, say v1, v2, such that the neighbors of
them in L\{v4} are all in L1 \{v4}. Recall that deg(v, L1∪L2) ≥ 0.258n for any
vertex v of G. Then |N(v1, L1 \ {v4})∩N(v2, L1 \ {v4})| ≥ 0.516n− |L1| − 1 > 0.
Let u ∈ N(v1, L1 \ {v4}) ∩ N(v2, L1 \ {v4}). But then {v1, v2, v3, v4, u} forms a
copy of F2, a contradiction. Thus the claim holds.

By Claim 23, there exists a vertex v ∈ V (G) such that d(v) < 0.26n. If we
delete v from G, it will destroy at most 0.26n edges and at most one copy of K4

as G is F2-free. Let G
∗ = G− v. Then(

e(G∗) + cN4(G
∗)−

⌊
(n− 1)2

4

⌋)
− f(n)

= (e(G∗)− e(G)) + c(N4(G
∗)−N4(G))−

⌊
(n− 1)2

4

⌋
+

⌊
n2

4

⌋
≥ 2n− 2

4
− 0.26n− c ≥ 0.23n+ 1

for sufficiently large n. By Theorem 6, e(G∗) ≤
⌊
(n−1)2

4

⌋
+ 1. This implies that

0.23n ≤ cN4(G
∗). Let T1 be the vertex set of all disjoint K4 in G∗ and let

T2 = V (G∗) \ T1. Then we have 0.92n
c ≤ |T1| = 4N4(G

∗) ≤ n. Since G is F2-free,
it follows that the edges between any two K4’s are at most four, implying that

e(T1) ≤ 3
2 |T1| + 4

( |T1|
4
2

)
. By Theorem 6 we have e(T2) ≤

⌊
(n−1−|T1|)2

4

⌋
+ 1. Note

that for any vertex in T2 and any copy of K4 in T1, there is at most one edge
between them. It follows that e(T1, T2) ≤ N4(G

∗)|T2| = |T1|
4 (n−1−|T1|). Hence,

e(G∗) = e(T1) + e(T2) + e(T1, T2)

≤ 3

2
|T1|+ 4

( |T1|
4

2

)
+

⌊
(n− 1− |T1|)2

4

⌋
+ 1 +

|T1|
4

(n− 1− |T1|)

≤ n2

4
+

|T1|2

8
− n|T1|

4
+ o(n2) ≤ n2

4
+

|T1|(n− 2n)

8
+ o(n2)

≤
(
1

4
− 0.92

8c

)
n2 + o(n2),
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contradicting e(G∗) > e(G)− 0.26n ≥
⌊
n2

4

⌋
− o(n2) for sufficiently large n. The

proof of Lemma 21 is complete.

Now we prove Theorem 8.

Proof of Theorem 8. Let G be an (ℓ + 1) · F2-free graph on n vertices that
maximizes Nr(G). We distinguish two cases.

Case 1. 3 ≤ r ≤ ℓ+2. Let L be the smallest set in V (G) such that G′ = G−L
is F2-free. Then |L| ≤ ℓ|F2|. Define

L1 =
{
v ∈ L | (4ℓ+ 2) ·K2 ⊆ G′[N(v) ∩ V (G′)]

}
and L2 = L \ L1.

Claim 24. |L1| = ℓ.

Proof. Suppose first that |L1| ≥ ℓ + 1, and let {v1, . . . , vℓ+1} ⊆ L1. We can
recursively find ℓ + 1 disjoint copies of F2 such that each one is from G[{vi} ∪
(N(vi)∩V (G′))] for i = 1, . . . , ℓ+1. Indeed, assume we have found j ≤ ℓ disjoint
copies of F2. Pick a vertex in L1 we have not selected, say vj+1. By the definition
of L1, G

′[N(vj+1) ∩ V (G′)] contains at least 4ℓ + 2 vertex disjoint edges, then
there are at least 4ℓ+2−4j unused vertex disjoint edges in G′[N(vj+1)∩V (G′)].
Thus we can find the (j + 1)-th copy of F2.

Suppose now that |L1| ≤ ℓ − 1. Since G′ is F2-free, by Theorem 6 we have

e(G′) ≤
⌊
(n−|L|)2

4

⌋
+ 1. By Theorem 7, the number of triangles in G′ is O(n).

Since G′ is F2-free, it follows that any two K4’s in G′ cannot intersect, implying
that the number of the copies of K4 in G′ is O(n). Note that G′ is K5-free, the
r-cliques R in G− L2 can be divided to three cases.

• |R ∩G′| ≤ 1. The number of this kind of r-cliques is O(n).

• |R ∩ G′| = 2. The number of this kind of r-cliques is at most(
ℓ−1
r−2

)(⌊ (n−|L|)2
4

⌋
+ 1

)
.

• |R ∩G′| = 3 or 4. The number of this kind of r-cliques is O(n).

For any vertex v ∈ L2, G
′[N(v) ∩ V (G′)] is (4ℓ+ 2) ·K2-free by definition of

L2. By Erdős-Gallai matching theorem, the number of edges in G′[N(v)∩V (G′)]
is O(n). Therefore, the number of r-cliques consisting of the vertex v, i vertices
in V (G′) and r − 1− i vertices in L− v is O(n) for each i = 1, 2, 3, 4. Then

Nr(G) ≤
(
ℓ− 1

r − 2

)⌊
(n− |L|)2

4

⌋
+O(n)

<

(
ℓ

r − 2

)⌊
(n− ℓ)2

4

⌋
≤ Nr(Kℓ ∨ T ∗

2 (n− ℓ))
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for sufficiently large n, contradicting the choice of G. Thus the claim holds.

Claim 25. |L2| = 0.

Proof. Suppose not, and let v ∈ L2. By the definition of L, there is a copy, say
S, of F2 containing v in G − (L \ {v}). Since there are exactly ℓ vertices in L1

from Claim 24, we can recursively find ℓ vertex disjoint copies of F2 in G−V (S),
similarly as in the proof of Claim 24. Together these copies with S form ℓ + 1
vertex disjoint copies of F2, a contradiction. Thus the claim holds.

By Claims 24 and 25, we obtain that L = L1.

Claim 26. e(G′) ≤
⌊
(n−ℓ)2

4

⌋
.

Proof. Suppose, otherwise, that e(G′) =
⌊
(n−ℓ)2

4

⌋
+ 1 and G′ is isomorphic to

T+
2 (n− ℓ) by Theorem 6. Clearly G′ is K4-free. Then

Nr(G)

≤
(
ℓ

r

)
+

(
ℓ

r − 1

)
(n− ℓ) +

(
ℓ

r − 2

)(⌊
(n− ℓ)2

4

⌋
+ 1

)
+

(
ℓ

r − 3

)⌈
n− ℓ

2

⌉
<

(
ℓ

r

)
+

(
ℓ

r − 1

)
(n− ℓ) +

(
ℓ

r − 2

)⌊
(n− ℓ)2

4

⌋
+

(
ℓ

r − 3

)
(n− ℓ− 4)

= Nr(Kℓ ∨ T ∗
2 (n− ℓ))

for sufficiently large n, contradicting the choice of G. Thus the claim holds.

By Claim 26 and Lemma 21, we have e(G′) + cN4(G
′) ≤

⌊
(n−ℓ)2

4

⌋
for any

constant c and sufficiently large n. Therefore by Lemma 19 we have

Nr(G)

≤
(
ℓ

r

)
+

(
ℓ

r − 1

)
(n− ℓ) +

(
ℓ

r − 2

)
e(G′) +

(
ℓ

r − 3

)
N3(G

′) +

(
ℓ

r − 4

)
N4(G

′)

=

(
ℓ

r

)
+

(
ℓ

r − 1

)
(n− ℓ) +

(
ℓ

r−2

)
2

(e(G′) + c1N3(G
′) + e(G′) + c2N4(G

′))

≤
(
ℓ

r

)
+

(
ℓ

r − 1

)
(n− ℓ) +

(
ℓ

r−2

)
2

(⌊
(n− ℓ)2

4

⌋
+ c1(n− ℓ− 4) +

⌊
(n− ℓ)2

4

⌋)
=

(
ℓ

r

)
+

(
ℓ

r − 1

)
(n− ℓ) +

(
ℓ

r − 2

)⌊
(n− ℓ)2

4

⌋
+

(
ℓ

r − 3

)
(n− ℓ− 4)

= Nr(Kℓ ∨ T ∗
2 (n− ℓ)),
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where c1 = 2
(

ℓ
r−3

)
/
(

ℓ
r−2

)
and c2 = 2

(
ℓ

r−4

)
/
(

ℓ
r−2

)
, and the equality holds if and

only if G = Kℓ ∨ T ∗
2 (n− ℓ).

Case 2. r ≥ ℓ+ 3. By a similar analysis as in Claim 24, we can obtain that
|L1| ≤ ℓ, and the number of copies of r-cliques containing vertices in L2 is O(n).
Recall that the number of copies of K3’s and K4’s in G′ is O(n). Note that G′ is
K5-free. Then

Nr(G− L2) ≤
(

|L1|
r − 3

)
N3(G

′) +

(
|L1|
r − 4

)
N4(G

′) ≤ O(n).

Hence, ex(n,Kr, (ℓ+ 1) · F2) = O(n). The proof of Theorem 8 is complete.
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