Discussiones Mathematicae Graph Theory xx (xxxx) 1–18 https://doi.org/10.7151/dmgt.2596

GENERALIZED TURÁN PROBLEMS FOR DISJOINT EVEN WHEELS, AND FOR DISJOINT BOWTIES

SHIPENG WANG AND ZHIQI ZHANG

Department of Mathematics Jiangsu University, Zhenjiang Jiangsu 212013, P.R. China

e-mail: spwang22@ujs.edu.cn hongbin_keith@sina.com

Abstract

Given graphs T and F, the generalized Turán number ex(n, T, F) is the maximum possible number of copies of T in an F-free graph on n vertices. Let W_n be the wheel graph obtained from a cycle C_{n-1} and an extra vertex v by joining v and all vertices of C_{n-1} . Let $\ell \cdot F$ be the graph consisting of ℓ vertex-disjoint copies of F. A graph consisting of two triangles which intersect in exactly one common vertex is called a bowtie and denoted by F_2 .

In this paper, we determine the exact values of $ex(n, K_r, (\ell+1) \cdot W_{2k})$ for $4 \le r \le \ell+3$, and $ex(n, K_r, (\ell+1) \cdot F_2)$ for $3 \le r \le \ell+2$, and characterize all their extremal graphs.

Keywords: generalized Turán number, extremal graph, even wheel, bowtie. 2020 Mathematics Subject Classification: 05C35.

1. Introduction

We basically follow the most common graph-theoretical terminology and notation and for concepts not defined here we refer the reader to [2]. All graphs in this paper are simple, finite and undirected.

Let G = (V, E) be a graph with vertex set V(G) and edge set E(G). We use e(G) to denote the number of edges of G and use d(v) to denote the degree of v. For $S \subseteq V(G)$, let G[S] denote the subgraph of G induced by S, and let G - S denote the subgraph induced by $V(G) \setminus S$. For simplicity, we write E(S) and e(S) for E(G[S]) and e(G[S]), respectively. For $v \in V(G)$, let N(v, S) denote the set of neighbors of v in S, and let deg(v, S) = |N(v, S)|. Let G[S, T] denote

the bipartite subgraph induced by the edges with one end in S and the other in T, and let e(S,T)=e(G[S,T]).

For any two vertex disjoint graphs G_1 and G_2 , let $G_1 \vee G_2$ denote the graph obtained from $G_1 \cup G_2$ by adding all edges between $V(G_1)$ and $V(G_2)$. Let $\mathcal{N}_r(G)$ denote the number of r-cliques in G. A graph G is called *edge-critical* if there exists an edge e in G such that $\chi(G - e) < \chi(G)$, where $\chi(G)$ is the chromatic number of G. Let $T_r(n)$ denote the *Turán graph*, the complete r-partite graph on n vertices with r partition classes, each of size $\left\lfloor \frac{n}{r} \right\rfloor$ or $\left\lceil \frac{n}{r} \right\rceil$.

For a graph F, we say a graph G is F-free if G does not contain a copy of F as a subgraph. The $Tur\'{a}n$ number of F, denoted by ex(n,F), is the maximum possible number of edges in an F-free graph on n vertices. In 1941, Tur\'{a}n [17] proved that $T_r(n)$ is the unique extremal graph of $ex(n,K_{r+1})$. In 2015, Füredi and Gunderson determined the Tur\'{a}n number of odd cycles.

Theorem 1 (Füredi and Gunderson [6]). For $k \geq 2$ and $n \geq 4k - 2$,

$$ex(n, C_{2k+1}) = \left| \frac{n^2}{4} \right|.$$

Let T, F be two graphs. The generalized Turán number ex(n, T, F) is the maximum possible number of copies of T in an F-free graph on n vertices. The study of generalized Turán problems was initiated by Alon and Shikheman [1], there are many results focus on the generalized Turán problems, see e.g. [9, 10, 13, 22].

Let $\ell \cdot F$ be the graph consisting of ℓ vertex-disjoint copies of F. In 1959, Erdős and Gallai [4] determined the Turán number of matchings, i.e., $ex(n, (\ell+1) \cdot K_2) = \max\{\binom{2\ell+1}{2}, (n-\ell)\ell + \binom{\ell}{2}\}$ for $n \geq 2\ell+1$. Recently in [11], Hou, Yang and Zeng determined the value of $ex(n, K_3, (\ell+1) \cdot C_{2k+1})$ for $\ell \geq 1, k \geq 1$. Zhang, Chen, Győri and Zhu [20] determined the value of $ex(n, K_r, (\ell+1) \cdot K_r)$ for $r \geq 3, \ell \geq 1$.

Let $k \geq 2$ and $p_1, \ldots, p_k \geq 1$ be integers. The generalized theta graph $\Theta(p_1, \ldots, p_k)$ consists of a pair of end vertices joined by k internally disjoint paths of lengths p_1, \ldots, p_k , respectively. Recently, Gao, Wu and Xue [7] determined the value of $ex(n, K_r, (\ell + 1) \cdot F)$ for the edge-critical generalized theta graphs F. Specially, C_{2k+1} is an edge-critical generalized theta graph.

Let W_n be the wheel graph obtained from a cycle C_{n-1} and an extra vertex v by joining v and all vertices of C_{n-1} . If n is odd then we call W_n odd wheel, and we call W_n even wheel if n is even. In 2013, Dzido determined the exact value of the Turán problem of even wheels.

Theorem 2 (Dzido [3]). For $k \geq 3$ and $n \geq 6k - 10$,

$$ex(n, W_{2k}) = \left| \frac{n^2}{3} \right|.$$

In 2021, Yuan [19] determined the exact value of the Turán number for odd wheel. Xiao and Zamora [18] determined the value of $ex(n, (\ell + 1) \cdot W_{2k+1})$. Recently, Hou, Li, Liu, Yuan and Zhang [12] determined the value of $ex(n, (\ell + 1) \cdot F)$ for edge-critical graph F with $\chi(F) \geq 3$, which also implies the value of $ex(n, (\ell + 1) \cdot W_{2k})$ as the even wheel W_{2k} is 4-edge-critical.

In 2020, Ma and Qiu extended the result of Simonovits [16] by considering the generalized Turán number of edge-critical graphs.

Theorem 3 (Ma and Qiu [14]). Let F be an edge-critical graph with $\chi(F) = r + 1 > m \geq 2$ and n be sufficiently large. Then the Turán graph $T_r(n)$ is the unique graph attaining the maximum number of K_m 's in an F-free graph on n vertices.

In the same paper, they also prove a stability result.

Theorem 4 (Ma and Qiu [14]). Let F be a graph with $\chi(F) = r + 1 > m \geq 2$. If G is an n-vertex F-free graph with $\mathcal{N}_m(G) \geq \mathcal{N}_m(T_r(n)) - o(n^m)$, then G can be obtained from $T_r(n)$ by adding and deleting $o(n^2)$ edges.

In this paper, we further study the function of $ex(n, K_r, (\ell + 1) \cdot F)$ by considering the case $F = W_{2k}$. Our first main result is the following.

Theorem 5. Let $\ell \geq 1$, $k \geq 2$, and n be sufficiently large. If $4 \leq r \leq \ell + 3$, then

$$ex(n, K_r, (\ell+1) \cdot W_{2k}) = {\ell \choose r} + {\ell \choose r-1} (n-\ell) + {\ell \choose r-2} \left\lfloor \frac{(n-\ell)^2}{3} \right\rfloor + {\ell \choose r-3} \mathcal{N}_3(T_3(n-\ell)),$$

and $K_{\ell} \vee T_3(n-\ell)$ is the unique extremal graph.

If
$$r \ge \ell + 4$$
, then $ex(n, K_r, (\ell + 1) \cdot W_{2k}) = O(n^{2 + \frac{1}{k-1}})$.

A graph on 2k+1 vertices consisting of k triangles which intersect in exactly one common vertex is called a k-fan and denoted by F_k . Specially, the F_2 is also called a bowtie. In 1995, Erdős, Füredi, Gould and Gunderson determined the value of $ex(n, F_k)$ and characterize the extremal graphs. We only list the case k=2 and its extremal graph for simplicity.

Theorem 6 (Erdős, Füredi, Gould and Gunderson [5]). For $n \geq 5$,

$$ex(n, F_2) = \left| \frac{n^2}{4} \right| + 1.$$

The unique extremal graph is $T_2^+(n)$ which is obtained from $T_2(n)$ by adding one edge.

In 1976, Erdős and Sós determined the value of $ex(n, K_3, F_2)$.

Theorem 7 (Erdős and Sós [15]). For all n,

$$ex(n, K_3, F_2) = \begin{cases} n, & for \ n \equiv 0 \pmod{4}, \\ n-1, & for \ n \equiv 1 \pmod{4}, \\ n-2, & for \ n \equiv 2 \ or \ 3 \pmod{4}. \end{cases}$$

Recently, Zhu, Chen, Gerbner, Győri, and Karim [21] extended it and determined the value of $ex(n, K_3, F_k)$ for $n \geq 4k^3$ and $k \geq 3$. In this paper, we determine the value of $ex(n, K_r, (\ell+1) \cdot F_2)$ for $r \geq 3$, which is our second main result.

Let $T_2^*(n)$ be the graph obtained from a bipartite Turán graph $T_2(n)$ by adding one edge to each its partition set, say v_1v_2 and u_1u_2 , and then deleting the edges v_1u_2 and v_2u_1 .

Theorem 8. Let $\ell \geq 1$ and n be sufficiently large. If $3 \leq r \leq \ell + 2$, then

$$ex(n, K_r, (\ell+1) \cdot F_2) = {\ell \choose r} + {\ell \choose r-1} (n-\ell) + {\ell \choose r-2} \left\lfloor \frac{(n-\ell)^2}{4} \right\rfloor + {\ell \choose r-3} (n-\ell-4),$$

and $K_{\ell} \vee T_2^*(n-\ell)$ is the unique extremal graph.

If
$$r \geq \ell + 3$$
, then $ex(n, K_r, (\ell + 1) \cdot F_2) = O(n)$.

In Section 2, we prove Theorem 5. In Section 3, we prove Theorem 8.

2. Proof of Theorem 5

To prove Theorem 5, we need the following results.

Theorem 9 (Gerbner, Methuku and Vizer [8]).

- (i) For any $r \ge 3$ and $k \ge 2$, we have $ex(n, K_r, C_{2k+1}) = O(n^{1+\frac{1}{k}})$.
- (ii) If $r \leq \ell$, then $ex(n, K_r, \ell \cdot C_{2k+1}) = \Theta(n^2)$. If $r > \ell + 1$, then $ex(n, K_r, \ell \cdot C_{2k+1}) = O(n^{1+\frac{1}{k}})$.

Lemma 10. For any $r \geq 4$ and $k \geq 2$, we have

$$ex(n, K_r, W_{2k}) = O\left(n^{2 + \frac{1}{k-1}}\right).$$

Proof. Let G be a W_{2k} -free graph on n vertices. For any vertex $v \in V(G)$, G[N(v)] does not contain a cycle on 2k-1 vertices. Then

$$\mathcal{N}_{r}(G) = \frac{\sum_{v} \mathcal{N}_{r-1}(G[N(v)])}{r} \le \frac{\sum_{v} ex(d(v), K_{r-1}, C_{2k-1})}{r}$$

$$\le \frac{n}{r} ex(n, K_{r-1}, C_{2k-1}).$$

By Theorem 9(i), we have $\mathcal{N}_r(G) = O(n^{2+\frac{1}{k-1}})$ as required.

Lemma 11. Let $r \ge 4, k \ge 2$ and c be a constant. Assume that G is a W_{2k} -free graph on n vertices. For sufficiently large n, we have

$$\mathcal{N}_3(G) + c\mathcal{N}_r(G) \le \mathcal{N}_3(T_3(n)),$$

and the equality holds if and only if G is isomorphic to $T_3(n)$.

Proof. Let G_n be a W_{2k} -free graph on n vertices such that $\mathcal{N}_3(G_n) + c\mathcal{N}_r(G_n)$ is maximum. By Lemma 10, we have $\mathcal{N}_r(G_n) = o(n^3)$. Since $T_3(n)$ is W_{2k} -free and $\mathcal{N}_r(T_3(n)) = 0$ and by the choice of G_n , $\mathcal{N}_3(T_3(n)) \leq \mathcal{N}_3(G_n) + c\mathcal{N}_r(G_n)$, it follows that $\mathcal{N}_3(G_n) \geq \mathcal{N}_3(T_3(n)) - o(n^3)$. By Theorem 4, there is a spanning tripartite subgraph (say G'_n) of G_n which is almost balanced by deleting $o(n^2)$ edges. Let (V_1, V_2, V_3) be the partition of G'_n .

Define

(1)
$$f(n) = \mathcal{N}_3(G_n) + c\mathcal{N}_r(G_n) - \mathcal{N}_3(T_3(n)).$$

Clearly $f(n) \geq 0$. We will show that if G_n contains a K_r with $r \geq 4$, then f(n-1) - f(n) > 1 for sufficiently large n.

For all distinct $i, j \in \{1, 2, 3\}$, let $L_i^j = \{v \in V_i \mid \deg(v, V_j) \ge \left(1 - \frac{1}{100k}\right) |V_j|\}$. For all distinct $i, j, t \in \{1, 2, 3\}$, let $L_i = \{v \in V_i \mid \deg(v, V_j) \ge \left(1 - \frac{1}{100k}\right) |V_j|$ and $\deg(v, V_t) \ge \left(1 - \frac{1}{100k}\right) |V_t|\}$. Let $L = L_1 \cup L_2 \cup L_3$, and let $S = V(G_n) \setminus L$.

Claim 12. For different $i, j \in \{1, 2, 3\}$ and $n \ge n_1$, where n_1 is a sufficiently large integer, $|L_i^j| \ge (1 - \frac{1}{120})|V_i|$.

Proof. By contradiction, without loss of generality, we may suppose that $|L_1^2| = x|V_1|$ with $x < 1 - \frac{1}{120}$. Since deleting an edge of G_n can destroy at most n-2 triangles, it follows that deleting $o(n^2)$ edges will destroy $o(n^3)$ triangles. Recall that $\mathcal{N}_3(G_n) \geq \mathcal{N}_3(T_3(n)) - o(n^3)$. Thus

$$\mathcal{N}_3(G'_n) \ge \mathcal{N}_3(G_n) - o(n^3) \ge \mathcal{N}_3(T_3(n)) - o(n^3).$$

On the other hand,

$$\mathcal{N}_{3}(G'_{n}) < |L_{1}^{2}||V_{2}||V_{3}| + (|V_{1}| - |L_{1}^{2}|) \left(1 - \frac{1}{100k}\right) |V_{2}||V_{3}|$$

$$= \left(x + (1 - x) \left(1 - \frac{1}{100k}\right)\right) |V_{1}||V_{2}||V_{3}|$$

$$\leq \left(1 - \frac{1}{120 \cdot 100k}\right) \frac{n^{3}}{27} + o(n^{3}),$$

a contradiction for $n \geq n_1$, where n_1 is a large integer. Thus the claim holds. \Box

It follows from Claim 12 that $|L_i| = |L_i^j \cap L_i^t| \ge |L_i^j| + |L_i^t| - |V_i| \ge (1 - \frac{1}{60})|V_i|$. This implies that $|S| \le \frac{1}{60}(|V_1| + |V_2| + |V_3|) = \frac{n}{60}$.

Claim 13. For different $i, j, t \in \{1, 2, 3\}$ and $n \ge \max\{4k, n_1\}$, and for any set $T \subset L_i \cup L_j$ with $|T| \le 2k$, it holds that $|\bigcap_{x \in T} N(x, L_t)| \ge k$.

Proof. By the definition of T, each vertex in T has at most $\frac{1}{100k}|V_t|$ non-neighbors in L_t . Then

$$\left| \bigcap_{x \in T} N(x, L_t) \right| \ge |L_t| - \frac{2k}{100k} |V_t| \ge \left(1 - \frac{1}{60} \right) |V_t| - \frac{1}{50} |V_t| \ge k$$

for $n \ge 4k$.

Claim 14. For each $i \in \{1, 2, 3\}$ and $n \ge \max\{4k, n_1\}$, L_i is an independent set.

Proof. Suppose not, we may assume that x_1x_2 is an edge in $G_n[L_1]$ without loss of generality. By Claim 13, we assume that $\{u_1,\ldots,u_{k-1}\}\subseteq N(x_1,L_2)\cap N(x_2,L_2)$. By Claim 13, we further assume that $\{v_1,\ldots,v_{k-2}\}\subseteq \bigcap_{i=1}^{k-1}N(u_i,L_1)\setminus \{x_1,x_2\}$. Thus $x_1u_1v_1\cdots v_{k-2}u_{k-1}x_2x_1$ is a cycle of length 2k-1. By Claim 13, we choose a common neighbor y of $u_1,\ldots,u_{k-1},v_1,\ldots,v_{k-2},x_1,x_2$ in L_3 , but then the set $\{u_1,\ldots,u_{k-1},v_1,\ldots,v_{k-2},x_1,x_2,y\}$ forms a copy of W_{2k} with center y, a contradiction. Thus the claim holds.

Claim 15. $\delta(G_n) < \frac{3n}{5}$.

Proof. Suppose, by contradiction, that $\delta(G_n) \geq \frac{3n}{5}$. Recall that $|S| \leq \frac{n}{60}$. Thus for any vertex v in G_n we have $\deg(v,L) \geq \frac{3n}{5} - \frac{n}{60} = \frac{7n}{12}$. Let $\{v_1,v_2,v_3,v_4\}$ be the vertex set of a K_4 in G_n as G_n contains a K_r with $r \geq 4$. By Claim 14, each $L_i(i=1,2,3)$ is an independent set of G_n . By symmetry, we may distinguish the following four cases.

Case 1. $v_1 \in S$, $v_2 \in L_1$, $v_3 \in L_3$, $v_4 \in L_2$. By Claim 13, we assume that $\{y_1, \ldots, y_{k-2}\} \subseteq N(v_2, L_3) \cap N(v_4, L_3) \setminus \{v_3\}$. Set $T = \{v_3, v_4, y_1, \ldots, y_{k-2}\}$. By

Claim 13, we further assume that $\{x_1, \ldots, x_{k-2}\} \subseteq (\bigcap_{v \in T} N(v, L_1)) \setminus \{v_2\}$. But then the set $T \cup \{x_1, \ldots, x_{k-2}, v_1, v_2\}$ forms a copy of W_{2k} with center v_4 (see Figure 1, the thick solid lines form the cycle C_{2k-1} in W_{2k}), a contradiction.

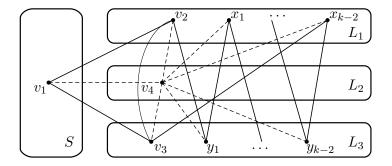


Figure 1. The illustration of Case 1.

Case 2. $\{v_1, v_2\} \subseteq S, v_3 \in L_1, v_4 \in L_2$. Recall that $\deg(v, L) \geq \frac{7n}{12}$ for any vertex v in G_n . This implies that $\deg(v, L_1 \cup L_2) \geq \frac{7n}{12} - \left\lceil \frac{n}{3} \right\rceil > \frac{n}{5}$ for each $v \in S$. Without loss of generality, we may further assume that $\deg(v_1, L_1) > \frac{n}{10}$. Note that $\deg(v_4, L_1) \geq \left(1 - \frac{1}{100k}\right) |V_1| - \frac{1}{60} |V_1| \geq \left(1 - \frac{1}{30}\right) \left\lfloor \frac{n}{3} \right\rfloor$. It follows that v_1 and v_4 have a common neighbor x_1 in L_1 . By Claim 13, we assume that $\{y_1, \ldots, y_{k-2}\} \subseteq N(x_1, L_3) \cap N(v_3, L_3) \cap N(v_4, L_3)$. Set $T = \{v_4, y_1, \ldots, y_{k-2}\}$. By Claim 13, we further assume that $\{x_2, \ldots, x_{k-2}\} \subseteq \left(\bigcap_{v \in T} N(v, L_1)\right) \setminus \{v_3, x_1\}$. But then the set $T \cup \{x_1, \ldots, x_{k-2}, v_1, v_2, v_3\}$ forms a copy of W_{2k} with center v_4 (see Figure 2, the thick solid lines form the cycle C_{2k-1} in W_{2k}), a contradiction.

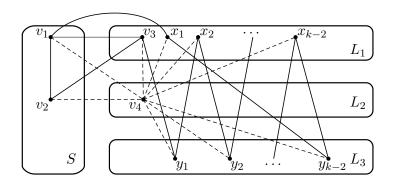


Figure 2. The illustration of Case 2.

Case 3. $\{v_1, v_2, v_3\} \subseteq S, v_4 \in L$. Without loss of generality, we may assume that $v_4 \in L_2$. Note that for each $v_i (i = 1, 2, 3)$ we have $\deg(v_i, L_1 \cup L_3) > \frac{n}{5}$. Without of loss of generality, we may further assume that $\deg(v_1, L_1) > \frac{n}{10}$ and

 $\deg(v_2,L_1)>\frac{n}{10}$. Note that $\deg(v_4,L_1)\geq (1-\frac{1}{100k})|V_1|-\frac{1}{60}|V_1|\geq \left(1-\frac{1}{30}\right)\left\lfloor\frac{n}{3}\right\rfloor$. It follows that v_1 and v_4 have a common neighbor x_1 in L_1 . Similarly, v_2 and v_4 have a common neighbor x_2 in L_1 . By Claim 13, we assume that $\{y_1,\ldots,y_{k-2}\}\subseteq N(x_1,L_3)\cap N(x_2,L_3)\cap N(v_4,L_3)$. Set $T=\{v_4,y_1,\ldots,y_{k-2}\}$. By Claim 13, we further assume that $\{x_3,\ldots,x_{k-1}\}\subseteq \left(\bigcap_{v\in T}N(v,L_1)\right)\setminus \{x_1,x_2\}$. But then the set $T\cup\{x_1,\ldots,x_{k-1},v_1,v_2\}$ forms a copy of W_{2k} with center v_4 (see Figure 3, the thick solid lines form the cycle C_{2k-1} in W_{2k}), a contradiction.

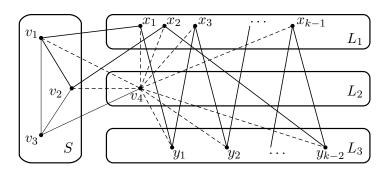


Figure 3. The illustration of Case 3.

Case 4. $\{v_1, v_2, v_3, v_4\} \subseteq S$. Since each $v_i (i = 1, 2, 3, 4)$ has degree at least $\frac{7n}{12}$ in L, it follows that $\sum_{i=1}^4 \deg(v_i, L) \ge \frac{7n}{3}$. If every vertex in L has at most two neighbors in $\{v_1, v_2, v_3, v_4\}$, then $\sum_{i=1}^4 \deg(v_i, L) < 2n$, a contradiction. Hence there exists a vertex x in L which is adjacent to at least three vertices in $\{v_1, v_2, v_3, v_4\}$. We may assume that the set $\{x, v_1, v_2, v_3\}$ forms a copy of K_4 , and by Case 3 we are done. Thus the claim holds.

By Claim 15, there exists a vertex $v \in G_n$ such that $d(v) < \frac{3n}{5}$. Since G_n is W_{2k} -free, $G_n[N(v)]$ is C_{2k-1} -free. By Theorem 1, the number of edges in $G_n[N(v)]$ is at most $\frac{1}{4}(d(v))^2$. By Theorem 9(i), the number of copies of (r-1)-cliques in $G_n[N(v)]$ is $O\left((d(v))^{1+\frac{1}{k-1}}\right) \le \frac{n^2}{50c}$ for all $n \ge n_2$, where n_2 is a sufficiently large integer. If we delete v from G_n , it will destroy at most $\frac{1}{4}(d(v))^2$ triangles and $\frac{n^2}{50c}$ copies of r-cliques. Let $G' = G_n - v$. By the definition of f(n), we have

$$f(n-1) - f(n)$$

$$\geq \mathcal{N}_3(G') + c\mathcal{N}_r(G') - \mathcal{N}_3(T_3(n-1)) - (\mathcal{N}_3(G_n) + c\mathcal{N}_r(G_n) - \mathcal{N}_3(T_3(n)))$$

$$\geq \left\lfloor \frac{n}{3} \right\rfloor \left\lfloor \frac{n}{3} \right\rfloor - (\mathcal{N}_3(G_n) - \mathcal{N}_3(G')) - (c\mathcal{N}_r(G_n) - c\mathcal{N}_r(G'))$$

$$\geq \left\lfloor \frac{n}{3} \right\rfloor \left\lfloor \frac{n}{3} \right\rfloor - \frac{1}{4} (\frac{3n}{5})^2 - \frac{n^2}{50} > 1$$

for all $n \ge n_3$, where n_3 is a sufficiently large integer.

Let $n_4 = \max\{n_1, 4k, n_2, n_3\}$. For $n \ge n_4$, we conclude that if G_n contains a K_r , then

(2)
$$f(n-1) - f(n) > 1.$$

Claim 16. For any positive integer $n' \ge n_4$, if $G_{n'}$ is K_r -free, then G_n is K_r -free for all $n \ge n'$.

Proof. Suppose not, and let n^* be the smallest integer after n' satisfies G_{n^*} contains a K_r . Hence G_{n^*-1} is K_r -free. By (2) we have

$$0 \le f(n^*) < f(n^* - 1) - 1 = \mathcal{N}_3(G_{n^* - 1}) - \mathcal{N}_3(T_3(n^* - 1)) - 1.$$

Since W_{2k} is 4-edge-critical, we have $\mathcal{N}_3(G_{n^*-1}) \leq \mathcal{N}_3(T_3(n^*-1))$ by Theorem 3, then $f(n^*) < 0$, a contradiction. Thus the claim holds.

Then there exists an integer $n_5 \ge n_4$ such that G_n is K_r -free. Otherwise, G_i contains a K_r for each $i \ge n_4$. Let $N > \binom{n_4}{3} + c\binom{n_4}{r} + n_4$. Then by (2) and (1),

$$0 \le f(N) < f(N-1) - 1 < f(N-2) - 2 < \dots < f(n_4) - (N-n_4)$$

$$< {n_4 \choose 3} + c {n_4 \choose r} - (N-n_4) < 0,$$

a contradiction. Thus by Claim 16, G_n is K_r -free for $n \geq n_5$. Since W_{2k} is 4-edge-critical, by Theorem 3 we have $\mathcal{N}_3(G_n) + c\mathcal{N}_r(G_n) \leq \mathcal{N}_3(T_3(n))$ for all $n \geq n_5$, and the equality holds if and only if G_n is isomorphic to $T_3(n)$. This completes the proof of Lemma 11.

Now we prove Theorem 5.

Proof of Theorem 5. Let G be an $(\ell + 1) \cdot W_{2k}$ -free graph on n vertices that maximizes $\mathcal{N}_r(G)$. We distinguish two cases.

Case 1. $4 \le r \le \ell + 3$. Let L be a smallest set in V(G) such that G' = G - L is W_{2k} -free. Then $|L| \le \ell |W_{2k}|$. Define

$$L_1 = \left\{ v \in L \mid ((2k-1)\ell + 1) \cdot C_{2k-1} \subseteq G'[N(v) \cap V(G')] \right\}$$

and $L_2 = L \setminus L_1$.

Claim 17. $|L_1| = \ell$.

Proof. Suppose first that $|L_1| \geq \ell + 1$, and let $\{v_1, \ldots, v_{\ell+1}\} \subseteq L_1$. We can recursively find $\ell + 1$ disjoint copies of W_{2k} such that each one is from $G[\{v_i\} \cup (N(v_i) \cap V(G'))]$ for $i = 1, \ldots, \ell + 1$. Indeed, assume we have found $j \leq \ell$ disjoint copies of W_{2k} . Pick a vertex in L_1 we have not selected, say v_{j+1} . By the

definition of L_1 , $G'[N(v_{j+1}) \cap V(G')]$ contains at least $(2k-1)\ell+1$ vertex disjoint copies of C_{2k-1} , then there are at least $(2k-1)\ell+1-(2k-1)j$ unused vertex disjoint copies of C_{2k-1} in $G'[N(v_{j+1}) \cap V(G')]$. Thus we can find the (j+1)-th copy of W_{2k} .

Suppose now that $|L_1| \leq \ell - 1$. Since G' is W_{2k} -free, by Theorem 3, $\mathcal{N}_3(G') \leq \frac{(n-|L|)^3}{27} + o(n^3)$. Then the r-cliques R in $G - L_2$ can be divided to three cases.

- $|R \cap G'| \leq 2$. The number of this kind of r-cliques is $O(n^2)$.
- $|R \cap G'| = 3$. The number of this kind of r-cliques is at most $\binom{\ell-1}{r-3} \frac{(n-|L|)^3}{27} + o(n^3)$.
- $|R \cap G'| \ge 4$. The number of this kind of r-cliques is $O(n^{2 + \frac{1}{k-1}})$ by Lemma 10.

For any vertex $v \in L_2$, $G'[N(v) \cap V(G')]$ is $((2k-1)\ell+1) \cdot C_{2k-1}$ -free by definition of L_2 . By Theorem 9(ii), the number of *i*-cliques in $G'[N(v) \cap V(G')]$ is $O(n^2)$. Hence, the number of *r*-cliques consisting of the vertex v, i vertices in V(G') and r-1-i vertices in L-v is $O(n^2)$. Then

$$\mathcal{N}_{r}(G) \leq \binom{\ell-1}{r-3} \frac{(n-|L|)^{3}}{27} + o(n^{3})$$

$$< \binom{\ell}{r-3} \frac{(n-\ell)^{3}}{27} + o(n^{3}) = \mathcal{N}_{r}(K_{\ell} \vee T_{3}(n-\ell))$$

for sufficiently large n, contradicting the choice of G. Thus the claim holds.

Claim 18. $|L_2| = 0$.

Proof. Suppose not, and let $v \in L_2$. By the definition of L, there is a copy, say S, of W_{2k} containing v in $G - (L \setminus \{v\})$. Since there are exactly ℓ vertices in L_1 from Claim 17, we can recursively find ℓ vertex disjoint copies of W_{2k} in G - V(S) similarly as in the proof of Claim 17. Together these copies with S form $\ell + 1$ vertex disjoint copies of W_{2k} , a contradiction. Thus the claim holds.

By Claims 17 and 18, we have $L = L_1$. By Theorem 2 and Lemma 11, we have $\mathcal{N}_r(G)$

$$\leq \binom{\ell}{r} + \binom{\ell}{r-1}(n-\ell) + \binom{\ell}{r-2}e(G') + \binom{\ell}{r-3}\mathcal{N}_3(G') + \sum_{i=0}^{r-4} \binom{\ell}{i}\mathcal{N}_{r-i}(G')$$

$$= \binom{\ell}{r} + \binom{\ell}{r-1}(n-\ell) + \binom{\ell}{r-2}e(G') + \frac{\binom{\ell}{r-3}}{r-3}\sum_{i=0}^{r-4}(\mathcal{N}_3(G') + c_i\mathcal{N}_{r-i}(G'))$$

$$\leq \binom{\ell}{r} + \binom{\ell}{r-1}(n-\ell) + \binom{\ell}{r-2} \left\lfloor \frac{(n-\ell)^2}{3} \right\rfloor + \binom{\ell}{r-3}\mathcal{N}_3(T_3(n-\ell))$$

$$= \mathcal{N}_r(K_\ell \vee T_3(n-\ell)),$$

where $c_i = (r-3)\binom{\ell}{i}/\binom{\ell}{r-3}$ and the equality holds if and only if $G = K_\ell \vee T_3(n-\ell)$.

Case 2. $r \ge \ell + 4$. By the similar analysis as in Claim 17, we can obtain that $|L_1| \le \ell$ and the number of copies of r-cliques containing vertices in L_2 is $O(n^2)$. Since $r \ge \ell + 4$, it follows that $r - i \ge 4$ for each $i \in \{0, \ldots, |L_1|\}$. By Lemma 10, we obtain that

$$\mathcal{N}_r(G-L_2) \le \sum_{i=0}^{|L_1|} {|L_1| \choose i} \mathcal{N}_{r-i}(G') \le \sum_{i=0}^{|L_1|} {|L_1| \choose i} ex(n, K_{r-i}, W_{2k}) = O\left(n^{2+\frac{1}{k-1}}\right).$$

Hence, $ex(n, K_r, (\ell + 1) \cdot W_{2k}) = O(n^{2 + \frac{1}{k-1}})$. Thus the proof of Theorem 5 is complete.

3. Proof of Theorem 8

In this section we will prove Theorem 8. First we prove the following useful lemmas.

The book graph B_t is the graph consisting of $t-2 \ge 1$ triangles, all sharing one edge. We call the vertices of degree two of a book graph the page vertices.

Lemma 19. Let c > 0 be a constant and let G be an F_2 -free graph on n vertices. For sufficiently large n, we have

$$e(G) + c\mathcal{N}_3(G) \le \left| \frac{n^2}{4} \right| + c(n-4),$$

and the equality holds if and only if G is isomorphic to $T_2^*(n)$.

Proof. Assume that G is an F_2 -free graph on n vertices such that $e(G) + c\mathcal{N}_3(G) \ge \left\lfloor \frac{n^2}{4} \right\rfloor + c(n-4)$. By Theorem 7 we have $\mathcal{N}_3(G) \le n$. If $e(G) = \left\lfloor \frac{n^2}{4} \right\rfloor + 1$, then by Theorem 6, G is isomorphic to $T_2^+(n)$. But then $e(G) + c\mathcal{N}_3(G) \le \left\lfloor \frac{n^2}{4} \right\rfloor + 1 + c \left\lceil \frac{n}{2} \right\rceil < \left\lfloor \frac{n^2}{4} \right\rfloor + c(n-4)$ for sufficiently large n, a contradiction. Thus

(3)
$$\left\lfloor \frac{n^2}{4} \right\rfloor - 4c \le e(G) \le \left\lfloor \frac{n^2}{4} \right\rfloor, \ n - 4 \le \mathcal{N}_3(G) \le n.$$

Claim 20. G is K_4 -free.

Proof. Suppose, otherwise, that G contains a K_4 . Set $V(K_4) = S$. Since G - S is F_2 -free, by Theorem 6, $e(G - S) \leq \left\lfloor \frac{(n-4)^2}{4} \right\rfloor + 1$. Since $e(G) \geq \left\lfloor \frac{n^2}{4} \right\rfloor - 4c$, it follows that $e(S, V(G) \setminus S) \geq \left\lfloor \frac{n^2}{4} \right\rfloor - 4c - \left(\left\lfloor \frac{(n-4)^2}{4} \right\rfloor + 1 \right) - 6 = 2n - 11 - 4c$. On the other hand, every vertex in G - S is adjacent to at most one vertex in S as G is F_2 -free, but then $e(S, V(G) \setminus S) \leq n - 4$, a contradiction.

Since G is F_2 -free, any two books B_1, B_2 of G satisfy that $B_1 \subseteq B_2$ or $B_2 \subseteq B_1$ or $V(B_1) \cap V(B_2) = \emptyset$. Let B_1, \ldots, B_t be all vertex disjoint book graphs in G such that each B_i has page vertices as large as possible. Since each $B_i (i = 1, \ldots, t)$ contains exactly $|B_i| - 2t$ triangles and by Claim $20, B_1 \cup \cdots \cup B_t$ contains exactly $\sum_{i=1}^t |B_i| - 2t$ triangles. It follows that $\mathcal{N}_3(G) = \sum_{i=1}^t |B_i| - 2t$. Since $\sum_{i=1}^t |B_i| \le n$ and by (3), we have $t \le 2$.

If t=1, then by Claim 20, $e(B_1)=2|B_1|-3$. By the choice of B_i , all triangles in G are contained in B_1 . Since $\mathcal{N}_3(G) \geq n-4$, $G-V(B_1)$ has at most two vertices, it follows that $e(G) \leq 2|B_1|-3+2|B_1|+1 \leq 4n-2$, contradicting (3).

Thus we have t=2. Then $B_1 \cup B_2$ contains at most n-4 triangles. By (3) we obtain that $\mathcal{N}_3(G)=n-4$ and $|B_1|+|B_2|=n$. Recall that $e(G)+c\mathcal{N}_3(G)\geq \left\lfloor\frac{n^2}{4}\right\rfloor+c(n-4)$. Then $e(G)=\left\lfloor\frac{n^2}{4}\right\rfloor$. Let $V(B_1)=\{x_1,x_2\}\cup S_1$ and $V(B_2)=\{y_1,y_2\}\cup S_2$, where S_i is the set of page vertices of B_i . Clearly $|S_i|\geq 2$ for each i=1,2. Since G is K_4 -free, we have $e(B_1)+e(B_2)=2n-6$. Since G is F_2 -free, it follows that $e(\{x_1,x_2\},\{y_1,y_2\})\leq 2$. Thus

(4)
$$e(\lbrace x_1, x_2 \rbrace, S_2) + e(\lbrace y_1, y_2 \rbrace, S_1) + e(S_1, S_2)$$
$$= e(G) - (e(B_1) + e(B_2)) - e(\lbrace x_1, x_2 \rbrace, \lbrace y_1, y_2 \rbrace) \ge \left| \frac{n^2}{4} \right| - (2n - 6) - 2.$$

Note that $|S_1| + |S_2| = n - 4$. It follows that $e(S_1, S_2) \leq \left\lfloor \frac{(n-4)^2}{4} \right\rfloor = \left\lfloor \frac{n^2}{4} \right\rfloor - 2n + 4$ and the equality holds if and only if $|S_1|$ is almost equal to $|S_2|$. We further claim that $e(\{x_1, x_2\}, S_2) + e(\{y_1, y_2\}, S_1) = 0$. Otherwise, let $z \in S_2$ such that $x_1 z \in E(G)$ without loss of generality. Since G is F_2 -free, z is non-adjacent to any of S_1 , it follows that

$$e(\lbrace x_1, x_2 \rbrace, S_2) + e(\lbrace y_1, y_2 \rbrace, S_1) + e(S_1, S_2)$$

 $\leq \left| \frac{n^2}{4} \right| - 2n + 4 - |S_1| + 1 \leq \left| \frac{n^2}{4} \right| - 2n + 3,$

contradicting (4). Hence G is isomorphic to $T_2^*(n)$. The proof of Lemma 19 is complete.

Lemma 21. Let c be a constant, and let G be an F_2 -free graph on n vertices such that G contains a K_4 . For sufficiently large n, we have

$$e(G) + c\mathcal{N}_4(G) < \left\lfloor \frac{n^2}{4} \right\rfloor.$$

Proof. Let G be an F_2 -free graph on n vertices such that $K_4 \subseteq G$ and $e(G) + c\mathcal{N}_4(G)$ is maximum. It suffices to show $e(G) + c\mathcal{N}_4(G) < \left\lfloor \frac{n^2}{4} \right\rfloor$. By contradiction,

suppose that $e(G) + c\mathcal{N}_4(G) \ge \left\lfloor \frac{n^2}{4} \right\rfloor$. Define $f(n) = e(G) + c\mathcal{N}_4(G) - \left\lfloor \frac{n^2}{4} \right\rfloor$. Then $f(n) \ge 0$. Since G is F_2 -free, it follows that any two K_4 's in G cannot intersect, implying that the number of the copies of K_4 in G is at most $\left\lfloor \frac{n}{4} \right\rfloor$. Thus $e(G) \ge \left\lfloor \frac{n^2}{4} \right\rfloor - O(n)$. By Theorem 4, G has a bipartite spanning subgraph G' which is almost balanced by deleting $o(n^2)$ edges. Then $e(G') \ge \left\lfloor \frac{n^2}{4} \right\rfloor - o(n^2)$. Let (V_1, V_2) be the partition of G'. Define

$$L_1 = \left\{ v \in V_1 \mid \deg(v, V_2) \ge \left(1 - \frac{1}{1000} \right) |V_2| \right\},$$

$$L_2 = \left\{ v \in V_2 \mid \deg(v, V_1) \ge \left(1 - \frac{1}{1000} \right) |V_1| \right\},$$

and $S = (V_1 \setminus L_1) \cup (V_2 \setminus L_2)$.

Claim 22. For each i = 1, 2 and $n \ge n_1$, where n_1 is a sufficiently large integer, $|L_i| \ge \left(1 - \frac{1}{500}\right)|V_i|$. Consequently, for each $v \in L_i$ we have $\deg(v, L_{3-i}) \ge 0.49n$.

Proof. By contradiction, suppose that $|L_1| = x|V_1|$ with $x < 1 - \frac{1}{500}$ without loss of generality. Then

$$e(G') < |L_1||V_2| + (|V_1| - |L_1|) \left(1 - \frac{1}{1000}\right) |V_2|$$

$$= \left(x + (1 - x) \left(1 - \frac{1}{1000}\right)\right) |V_1||V_2| \le \left(1 - \frac{1}{500 \times 1000}\right) \frac{n^2}{4} + o(n^2),$$

contradicting $e(G') \ge \left\lfloor \frac{n^2}{4} \right\rfloor - o(n^2)$ for $n \ge n_1$, where n_1 is a large integer. Thus $|L_i| \ge \left(1 - \frac{1}{500}\right)|V_i|$ for each i = 1, 2.

For each $v \in L_i$, we have $\deg(v, L_{3-i}) \ge \left(1 - \frac{1}{1000}\right) |V_{3-i}| - \frac{1}{500} |V_{3-i}| \ge 0.49n$. Hence the claim holds.

Claim 23. $\delta(G) < 0.26n$.

Proof. Suppose, by contradiction, that $\delta(G) \geq 0.26n$. By Claim 22, we have $|S| = \sum_{i=1}^{2} |V_i \setminus L_i| \leq 0.002n$. Then $\deg(v, L_1 \cup L_2) \geq 0.26n - 0.002n = 0.258n$ for any $v \in V(G)$. Let $V(K_4) = \{v_1, v_2, v_3, v_4\}$ as G contains a K_4 . If $\{v_1, v_2\} \subseteq L_i$, then there is a common neighbor $u \notin \{v_1, v_2, v_3, v_4\}$ in L_{3-i} , and $\{u, v_1, v_2, v_3, v_4\}$ forms a copy of F_2 . Hence each $L_i(i=1,2)$ contains at most one vertex of $\{v_1, v_2, v_3, v_4\}$. By symmetry, we may distinguish the following two cases.

Case 1. $\{v_1, v_2\} \subseteq S$, $v_3 \in L_1$, $v_4 \in L_2$. Since $\deg(v_1, L_1 \cup L_2) \ge 0.258n$, by the average principle, we may assume that $\deg(v_1, L_2) \ge 0.129n$ without loss of generality. By Claim 22, we have $|N(v_1, L_2 \setminus \{v_4\}) \cap N(v_3, L_2 \setminus \{v_4\})| \ge$

 $0.129n + 0.49n - 1 - |V_2| > 0$. Let $u \in N(v_1, L_2 \setminus \{v_4\}) \cap N(v_3, L_2 \setminus \{v_4\})$. Then $\{v_1, v_2, v_3, v_4, u\}$ forms a copy of F_2 , a contradiction.

Case 2. $\{v_1, v_2, v_3\} \subseteq S$. If there exists a vertex in $\{v_1, v_2, v_3\}$, say v_1 , such that $N(v_1, L_1 \setminus \{v_4\}) \neq \emptyset$ and $N(v_1, L_2 \setminus \{v_4\}) \neq \emptyset$. Recall that $\deg(v_1, L_1 \cup L_2) \geq 0.258n$. Without loss of generality, we may assume that $u_1 \in N(v_1, L_1 \setminus \{v_4\})$ and $\deg(v_1, L_2) \geq 0.129n$. By Claim 22, we have $|N(v_1, L_2 \setminus \{v_4\}) \cap N(u_1, L_2 \setminus \{v_4\})| \geq 0.129n + 0.49n - |V_2| - 1 > 0$. Let $u_2 \in N(v_1, L_2 \setminus \{v_4\}) \cap N(u_1, L_2 \setminus \{v_4\})$. But then $\{v_1, v_2, v_3, u_1, u_2\}$ forms a copy of F_2 , a contradiction.

Hence each vertex in $\{v_1, v_2, v_3\}$ has no neighbors in one of $L_1 \setminus \{v_4\}, L_2 \setminus \{v_4\}$. Then there are at least two of $\{v_1, v_2, v_3\}$, say v_1, v_2 , such that the neighbors of them in $L \setminus \{v_4\}$ are all in $L_1 \setminus \{v_4\}$. Recall that $\deg(v, L_1 \cup L_2) \geq 0.258n$ for any vertex v of G. Then $|N(v_1, L_1 \setminus \{v_4\}) \cap N(v_2, L_1 \setminus \{v_4\})| \geq 0.516n - |L_1| - 1 > 0$. Let $u \in N(v_1, L_1 \setminus \{v_4\}) \cap N(v_2, L_1 \setminus \{v_4\})$. But then $\{v_1, v_2, v_3, v_4, u\}$ forms a copy of F_2 , a contradiction. Thus the claim holds.

By Claim 23, there exists a vertex $v \in V(G)$ such that d(v) < 0.26n. If we delete v from G, it will destroy at most 0.26n edges and at most one copy of K_4 as G is F_2 -free. Let $G^* = G - v$. Then

$$\left(e(G^*) + c\mathcal{N}_4(G^*) - \left\lfloor \frac{(n-1)^2}{4} \right\rfloor\right) - f(n)
= (e(G^*) - e(G)) + c(\mathcal{N}_4(G^*) - \mathcal{N}_4(G)) - \left\lfloor \frac{(n-1)^2}{4} \right\rfloor + \left\lfloor \frac{n^2}{4} \right\rfloor
\ge \frac{2n-2}{4} - 0.26n - c \ge 0.23n + 1$$

for sufficiently large n. By Theorem 6, $e(G^*) \leq \left\lfloor \frac{(n-1)^2}{4} \right\rfloor + 1$. This implies that $0.23n \leq c\mathcal{N}_4(G^*)$. Let T_1 be the vertex set of all disjoint K_4 in G^* and let $T_2 = V(G^*) \setminus T_1$. Then we have $\frac{0.92n}{c} \leq |T_1| = 4\mathcal{N}_4(G^*) \leq n$. Since G is F_2 -free, it follows that the edges between any two K_4 's are at most four, implying that $e(T_1) \leq \frac{3}{2}|T_1| + 4\binom{|T_1|}{4}$. By Theorem 6 we have $e(T_2) \leq \left\lfloor \frac{(n-1-|T_1|)^2}{4} \right\rfloor + 1$. Note that for any vertex in T_2 and any copy of K_4 in T_1 , there is at most one edge between them. It follows that $e(T_1, T_2) \leq \mathcal{N}_4(G^*)|T_2| = \frac{|T_1|}{4}(n-1-|T_1|)$. Hence,

$$e(G^*) = e(T_1) + e(T_2) + e(T_1, T_2)$$

$$\leq \frac{3}{2} |T_1| + 4 {\binom{|T_1|}{4} \choose 2} + {\binom{(n-1-|T_1|)^2}{4}} + 1 + {\frac{|T_1|}{4} (n-1-|T_1|)}$$

$$\leq \frac{n^2}{4} + {\frac{|T_1|^2}{8}} - {\frac{n|T_1|}{4}} + o(n^2) \leq \frac{n^2}{4} + {\frac{|T_1|(n-2n)}{8}} + o(n^2)$$

$$\leq {\binom{1}{4}} - {\frac{0.92}{8c}} n^2 + o(n^2),$$

contradicting $e(G^*) > e(G) - 0.26n \ge \left\lfloor \frac{n^2}{4} \right\rfloor - o(n^2)$ for sufficiently large n. The proof of Lemma 21 is complete.

Now we prove Theorem 8.

Proof of Theorem 8. Let G be an $(\ell + 1) \cdot F_2$ -free graph on n vertices that maximizes $\mathcal{N}_r(G)$. We distinguish two cases.

Case 1. $3 \le r \le \ell + 2$. Let L be the smallest set in V(G) such that G' = G - L is F_2 -free. Then $|L| \le \ell |F_2|$. Define

$$L_1 = \left\{ v \in L \mid (4\ell + 2) \cdot K_2 \subseteq G'[N(v) \cap V(G')] \right\}$$

and $L_2 = L \setminus L_1$.

Claim 24. $|L_1| = \ell$.

Proof. Suppose first that $|L_1| \geq \ell + 1$, and let $\{v_1, \ldots, v_{\ell+1}\} \subseteq L_1$. We can recursively find $\ell + 1$ disjoint copies of F_2 such that each one is from $G[\{v_i\} \cup (N(v_i) \cap V(G'))]$ for $i = 1, \ldots, \ell + 1$. Indeed, assume we have found $j \leq \ell$ disjoint copies of F_2 . Pick a vertex in L_1 we have not selected, say v_{j+1} . By the definition of L_1 , $G'[N(v_{j+1}) \cap V(G')]$ contains at least $4\ell + 2$ vertex disjoint edges, then there are at least $4\ell + 2 - 4j$ unused vertex disjoint edges in $G'[N(v_{j+1}) \cap V(G')]$. Thus we can find the (j+1)-th copy of F_2 .

Suppose now that $|L_1| \leq \ell - 1$. Since G' is F_2 -free, by Theorem 6 we have $e(G') \leq \left\lfloor \frac{(n-|L|)^2}{4} \right\rfloor + 1$. By Theorem 7, the number of triangles in G' is O(n). Since G' is F_2 -free, it follows that any two K_4 's in G' cannot intersect, implying that the number of the copies of K_4 in G' is O(n). Note that G' is K_5 -free, the r-cliques R in $G - L_2$ can be divided to three cases.

- $|R \cap G'| \leq 1$. The number of this kind of r-cliques is O(n).
- $|R \cap G'| = 2$. The number of this kind of r-cliques is at most $\binom{\ell-1}{r-2} \left(\left\lfloor \frac{(n-|L|)^2}{4} \right\rfloor + 1 \right)$.
- $|R \cap G'| = 3$ or 4. The number of this kind of r-cliques is O(n).

For any vertex $v \in L_2$, $G'[N(v) \cap V(G')]$ is $(4\ell + 2) \cdot K_2$ -free by definition of L_2 . By Erdős-Gallai matching theorem, the number of edges in $G'[N(v) \cap V(G')]$ is O(n). Therefore, the number of r-cliques consisting of the vertex v, i vertices in V(G') and r-1-i vertices in L-v is O(n) for each i=1,2,3,4. Then

$$\mathcal{N}_r(G) \le {\ell-1 \choose r-2} \left\lfloor \frac{(n-|L|)^2}{4} \right\rfloor + O(n)$$

$$< {\ell \choose r-2} \left\lfloor \frac{(n-\ell)^2}{4} \right\rfloor \le \mathcal{N}_r(K_\ell \vee T_2^*(n-\ell))$$

for sufficiently large n, contradicting the choice of G. Thus the claim holds.

Claim 25. $|L_2| = 0$.

Proof. Suppose not, and let $v \in L_2$. By the definition of L, there is a copy, say S, of F_2 containing v in $G - (L \setminus \{v\})$. Since there are exactly ℓ vertices in L_1 from Claim 24, we can recursively find ℓ vertex disjoint copies of F_2 in G - V(S), similarly as in the proof of Claim 24. Together these copies with S form $\ell + 1$ vertex disjoint copies of F_2 , a contradiction. Thus the claim holds.

By Claims 24 and 25, we obtain that $L = L_1$.

Claim 26.
$$e(G') \le \left| \frac{(n-\ell)^2}{4} \right|$$
.

Proof. Suppose, otherwise, that $e(G') = \left\lfloor \frac{(n-\ell)^2}{4} \right\rfloor + 1$ and G' is isomorphic to $T_2^+(n-\ell)$ by Theorem 6. Clearly G' is K_4 -free. Then

$$\mathcal{N}_{r}(G) \\
\leq {\ell \choose r} + {\ell \choose r-1}(n-\ell) + {\ell \choose r-2} \left(\left\lfloor \frac{(n-\ell)^2}{4} \right\rfloor + 1 \right) + {\ell \choose r-3} \left\lceil \frac{n-\ell}{2} \right\rceil \\
< {\ell \choose r} + {\ell \choose r-1}(n-\ell) + {\ell \choose r-2} \left\lfloor \frac{(n-\ell)^2}{4} \right\rfloor + {\ell \choose r-3}(n-\ell-4) \\
= \mathcal{N}_{r}(K_{\ell} \vee T_{2}^{*}(n-\ell))$$

for sufficiently large n, contradicting the choice of G. Thus the claim holds.

By Claim 26 and Lemma 21, we have $e(G') + c\mathcal{N}_4(G') \leq \left\lfloor \frac{(n-\ell)^2}{4} \right\rfloor$ for any constant c and sufficiently large n. Therefore by Lemma 19 we have

$$\mathcal{N}_{r}(G) \\
\leq {\ell \choose r} + {\ell \choose r-1}(n-\ell) + {\ell \choose r-2}e(G') + {\ell \choose r-3}\mathcal{N}_{3}(G') + {\ell \choose r-4}\mathcal{N}_{4}(G') \\
= {\ell \choose r} + {\ell \choose r-1}(n-\ell) + {\ell \choose r-2 \choose 2}(e(G') + c_{1}\mathcal{N}_{3}(G') + e(G') + c_{2}\mathcal{N}_{4}(G')) \\
\leq {\ell \choose r} + {\ell \choose r-1}(n-\ell) + {\ell \choose r-2 \choose 2} \left(\left\lfloor \frac{(n-\ell)^{2}}{4} \right\rfloor + c_{1}(n-\ell-4) + \left\lfloor \frac{(n-\ell)^{2}}{4} \right\rfloor \right) \\
= {\ell \choose r} + {\ell \choose r-1}(n-\ell) + {\ell \choose r-2} \left\lfloor \frac{(n-\ell)^{2}}{4} \right\rfloor + {\ell \choose r-3}(n-\ell-4) \\
= \mathcal{N}_{r}(K_{\ell} \vee T_{2}^{*}(n-\ell)),$$

where $c_1 = 2\binom{\ell}{r-3}/\binom{\ell}{r-2}$ and $c_2 = 2\binom{\ell}{r-4}/\binom{\ell}{r-2}$, and the equality holds if and only if $G = K_\ell \vee T_2^*(n-\ell)$.

Case 2. $r \geq \ell + 3$. By a similar analysis as in Claim 24, we can obtain that $|L_1| \leq \ell$, and the number of copies of r-cliques containing vertices in L_2 is O(n). Recall that the number of copies of K_3 's and K_4 's in G' is O(n). Note that G' is K_5 -free. Then

$$\mathcal{N}_r(G - L_2) \le \binom{|L_1|}{r-3} \mathcal{N}_3(G') + \binom{|L_1|}{r-4} \mathcal{N}_4(G') \le O(n).$$

Hence, $ex(n, K_r, (\ell+1) \cdot F_2) = O(n)$. The proof of Theorem 8 is complete.

References

- N. Alon and C. Shikhelman, Many T copies in H-free graphs, J. Combin. Theory Ser. B 121 (2016) 146–172. https://doi.org/10.1016/j.jctb.2016.03.004
- [2] J.A. Bondy and U.S.R. Murty, Graph Theory, Grad. Texts in Math. 244 (Springer London, 2008).
- [3] T. Dzido, A note on Turán numbers for even wheels, Graphs Combin. 29(5) (2013) 1305–1309.
 https://doi.org/10.1007/s00373-012-1212-9
- [4] P. Erdős and T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar. 10 (1959) 337–356.
 https://doi.org/10.1007/BF02024498
- P. Erdős, Z. Füredi, R.J. Gould and D.S. Gunderson, Extremal graphs for intersecting triangles, J. Combin. Theory Ser. B 64 (1995) 89–100. https://doi.org/10.1006/jctb.1995.1026
- Z. Füredi and D.S. Gunderson, Extremal numbers for odd cycles, Combin. Probab. Comput. 24 (2015) 641–645. https://doi.org/10.1017/S0963548314000601
- [7] J. Gao, Z. Wu and Y. Xu, Counting cliques without generalized theta graphs (2023). arXiv:2311.15289
- [8] D. Gerbner, A. Methuku and M. Vizer, Generalized Turán problems for disjoint copies of graphs, Discrete Math. 342 (2019) 3130–3141. https://doi.org/10.1016/j.disc.2019.06.022
- [9] D. Gerbner, Generalized Turán results for disjoint cliques, Discrete Math. 347(7) (2024) 114024.
 https://doi.org/10.1016/j.disc.2024.114024
- [10] D. Gerbner, E. Győri, A. Methuku and M. Vizer, Generalized Turán problems for even cycles, J. Combin. Theory Ser. B 145 (2020) 169–213. https://doi.org/10.1016/j.jctb.2020.05.005

- [11] J. Hou, C. Yang and Q. Zeng, Counting triangles in graphs without vertex disjoint odd cycles, Discrete Math. 347(7) (2024) 114015. https://doi.org/10.1016/j.disc.2024.114015
- [12] J. Hou, H. Li, X. Liu, L.-T. Yuan and Y. Zhang, A step towards a general density Corrádi-Hajnal theorem, Canad. J. Math. (2025) 1–36. https://doi.org/10.4153/S0008414X25000197
- [13] E.L.L. Liu and J. Wang, The generalized Turán problem of two intersecting cliques, Discuss. Math. Graph Theory 45 (2025) 565–594. https://doi.org/10.7151/dmgt.2544
- [14] J. Ma and Y. Qiu, Some sharp results on the generalized Turán numbers, European J. Combin. 84 (2020) 103026. https://doi.org/10.1016/j.ejc.2019.103026
- [15] V.T. Sós, Remarks on the connection of graph theory, finite geometry and block designs, in: Colloq. Internat. Teorie Combin. II, Roma, 1973, Atti dei Convegni Lincei 17 (Accad. Naz. Lincei, Rome, 1976) 223–233.
- [16] M. Simonovits, A method for solving extremal problems in graph theory, stability problems, in: Theory of Graphs, Proc. Colloq., Tihany, 1966 (Academic Press, New York, 1968) 279–319.
- [17] P. Turán, On an extremal problem in graph theory, Math. Fiz. Lapok 48 (1941) 436–452, in Hungarian.
- [18] C. Xiao and O. Zamora, A note on the Turán number of disjoint union of wheels, Discrete Math. 344(11) (2021) 112570. https://doi.org/10.1016/j.disc.2021.112570
- [19] L.-T. Yuan, Extremal graphs for odd wheels, J. Graph Theory 98 (2021) 691–707. https://doi.org/10.1002/jgt.22727
- [20] F. Zhang, Y. Chen, E. Győri and X. Zhu, Maximum cliques in a graph without disjoint given subgraph, Discrete Math. 347(4) (2024) 113863. https://doi.org/10.1016/j.disc.2023.113863
- [21] X. Zhu, Y. Chen, D. Gerbner, E. Győri and H.H. Karim, *The maximum number of triangles in F_k-free graphs*, European J. Combin. **114** (2023) 103793. https://doi.org/10.1016/j.ejc.2023.103793
- [22] X. Zhu and Y. Chen, Generalized Turán number for linear forests, Discrete Math. 345(10) (2022) 112997. https://doi.org/10.1016/j.disc.2022.112997

Received 3 October 2024 Revised 28 June 2025 Accepted 3 July 2025 Available online 20 August 2025

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License https://creativecommons.org/licenses/by-nc-nd/4.0/