DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2024): 0.8

5-year Journal Impact Factor (2024): 0.7

CiteScore (2024): 2.1

SNIP (2024): 1.162

Discussiones Mathematicae Graph Theory

Article in press


Authors:

B. Chen

Bin Chen

Center for Discrete Mathematics, Fuzhou University

email: cbfzu03@163.com

Title:

Turán number of strong digraphs forbidden at least two triangles

PDF

Source:

Discussiones Mathematicae Graph Theory

Received: 2024-10-15 , Revised: 2025-06-05 , Accepted: 2025-06-10 , Available online: 2025-08-01 , https://doi.org/10.7151/dmgt.2595

Abstract:

Let $\mathcal{F}$ be a family of digraphs. A digraph $D$ is $\mathcal{F}$-free if it has no isomorphic copy of any member of $\mathcal{F}$. The Turán number $ex(n,\mathcal{F})$ is the largest number of arcs of $\mathcal{F}$-free digraphs on $n$ vertices. Bermond, Germa, Heydemann and Sotteau in 1980 [Girth in digraphs, J. Graph Theory, 4 (1980), 337–341] determined the Turán number of $\mathcal{C}_{k}$-free strong digraphs on $n$ vertices for $k\geq2$, where $\mathcal{C}_{k}=\{C_{2}, C_{3},\ldots,C_{k}\}$ and $C_{i}$ is a directed cycle of length $i\in \{2,3,\ldots,k\}$. In this paper, we determine all Turán number of strong digraphs without $t\geq2$ triangles, extending the previous result for the case $k=3$.

Keywords:

Turán number, strong digraph, triangle

References:

  1. J.C. Bermond, A. Germa, M.C. Heydemann and D. Sotteau, Girth in digraphs, J. Graph Theory 4(3) (1980) 337–341.
    https://doi.org/10.1002/jgt.3190040311
  2. W.G. Brown and F. Harary, Extremal digraphs, in: Combinatorial Theory and its Applications, Colloq. Math. Soc. J. Bolyai 4 (1970) 135–198.
  3. W.G. Brown, P. Erdős and M. Simonovits, Extremal problems for directed graphs, J. Combin. Theory Ser. B 15 (1973) 77–93.
    https://doi.org/10.1016/0095-8956(73)90034-8
  4. W.G. Brown, P. Erdős and M. Simonovits, Algorithmic solution of extremal digraph problems, Trans. Amer. Math. Soc. 292 (1985) 421–449.
    https://doi.org/10.1090/S0002-9947-1985-0808730-0
  5. W.G. Brown and M. Simonovits, Extremal multigraph and digraph problems, in: Paul Erdős and His Mathematics, II, G. Halasz, L. Lovasz, M. Simonovits and V.T. Sós (Ed(s)), Bolyai Soc. Math. Stud. 11, (Springer, Berlin, Heidelberg, 2002) 157–203.
  6. S. Cambie, Maximum size of digraphs of given radius, Discrete Math. 346 (2023) 113429.
    https://doi.org/10.1016/j.disc.2023.113429
  7. B. Chen and A. Chang, $3$-free strong digraphs with the maximum size, Graphs Combin. 37 (2021) 2535–2554.
    https://doi.org/10.1007/s00373-021-02373-y
  8. B. Chen and A. Chang, Turán number of $3$-free strong digraphs with out-degree restriction, Discrete Appl. Math. 314 (2022) 252–264.
    https://doi.org/10.1016/j.dam.2022.03.009
  9. B. Chen and X. Hou, Maximum size of $C_{\leq k}$-free strong digraphs with out-degree at least two (2022).
    arXiv: 2211.03129v1
  10. M. Chudnovsky, P. Seymour and B. Sullivan, Cycles in dense digraphs, Combinatorica 28 (2008) 1–18.
    https://doi.org/10.1007/s00493-008-2331-z
  11. P. Dankelmann, Distance and size in digraphs, Discrete Math. 338 (2015) 144–148.
    https://doi.org/10.1016/j.disc.2014.08.028
  12. Z. Huang, Z. Lyu and P. Qiao, A Turán problem on digraphs avoiding distinct walks of a given length with the same endpoints, Discrete Math. 342 (2019) 1703–1717.
    https://doi.org/10.1016/j.disc.2019.02.002
  13. Z. Huang and X. Zhan, Digraphs that have at most one walk of a given length with the same endpoints, Discrete Math. 311 (2011) 70–79.
    https://doi.org/10.1016/j.disc.2010.09.025
  14. Z. Lyu, Digraphs that contain at most $t$ distinct walks of a given length with the same endpoints, J. Comb. Optim. 41 (2021) 762–779.
    https://doi.org/10.1007/s10878-021-00718-0
  15. Z. Lyu, Extremal digraphs avoiding an orientation of the diamond, Graphs Combin. 37 (2021) 1373–1383.
    https://doi.org/10.1007/s00373-021-02324-7
  16. W. Mantel, Problem $28$, Wiskundige Opgaven 10 (1907) 60–61.
  17. J.W. Moon, On subtournaments of a tournament, Canad. Math. Bull. 9 (1966) 297–301.
    https://doi.org/10.4153/CMB-1966-038-7
  18. P. Turán, On an extremal problem in graph theory, Mat. Fiz. Lapok 48 (1941) 436–452, in Hungarian.
  19. X. Zhan, Matrix Theory, Grad. Stud. Math. 147 (Amer. Math. Soc., Providence, Rhode Island, 2013).
    https://doi.org/10.1090/gsm/147

Close