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Abstract

Let F be a family of digraphs. A digraph D is F-free if it has no isomor-
phic copy of any member of F . The Turán number ex(n,F) is the largest
number of arcs of F-free digraphs on n vertices. Bermond, Germa, Heyde-
mann and Sotteau in 1980 [Girth in digraphs, J. Graph Theory, 4 (1980),
337–341] determined the Turán number of Ck-free strong digraphs on n ver-
tices for k ≥ 2, where Ck = {C2, C3, . . . , Ck} and Ci is a directed cycle of
length i ∈ {2, 3, . . . , k}. In this paper, we determine all Turán number of
strong digraphs without t ≥ 2 triangles, extending the previous result for
the case k = 3.
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1. Introduction

The Turán-type problem is one of the most basic and central topics in extremal
graph theory, which involves the determination of the largest number of edges a
graph may have if it contains no isomorphic copy of fixed graphs. This problem
can be traced back to the work of Turán [18] in 1941, known as Turán’s Theorem,
which is a generalization of Mantel’s Theorem due to Mantel [16] in 1907. Since
then, the Turán-type problem has been widely investigated for undirected graphs,
and there are many classic and significant results. Whereas, only a few such
problems have been studied for digraphs. In the following context, we mainly
consider the Turán-type problem in digraphs, and all digraphs considered have
neither loops nor parallel arcs.

Let D be a digraph and F be a family of digraphs. We say D is F-free if it
contains no isomorphic copy of any member of F . The Turán number, denoted
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by ex(n,F), is defined to be the maximum number of arcs of F-free digraphs on
n vertices. An F-free digraph D on n vertices is called a Turán digraph if its size
attains ex(n,F).

The investigation of digraph extremal problem was initiated by Brown and
Harary [2], see, e.g., [3, 4] for more details. Let p and q be two positive integers.
Denote by Dp,q the family of digraphs consisting of q distinct directed walks of
length p with the same initial vertex and terminal vertex. Several results on
Dp,q-free digraphs with respect to different pairs of p and q have been given,
for instance, see [12–14]. In 2021, Lyu [15] gave an extremal result regarding
digraphs excluding an orientation of the diamond. A digraph D is strong if every
vertex of D is reachable from every other vertex of D. There are also several
results in term of the maximum size with given diameter and radius in strong
digraphs and bipartite digraphs, respectively, see e.g., [6, 11].

Let k ≥ 2 be an integer. Denote by Ck = {C2, C3, . . . , Ck}, where Ci is a
directed cycle of length i for i ∈ {2, 3, . . . , k}. In 1980, Bermond, Germa, Heyde-
mann and Sotteau [1] determined the Turán number of Ck-free strong digraphs.

Theorem 1 [1]. ex(n, Ck) = n2+(3−2k)n+k2−k−2
2 .

A triangle is a directed cycle of length three. The above theorem tells us
that the Turán number of strong digraphs without triangles is equal to n2−n+4

2 ,
i.e., the special case for k = 3. In 2021, Chen and Chang [7] characterized all

triangle-free strong digraphs on n vertices with size n2−n+4
2 and proved such di-

graphs meet a conjecture proposed by Chudnovsky, Seymour and Sullivan [10].
The same authors [8] investigated the Turán number of triangle-free strong di-
graphs on n vertices with out-degree greater than one, and they showed that such
Turán number is one of

(
n−1
2

)
− 1 and

(
n
2

)
− 2 by using critical properties in [7].

Additionally, they gave the exact value for n = 7, 8, 9. Moving on, Chen and
Hou [9] further determined the exact Turán number for all n ≥ 10.

Inspired by above work, we focus on the Turán-type problem in strong di-
graphs. In this paper, we present the exact Turán number of strong digraphs
without t ≥ 2 triangles, which extends the case k = 3 of Theorem 1. We first
show that such Turán number is equal to

(
n
2

)
if there are two arc disjoint trian-

gles by constructing a desirable strong tournament. Let Bt be the union of t ≥ 2
triangles sharing a unique common arc. We further determine the Turán number
of Bt-free strong digraphs on n vertices.

Theorem 2.

ex(n,Bt) =


(
n

2

)
−
⌊n
2

⌋
+ 1, if t = 2,(

n

2

)
, if t ≥ 3.
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The rest of this paper is organized as follows. In next section, we give some
notation and auxiliary results. In Section 3, we will present our main results.
Finally, we conclude this paper with a few remarks.

2. Notation

For a digraph D, we use u → v to mean (u, v) ∈ A(D) and u ↛ v to mean
(u, v) /∈ A(D). Every pair of distinct vertices u, v are adjacent if u → v or
v → u, otherwise they are nonadjacent. Let N+

D (v) = {u ∈ V (D) : v → u}
be the out-neighborhood of v and N−

D (v) = {u ∈ V (D) : u → v} be the in-
neighborhood of v. The cardinality of N+

D (v) (respectively, N−
D (v)) is the out-

degree d+D(v) (respectively, in-degree d−D(v)) of v. Let ND(v) = N+
D (v)∪N−

D (v) be
the neighborhood of v and we denote dD(v) = |ND(v)| to be the degree of v. The
vertices in N+

D (v), N−
D (v) and ND(v) are called out-neighbors, in-neighbors and

neighbors of v, respectively. A vertex v of D is called a sink (respectively, source)
if it has no out-neighbor (respectively, in-neighbor). Let ∆+(D) = max{d+D(v) :
v ∈ V (D)} be the maximum out-degree of D and δ+(D) = min{d+D(v) : v ∈
V (D)} be the minimum out-degree of D. Analogously, we denote by ∆−(D) the
maximum in-degree, δ−(D) the minimum in-degree, ∆(D) the maximum degree
and δ(D) the minimum degree of D, respectively.

A directed walk (respectively, directed path) of length k in D is a sequence
of vertices (respectively, distinct vertices) x0, x1, . . . , xk such that xi → xi+1 for
0 ≤ i ≤ k− 1. We call x0 an initial vertex and xk a terminal vertex, respectively.
Both x0 and xk are called end vertices. A directed cycle of length k of D is a
sequence of different vertices x0, x1, . . . , xk−1 such that xi → xi+1 for 0 ≤ i ≤ k−2
and xk−1 → x0. By ⟨x0, x1, . . . , xk−1⟩ we mean such a directed cycle.

A digraph H is a subdigraph of a digraph D if V (H) ⊆ V (D) and A(H) ⊆
A(D). For any subdigraph H of D, we denote N+

H (v) = N+
D (v) ∩ V (H) and

N−
H (v) = N−

D (v) ∩ V (H). Given a set X ⊆ V (D), let D[X] be the subdigraph
induced by X in D. Let D − X be the subdigraph D[V (D)\X]. For any two
disjoint vertex sets U and W , we denote A(U,W ) = {(u,w) : u ∈ U and w ∈ W}.

A digraph D is acyclic if there exists no directed cycle. Let β(D) be the
size of the smallest subset X ⊆ A(D) such that D\X is acyclic. Note that
every digraph D satisfies that β(D) = 0 if D is acyclic and β(D) ≥ 1 if D is
strong. A maximal strong subdigraph of D is called a strong component of D.
If D is not a strong digraph, then D has at least two strong components. These
strong components, denoted by D1, D2, . . . , Dh, have an acyclic ordering such
that A(V (Dj), V (Di)) = ∅, where h ≥ 2 and 1 ≤ i < j ≤ h. Throughout this
paper we label the strong components of a digraph D in accordance with this
acyclic ordering.
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A tournament on n vertices, denoted by Tn, is a digraph in which any two
distinct vertices are adjacent. A digraph D is transitive if, for every pair u → v
and v → w with u ̸= w, we have u → w. Notice that a tournament is transitive
(transitive tournament) if and only if it is acyclic.

A classic result of Moon (Moon’s Theorem [17]) states that any strong Tn is
pancyclic, that is, it contains directed cycles of all lengths 3, 4, . . . , n. We need
the following auxiliary lemmas, which will play important roles in the proof of
our main results.

Lemma 3. Any strong T4 has a B2.

Proof. Denote by V (T4) = {v1, v2, v3, v4}. By Moon’s Theorem, there is a C4 in
any strong T4, and we may assume without loss of generality that C4 = ⟨v1, v2,
v3, v4⟩. Up to isomorphism, we can further assume that v1 → v3. If v2 → v4, then
⟨v1, v2, v4⟩ and ⟨v1, v3, v4⟩ are two triangles with a unique common arc (v4, v1).
Analogously, if v4 → v2, then ⟨v1, v3, v4⟩ and ⟨v2, v3, v4⟩ are two triangles, and
(v3, v4) is their common arc. Thereby, the lemma follows.

Lemma 4. Let D be a B2-free strong digraph on n ≥ 4 vertices. Then |A(D)| ≤(
n
2

)
− 1.

Proof. On the contrary, we get |A(D)| =
(
n
2

)
. It implies that D is a strong

tournament on n vertices. There must be a C4 in D. Hence, D contains a strong
T4 since D is a tournament, which leads to a contradiction by Lemma 3. The
lemma thus follows.

Lemma 5. Let D be a B2-free strong digraph on n ≥ 4 vertices. Then δ(D) ≤
n− 2.

Proof. By Lemma 4, we have |A(D)| ≤
(
n
2

)
− 1. Consequently, the following

holds ∑
v∈V

dD(v) = 2|A(D)| ≤ 2

((
n

2

)
− 1

)
= n2 − n− 2.

This yields that δ(D) ≤ n − 1 − 2
n . Since n ≥ 4 and δ(D) is an integer, we get

δ(D) ≤ n− 2.

3. Main Results

Let Φ be a digraph on n vertices such that V (Φ) = {v1, v2, . . . , vn} and A(Φ)
consists of all arcs (vi, vj) for 1 ≤ i < j ≤ n. Observe that Φ is a transitive
tournament.
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3.1. Constructions of Γ and Θ

In this subsection, we will construct two strong digraphs Γ and Θ.

Construction of Γ. Let Γ be a digraph obtained from Φ by reversing the arc
between its sink and source. That is, Γ is a digraph with vertex set V (Γ) =
{v1, v2, . . . , vn} and arc set A(Γ) = ({(vi, vj) : 1 ≤ i < j ≤ n}\(v1, vn)) ∪ (vn, v1).

One can see that Γ is a strong tournament on n vertices. We now demonstrate
that Γ contains no two arc disjoint triangles. Indeed, if there exist two arc disjoint
triangles in Γ, then we must delete at least two arcs of Γ to guarantee that the
resulting digraph is acyclic, implying that β(Γ) ≥ 2. On the other hand, it is
easily seen that Γ\(vn, v1) is acyclic, yielding that β(Γ) = 1. Hence, Γ contains
no two arc disjoint triangles, and Γ is a Turán digraph of size

(
n
2

)
.

Construction of Θ. Let Θ be a digraph obtained from Φ by reversing all arcs
of (vi, vi+1) for i ∈ {1, 2, . . . , n − 1}. In other words, Θ is a digraph with ver-
tex set V (Θ) = {v1, v2, . . . , vn} and arc set A(Θ) = ({(vi, vj) : 1 ≤ i < j ≤
n}\{(vi, vi+1) : 1 ≤ i ≤ n− 1}) ∪ {(vi+1, vi) : 1 ≤ i ≤ n− 1}.

Note that Θ is a strong tournament on n vertices. We shall illustrate that Θ
has no isomorphic copy of Bt for t ≥ 3. Suppose, on the contrary, that Θ contains
a Bt for t ≥ 3. There must exist a common arc, denoted by (u, v), of these t
triangles. Clearly, |N+

Θ (v)∩N−
Θ (u)| ≥ t ≥ 3. If (u, v) ∈ {(vi+1, vi) : 1 ≤ i ≤ n−1},

then |N+
Θ (v)∩N−

Θ (u)| ≤ 2, which leads to a contradiction. It suffices to consider
that (u, v) ∈ A(Θ)\({(vi+1, vi) : 1 ≤ i ≤ n − 1}). Assume that u = vα and
v = vβ, where 1 ≤ α ≤ β − 2 ≤ n − 2. By the construction of Θ, one can see
that N−

Θ (vα) = {v1, v2, . . . , vα−2, vα+1} and N+
Θ (vβ) = {vβ−1, vβ+1, vβ+2, . . . , vn}.

Observe that N+
Θ (v)∩N−

Θ (u) ⊆ {vα+1}, which follows that |N+
Θ (v)∩N−

Θ (u)| ≤ 1.
This indicates that (u, v) /∈ A(Θ)\({(vi+1, vi) : 1 ≤ i ≤ n − 1}), i.e., Θ contains
no Bt for t ≥ 3. Therefore, we obtain that for t ≥ 3, ex(n,Bt) =

(
n
2

)
and Θ is a

Bt-free Turán digraph.

3.2. Upper bound of ex(n,B2)

In this subsection, our main goal is to give the upper bound of ex(n,B2).

Theorem 6. Let D be a B2-free strong digraph on n vertices. Then

|A(D)| ≤


n2 − 2n+ 3

2
, if n is odd,

n2 − 2n+ 2

2
, if n is even.

Proof. We proceed by induction on n. When n = 3, D is a triangle and
|A(D)| = 3. When n = 4, by Lemma 4, |A(D)| ≤ 5 holds. Similarly, when n = 5,
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we also have |A(D)| ≤ 9 by applying Lemma 4. Hence, we may assume that
n ≥ 6. Suppose Theorem 6 holds for all |V (D)| < n. Let v be a vertex of D of
minimum degree δ(D). Then dD(v) = δ(D) ≤ n − 2 by Lemma 5. If D − v is
strong, then D − v is a B2-free strong digraph on n − 1 vertices. One deduces

that |A(D)| = |A(D − v)| + dD(v) ≤ (n−1)2−2(n−1)+3
2 + n − 2 = n2−2n+2

2 and we
are done.

As a consequence, it suffices to consider the case that D − v is not strong.
Then D−v contains k strong components, denoted by D1, D2, . . . , Dk, satisfying
that A(V (Dj), V (Di)) = ∅, where k ≥ 2 and 1 ≤ i < j ≤ k. Denote by
X0 = V (D2) ∪ V (D3) ∪ · · · ∪ V (Dk−1), X1 = V (D1) and Xk = V (Dk). In
addition, let D0 = D[X0]. Notice that N+

D (v) ∩ X1 ̸= ∅ and N−
D (v) ∩ Xk ̸= ∅

since D is strong.
It is convenient to write D̃0, D̃1 and D̃k for D[X0 ∪ {v}], D[X1 ∪ {v}] and

D[Xk ∪ {v}], respectively. Let |X0| = n0, |X1| = n1 and |Xk| = nk.
We divide the rest of the proof into the following two parts.

Part A. k = 2, i.e., D − v has exactly two strong components.

Proof. Note that X0 = ∅. We have n = n1+n2+1, and either ni ≥ 3 or ni = 1,
where i ∈ {1, 2}. Here to proceed with this case, we consider the following four
cases.

Case 1. Both D̃1 and D̃2 are strong.

We divide the discussion into four cases.

Subcase 1.1. If both n1 and n2 are even, then n is odd. Hence, we have

|A(D)| =
∑
i=1,2

|A(Di)|+ |A(X1, X2)|+ dD(v)

≤
∑
i=1,2

n2
i − 2ni + 2

2
+ n1n2 + n− 2 =

n2 − 2n+ 3

2
.

Subcase 1.2. If n1 is even and n2 is odd, then n is even.

(1) If |A(X1, X2)| ≤ n1n2 − 1, then

|A(D)| =
∑
i=1,2

|A(Di)|+ |A(X1, X2)|+ dD(v)

≤
∑
i=1,2

n2
i − 2ni + 2

2
+

1

2
+ n1n2 − 1 + n− 2 =

n2 − 2n+ 2

2
.

(2) For |A(X1, X2)| = n1n2, we will show that dD(v) ≤ n− 3. Since N+
D (v) ∩X1

̸= ∅, we obtain that d+D1
(v) ≥ 1. Assume that d+D1

(v) ≥ 2. We can find a B2 since
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N−
D (v) ∩ X2 ̸= ∅ and |A(X1, X2)| = n1n2, a contradiction. Hence, d+D1

(v) = 1

holds. Analogously, d−D2
(v) = 1 holds. Denote by N+

D1
(v) = {x} and N−

D2
(v) =

{y}. We select a vertex u ∈ X1 such that x → u. Since |A(X1, X2)| = n1n2, then
x → y and u → y. Observe that v ↛ u since N+

D1
(v) = {x} and u ̸= x. One

easily checks that u ↛ v since D is B2-free. Similarly, there is a vertex w ∈ X2

such that w → y, v ↛ w and w ↛ v. We thus obtain that dD(v) ≤ n− 3.

Thereby, we deduce that

|A(D)| =
∑
i=1,2

|A(Di)|+ |A(X1, X2)|+ dD(v)

≤
∑
i=1,2

n2
i − 2ni + 2

2
+

1

2
+ n1n2 + n− 3 =

n2 − 2n+ 2

2
.

Subcase 1.3. If n1 is odd and n2 is even, then n is even. Similar to the proof
of Subcase 1.2, we can obtain that |A(D)| ≤ n2−2n+2

2 . We omit the proof and
leave it to the reader to verify.

Subcase 1.4. If both n1 and n2 are odd, then n is odd. Notice that both
|V (D̃1)| and |V (D̃2)| are even. Thus, the following holds

|A(D)| =
∑
i=1,2

|A(D̃i)|+ |A(X1, X2)|

≤
∑
i=1,2

(ni + 1)2 − 2(ni + 1) + 2

2
+ n1n2 =

n2 − 2n+ 3

2
.

Case 2. D̃1 is strong and D̃2 is not strong.

Note that n1 ≥ 3. We divide the discussion into the following two cases.

Subcase 2.1. n2 ≥ 3. Since D is B2-free, then

|A(D)| = |A(D̃1)|+ |A(D2)|+ |A(X1, X2)|+ d−D2
(v)

≤ (n1 + 1)2 − 2(n1 + 1) + 3

2
+

n2
2 − 2n2 + 3

2

+ n1n2 − (d−D2
(v)− 1) + d−D2

(v)

=
n2 − 2n+ 8− 2n2

2
≤ n2 − 2n+ 2

2

Subcase 2.2. n2 = 1.
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(1) If n1 is even, then n is even. We have

|A(D)| = |A(D1)|+ |A(X1, X2)|+ dD(v)

≤ n2
1 − 2n1 + 2

2
+ n1 + n− 2 =

n2 − 2n+ 2

2
.

(2) If n1 is odd, then n is odd. The following holds

|A(D)| = |A(D̃1)|+ |A(X1, X2)|+ d−D2
(v)

≤ (n1 + 1)2 − 2(n1 + 1) + 2

2
+ n1 + 1 =

n2 − 2n+ 3

2
.

Case 3. D̃1 is not strong and D̃2 is strong.

Analogous to the proof of Case 2, we omit the proof and leave it to the reader
to verify.

Case 4. Both D̃1 and D̃2 are not strong.

Notice that n ≥ 6, it suffices to consider the following three cases.

Subcase 4.1. If n1 ≥ 3 and n2 = 1, then

|A(D)| = |A(D1)|+ |A(X1, X2)|+ dD(v)

≤ n2
1 − 2n1 + 3

2
+ n1 − (d+D1

(v)− 1) + d+D1
(v) + 1

=
n2 − 4n+ 11

2
≤ n2 − 2n− 1

2
.

Subcase 4.2. If n1 = 1 and n2 ≥ 3, then |A(D)| ≤ n2−2n−1
2 according to the

calculations similar to Subcase 4.1.

Subcase 4.3. If both n1 and n2 are at least 3, then n ≥ 7.

(1) When d+D1
(v) = 1, we obtain that

|A(D)| =
∑
i=1,2

|A(Di)|+ |A(X1, X2)|+ dD(v)

≤
∑
i=1,2

n2
i − 2ni + 3

2
+ n1n2 − (d−D2

(v)− 1) + d−D2
(v) + 1

=
n2 − 4n+ 13

2
≤ n2 − 2n− 1

2
.

(2) When d+D1
(v) ≥ 2, we consider two vertices x1, x2 of N+

D1
(v). If A({x1}, X2)

= ∅, then |A(X1, X2)| ≤ n1n2− d−D2
(v). For A({x1}, X2) ̸= ∅, we choose a vertex
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y1 ∈ N−
D2

(v) such that x1 → y1. It is easily seen that A({x1}, X2\{y}) = ∅ and

x2 ↛ y1 since D is B2-free. Thus, we obtain that |A(X1, X2))| ≤ n1n2 − d−D2
(v).

Therefore, we have

|A(D)| =
∑
i=1,2

|A(Di)|+ |A(X1, X2)|+ dD(v)

≤
∑
i=1,2

n2
i − 2ni + 3

2
+ n1n2 − d−D2

(v) + dD(v)

≤
n2 − 4n+ 9 + 2d+D1

(v)

2
≤ n2 − 2n+ 1

2
.

This completes the proof of Part A. □

Part B. D − v has k ≥ 3 strong components.

Proof. Note that n = n0 + n1 + nk + 1 and n0 ≥ 1. We use R0 (respectively,
R1 and Rk) and S0 (respectively, S1 and Sk) to denote N+

D0
(v) (respectively,

N+
D1

(v) and N+
Dk

(v)) and N−
D0

(v) (respectively, N−
D1

(v) and N−
Dk

(v)). Let ri =
|Ri| (respectively, si = |Si|) for i ∈ {0, 1, k}.

We proceed with this case by considering the following four cases.

Case 1. Both D̃1 and D̃k are strong.

Observe that both D1 and Dk are strong. We divide the discussion into four
cases.

Subcase 1.1. Both n1 and nk are even.

(1) |A(R1, Sk)| = r1sk. We demonstrate that dD1(v) ≤ n1−1 and dDk
(v) ≤ nk−1.

First of all, we verify that dD1(v) ≤ n1−1. On the contrary, we have dD1(v) = n1.
It is obvious that A(R1, S1) ̸= ∅ since D1 is strong. Let a ∈ R1 and b ∈ S1 such
that a → b. Select a vertex c ∈ Sk. As |A(R1, Sk)| = r1sk, we have a → c. There
must be a B2 in D[{v, a, b, c}], contradicting the fact that D is B2-free. This
proves dD1(v) ≤ n1 − 1. Similarly, we can also get dDk

(v) ≤ nk − 1. Let u be a
vertex of X0. If u → v (respectively, v → u), then a ↛ u (respectively, u ↛ c)
because D is B2-free. We thus have

|A(D)| =
∑

i=0,1,k

|A(Di)|+
∑

i∈{0,1},j∈{0,k},i ̸=j

|A(Xi, Xj)|+ dD(v)

≤
∑
i=1,k

n2
i − 2ni + 2

2
+

(
n0

2

)
+ n0(n1 + nk) + n1nk + n1 + nk − 2

=
n2 − 3n+ n1 + nk + 2

2
≤ n2 − 2n

2
.
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(2) |A(R1, Sk)| ≤ r1sk − 1. If |A(D̃1)| = (n1+1)2−2(n1+1)+3
2 , then dD1(v) ≥ n1

since |A(D1)| ≤
n2
1−2n1+2

2 , implying that dD1(v) = n1. Since D1 is strong, there
exist a ∈ R1 and b ∈ S1 such that a → b. Thus, ⟨v, a, b⟩ is a triangle. For any

vertex p ∈ S0, we have a ↛ p since D is B2-free. Analogously, if |A(D̃k)| =
(nk+1)2−2(nk+1)+3

2 , then dDk
(v) = nk holds. There is a triangle ⟨v, c, d⟩ such that

c ∈ Rk and d ∈ Sk. For any vertex q ∈ R0, q ↛ d holds.

Due to D is B2-free, for any vertex x ∈ R1 (respectively, y ∈ S1), x dominates
at most one vertex of S0 (respectively, y is dominated by at most one vertex of
R0).

We divide the discussion into the following four cases.

(i) If |A(D̃1)| = (n1+1)2−2(n1+1)+3
2 and |A(D̃k)| = (nk+1)2−2(nk+1)+3

2 , then

|A(D)| =
∑
i=1,k

|A(D̃i)|+ |A(D0)|+
∑

i∈{0,1},j∈{0,k},i ̸=j

|A(Xi, Xj)|+ dD0(v)

≤
∑
i=1,k

(ni + 1)2 − 2(ni + 1) + 3

2
+

(
n0

2

)
+ n0(n1 + nk) + n1nk − 1

=
n2 − 3n+ n1 + nk + 4

2
≤ n2 − 2n+ 2

2
.

(ii) If |A(D̃1)| = (n1+1)2−2(n1+1)+3
2 and |A(D̃k)| ≤ (nk+1)2−2(nk+1)+3

2 − 1, then

|A(D)| =
∑
i=1,k

|A(D̃i)|+ |A(D0)|+
∑

i∈{0,1},j∈{0,k},i ̸=j

|A(Xi, Xj)|+ dD0(v)

≤
∑
i=1,k

(ni + 1)2 − 2(ni + 1) + 3

2
−1+

(
n0

2

)
+ n0(n1 + nk) + n1nk − 1+1

=
n2 − 3n+ n1 + nk + 4

2
≤ n2 − 2n+ 2

2
.

(iii) If |A(D̃1)| ≤ (n1+1)2−2(n1+1)+3
2 − 1 and |A(D̃k)| = (nk+1)2−2(nk+1)+3

2 , similar

to (ii), we also have |A(D)| ≤ n2−2n+2
2 .

(iv) If |A(D̃1)| ≤ (n1+1)2−2(n1+1)+3
2 −1 and |A(D̃k)| ≤ (nk+1)2−2(nk+1)+3

2 −1, then
the following holds
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|A(D)| =
∑
i=1,k

|A(D̃i)|+ |A(D0)|+
∑

i∈{0,1},j∈{0,k},i ̸=j

|A(Xi, Xj)|+ dD0(v)

≤
∑
i=1,k

(
(ni + 1)2 − 2(ni + 1) + 3

2
− 1

)

+

(
n0

2

)
+ n0(n1 + nk) + n1nk − 1 + 2

=
n2 − 3n+ n1 + nk + 4

2
≤ n2 − 2n+ 2

2
.

Subcase 1.2. n1 is even and nk is odd.

(1) |A(R1, Sk)| = r1sk. Let u be a vertex of X0. Analogous to Subcase 1.1, if
u → v (respectively, v → u), then a ↛ u (respectively, u ↛ c) since D is B2-free,
where a ∈ R1 and c ∈ Sk. Thus, we obtain that

|A(D)| =
∑
i=1,k

|A(D̃i)|+ |A(D0)|+
∑

i∈{0,1},j∈{0,k},i ̸=j

|A(Xi, Xj)|+ dD0(v)

≤
∑
i=1,k

(ni + 1)2 − 2(ni + 1) + 3

2
− 1

2
+

(
n0

2

)
+ n0(n1 + nk) + n1nk

=
n2 − 3n+ n1 + nk + 5

2
.

Note that n = n0 + n1 + nk + 1 and n0 ≥ 1 since k ≥ 3. If n0 = 1, then n is
odd and |A(D)| ≤ n2−2n+3

2 . If n0 ≥ 2, then n ≥ n1 + nk + 3. This follows that

|A(D)| ≤ n2−2n+2
2 .

(2) |A(R1, Sk)| ≤ r1sk − 1.

(i) |A(D̃1)| = (n1+1)2−2(n1+1)+3
2 . Analogous to the above discussion, we have

|A(D)| =
∑
i=1,k

|A(D̃i)|+ |A(D0)|+
∑

i∈{0,1},j∈{0,k},i ̸=j

|A(Xi, Xj)|+ dD0(v)

≤
∑
i=1,k

(ni + 1)2 − 2(ni + 1) + 3

2
− 1

2
+

(
n0

2

)
+ n0(n1 + nk) + n1nk −1+1

=
n2 − 3n+ n1 + nk + 5

2
.

If n0 = 1, then n is odd and |A(D)| ≤ n2−2n+3
2 . If n0 ≥ 2, then n ≥ n1+nk+3

and |A(D)| ≤ n2−2n+2
2 .
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(ii) |A(D̃1)| ≤ (n1+1)2−2(n1+1)+3
2 − 1. We consider the following two cases.

(a1) If n0 = 1, then

|A(D)|

=
∑
i=1,k

|A(D̃i)|+ |A(D0)|+
∑

i∈{0,1},j∈{0,k},i ̸=j

|A(Xi, Xj)|+ dD0(v)

≤
∑
i=1,k

(ni + 1)2 − 2(ni + 1) + 2

2
− 1

2
+

(
n0

2

)
+ n0(n1 + nk) + n1nk − 1 + 1

=
n2 − 3n+ n1 + nk + 3

2
=

n2 − 2n+ 1

2
.

(a2) If n0 ≥ 2, then

|A(D)|

=
∑
i=1,k

|A(D̃i)|+ |A(D0)|+
∑

i∈{0,1},j∈{0,k},i ̸=j

|A(Xi, Xj)|+ dD0(v)

≤
∑
i=1,k

(ni + 1)2 − 2(ni + 1) + 2

2
− 1

2
+

(
n0

2

)
+ n0(n1 + nk) + n1nk − 1 + 2

=
n2 − 3n+ n1 + nk + 5

2
≤ n2 − 2n+ 2

2
.

Subcase 1.3. n1 is odd and nk is even.

Similar to the proof of Subcase 1.2, we omit specific calculations.

Subcase 1.4. Both n1 and nk are odd.

(1) |A(R1, Sk)| = r1sk. The following holds

|A(D)| =
∑
i=1,k

|A(D̃i)|+ |A(D0)|+
∑

i∈{0,1},j∈{0,k},i ̸=j

|A(Xi, Xj)|+ dD0(v)

≤
∑
i=1,k

(ni + 1)2 − 2(ni + 1) + 2

2
+

(
n0

2

)
+ n0(n1 + nk) + n1nk

=
n2 − 3n+ n1 + nk + 4

2
≤ n2 − 2n+ 2

2
.

(2) |A(R1, Sk)| ≤ r1sk − 1.
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(i) When n0 = 1, we have n = n1 + nk + 2. Then we obtain that

|A(D)| =
∑
i=1,k

|A(D̃i)|+ |A(D0)|+
∑

i∈{0,1},j∈{0,k},i ̸=j

|A(Xi, Xj)|+ dD0(v)

≤
∑
i=1,k

(ni + 1)2 − 2(ni + 1) + 2

2
+

(
n0

2

)
+ n0(n1 + nk) + n1nk − 1 + 1

=
n2 − 3n+ n1 + nk + 4

2
=

n2 − 2n+ 2

2
.

(ii) When n0 ≥ 2, we have

|A(D)| =
∑
i=1,k

|A(D̃i)|+ |A(D0)|+
∑

i∈{0,1},j∈{0,k},i ̸=j

|A(Xi, Xj)|+ dD0(v)

≤
∑
i=1,k

(ni + 1)2 − 2(ni + 1) + 2

2
+

(
n0

2

)
+ n0(n1 + nk) + n1nk − 1 + 2

=
n2 − 3n+ n1 + nk + 6

2
.

If n0 = 2, then n = n1 + nk + 3 and n is odd, |A(D)| ≤ n2−2n+3
2 holds. If

n0 ≥ 3, then n ≥ n1 + nk + 4, yielding that |A(D)| ≤ n2−2n+2
2 .

Case 2. D̃1 is strong and D̃k is not strong.

We divide the discussions into nk = 1 and nk ≥ 3.

Subcase 2.1. nk = 1. Obviously, n = n0 + n1 + 2 holds and v is dominated
by the vertex in Dk since D is strong.

(1) When n1 is even.

(i) If |A(D̃1)| ≤ (n1+1)2−2(n1+1)+3
2 − 1 and |A(R1, Sk)| = r1sk, then

|A(D)| = |A(D̃1)|+ |A(D0)|+
∑

i∈{0,1},j∈{0,k},i ̸=j

|A(Xi, Xj)|+ dD0(v) + dDk
(v)

≤ (n1 + 1)2 − 2(n1 + 1) + 3

2
− 1 +

(
n0

2

)
+ n0(n1 + 1) + n1 + 1

=
n2 − 3n+ n1 + 4

2
≤ n2 − 2n+ 1

2
.
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(ii) If |A(D̃1)| ≤ (n1+1)2−2(n1+1)+3
2 − 1 and |A(R1, Sk)| ≤ r1sk − 1, then

|A(D)| = |A(D̃1)|+ |A(D0)|+
∑

i∈{0,1},j∈{0,k},i ̸=j

|A(Xi, Xj)|+ dD0(v) + dDk
(v)

≤ (n1 + 1)2 − 2(n1 + 1) + 3

2
− 1 +

(
n0

2

)
+ n0(n1 + 1) + n1 − 1 + 2 + 1

=
n2 − 3n+ n1 + 6

2
.

If n0 = 1, then n is odd since n = n1+3. Thereby, we have |A(D)| ≤ n2−2n+3
2 .

If n0 ≥ 2, then n ≥ n1 + 4, implying that |A(D)| ≤ n2−2n+2
2 .

(iii) If |A(D̃1)| = (n1+1)2−2(n1+1)+3
2 , then there must exist a triangle passing

through v in D̃1. Denote such triangle by ⟨v, a, b⟩ and let Xk = {c}. Since D is
a B2-free strong digraph, we thus have a ↛ c. Let u be a vertex of X0. Notice
that if u → v, then a ↛ u. Moreover, c is dominated by at most one vertex of
R0 since D is a B2-free. Therefore, we deduce that

|A(D)| = |A(D̃1)|+ |A(D0)|+
∑

i∈{0,1},j∈{0,k},i ̸=j

|A(Xi, Xj)|+ dD0(v) + dDk
(v)

≤ (n1 + 1)2 − 2(n1 + 1) + 3

2
+

(
n0

2

)
+ n0(n1 + 1) + n1 − 1 + 1

=
n2 − 3n+ n1 + 4

2
≤ n2 − 2n+ 1

2
.

(2) When n1 is odd.

(i) If |A(R1, Sk)| = r1sk, then

|A(D)| = |A(D̃1)|+ |A(D0)|+
∑

i∈{0,1},j∈{0,k},i ̸=j

|A(Xi, Xj)|+ dD0(v) + dDk
(v)

≤ (n1 + 1)2 − 2(n1 + 1) + 2

2
+

(
n0

2

)
+ n0(n1 + 1) + n1 + 1

=
n2 − 3n+ n1 + 5

2
≤ n2 − 2n+ 2

2
.

(ii) If |A(R1, Sk)| ≤ r1sk − 1 and n0 = 1, then we have
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|A(D)| = |A(D̃1)|+ |A(D0)|+
∑

i∈{0,1},j∈{0,k},i ̸=j

|A(Xi, Xj)|+ dD0(v) + dDk
(v)

≤ (n1 + 1)2 − 2(n1 + 1) + 2

2
+

(
n0

2

)
+ n0(n1 + 1) + n1 − 1 + 1 + 1

=
n2 − 3n+ n1 + 5

2
≤ n2 − 2n+ 2

2
.

(iii) If |A(R1, S2)| ≤ r1s2 − 1 and n0 ≥ 2, then

|A(D)| = |A(D̃1)|+ |A(D0)|+
∑

i∈{0,1},j∈{0,k},i ̸=j

|A(Xi, Xj)|+ dD0(v) + dDk
(v)

≤ (n1 + 1)2 − 2(n1 + 1) + 2

2
+

(
n0

2

)
+ n0(n1 + 1) + n1 − 1 + 1 + 2

=
n2 − 3n+ n1 + 7

2
.

If n0 = 2, then n = n1 + 4 and n is odd. Consequently, we get |A(D)| ≤
n2−2n+3

2 . If n0 ≥ 3, then n ≥ n1 + 5, which follows that |A(D)| ≤ n2−2n+2
2 .

Subcase 2.2. nk ≥ 3. Let x be a vertex of R1. Notice that such vertex exists
since D is strong. As D is B2-free, x dominates at most one vertex of S0 ∪S2. It
is clear that |A(X1, Xk)| ≤ n1nk − (sk − 1). Analogously, for any vertex y of Sk,
y is dominated by at most one vertex of R0 ∪R1.

(1) n1 is even.

(i) If |A(D̃1)| ≤ (n1+1)2−2(n1+1)+3
2 − 1 and |A(R1, Sk)| = r1sk, then

|A(D)|

= |A(D̃1)|+
∑
i=0,k

|A(Di)|+
∑

i∈{0,1},j∈{0,k},i ̸=j

|A(Xi, Xj)|+ dD0(v) + dDk
(v)

≤ (n1 + 1)2 − 2(n1 + 1) + 1

2
+

n2
k − 2nk + 3

2
+

(
n0

2

)
+ n0(n1 + nk) + n1nk + 1

=
n2 − 3n+ n1 − nk + 7

2
≤ n2 − 2n+ 5− 2nk

2
≤ n2 − 2n− 1

2
.
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(ii) If |A(D̃1)| ≤ (n1+1)2−2(n1+1)+3
2 − 1 and |A(R1, Sk)| ≤ r1sk − 1, then

|A(D)|

= |A(D̃1)|+
∑
i=0,k

|A(Di)|+
∑

i∈{0,1},j∈{0,k},i ̸=j

|A(Xi, Xj)|+ dD0(v) + dDk
(v)

≤ (n1 + 1)2 − 2(n1 + 1) + 1

2
+

n2
k − 2nk + 3

2
+

(
n0

2

)
+ n0(n1 + nk) + n1nk + 2

=
n2 − 3n+ n1 − nk + 9

2
≤ n2 − 2n+ 7− 2nk

2
≤ n2 − 2n+ 1

2
.

(iii) If |A(D̃1)| = (n1+1)2−2(n1+1)+3
2 , then there exists a triangle passing through

v in D̃1. Similarly, we get that

|A(D)|

= |A(D̃1)|+ |A(D0)|+
∑

i∈{0,1},j∈{0,k},i ̸=j

|A(Xi, Xj)|+ dD0(v) + dDk
(v)

≤ (n1 + 1)2 − 2(n1 + 1) + 3

2
+

n2
k − 2nk + 3

2
+

(
n0

2

)
+ n0(n1 + nk) + n1nk + 1

=
n2 − 3n+ n1 − nk + 9

2
≤ n2 − 2n+ 1

2
.

(2) n1 is odd. We obtain that

|A(D)|

= |A(D̃1)|+ |A(D0)|+
∑

i∈{0,1},j∈{0,k},i ̸=j

|A(Xi, Xj)|+ dD0(v) + dDk
(v)

≤ (n1 + 1)2 − 2(n1 + 1) + 2

2
+

n2
k − 2nk + 3

2
+

(
n0

2

)
+ n0(n1 + nk) + n1nk + 2

=
n2 − 3n+ n1 − nk + 10

2
≤ n2 − 2n+ 2

2
.

Case 3. D̃1 is not strong and D̃k is strong.

Analogous to the proof of Case 2, we can also deduce that |A(D)| ≤ n2−2n+3
2

for n is odd and |A(D)| ≤ n2−2n+2
2 for n is even, respectively. We omit the proof

and leave it to the reader to verify.

Case 4. Both D̃1 and D̃k are not strong.

We divide the discussions into the following four cases.
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Subcase 4.1. n1 = 1 and nk = 1.

Denote by X1 = {x} and Xk = {y}. Since D is strong, then v → x and
y → v.

(1) x → y.

Since D is B2-free, for any vertex u (respectively, w) of R0 (respectively, S0),
we have u ↛ y (respectively, x ↛ w). Thus, we obtain that |A(D)| ≤

(
n−1
2

)
+2 =

n2−3n+6
2 ≤ n2−2n

2 since n ≥ 6.

(2) x ↛ y.

Obviously, x dominates at most one vertex of S0 and y is dominated by at
most one vertex of R0 since D is B2-free. Hence, we have |A(D)| ≤

(
n−1
2

)
− 1 +

2 + 2 = n2−3n+8
2 ≤ n2−2n+2

2 since n ≥ 6.

Subcase 4.2. n1 ≥ 3 and nk = 1. We denote Xk = {y} and it is clear that
y → v.

(1) There exists a vertex x of R1 such that x → y. Then the following holds

|A(D)| =
∑
i=0,1

|A(Di)|+
∑

i∈{0,1},j∈{0,k},i ̸=j

|A(Xi, Xj)|+ dD(v)

≤ n2
1 − 2n1 + 3

2
+

(
n0

2

)
+ n0(n1 + 1) + n1 − (r1 − 1) + r1 + 1

=
n2 − 3n+ 9− n1

2
≤ n2 − 2n

2
.

(2) For any vertex x of R1, x ↛ y. We obtain that

|A(D)| =
∑
i=0,1

|A(Di)|+
∑

i∈{0,1},j∈{0,k},i ̸=j

|A(Xi, Xj)|+ dD(v)

≤ n2
1 − 2n1 + 3

2
+

(
n0

2

)
+ n0(n1 + 1) + n1 − r1 + r1 + 1 + 2

=
n2 − 3n+ 11− n1

2
≤ n2 − 2n+ 2

2
.

Subcase 4.3. n1 = 1 and nk ≥ 3.

The proof is similar to that of Subcase 4.2.

Subcase 4.4. n1 ≥ 3 and nk ≥ 3. As n = n0 + n1 + nk + 1, n ≥ 8 holds.

(1) r1 = sk = 1.
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Then, we have
(
n
2

)
− |A(D)| ≥ n1 − 1+nk − 1+n0 − 2 = n− 5. Thereby, we

get |A(D)| ≤ n2−3n+10
2 ≤ n2−2n+2

2 .

(2) r1 = 1 and sk ≥ 2.

It is clear that
(
n
2

)
− |A(D)| ≥ n1 − 1 + nk − sk + (sk − 1) + n0 − 2 = n− 5,

implying that |A(D)| ≤ n2−3n+10
2 ≤ n2−2n+2

2 .

(3) r1 ≥ 2 and sk = 1.

Similar to (2), |A(D)| ≤ n2−2n+2
2 holds, we omit the proof.

(4) r1 ≥ 2 and sk ≥ 2.

(i) A(R1, Sk) ̸= ∅. There must be a triangle ⟨v, x, y⟩ such that x ∈ R1 and y ∈ Sk.
Analogous to the above discussion, we have

|A(D)|

=
∑

i=0,1,k

|A(Di)|+
∑

i∈{0,1},j∈{0,k},i ̸=j

|A(Xi, Xj)|+ dD(v)

≤
∑
i=1,k

n2
i − 2ni + 3

2
+

(
n0

2

)
+ n0(n1+ nk) + n1nk − (r1 − 1)− (sk−1) + r1+sk

=
n2 − 3n+ 12− n1 − nk

2
≤ n2 − 3n+ 6

2
≤ n2 − 2n− 2

2
.

(ii) A(R1, Sk) = ∅. Since r1 ≥ 2 and sk ≥ 2, we thus deduce that

|A(D)| =
∑

i=0,1,k

|A(Di)|+
∑

i∈{0,1},j∈{0,k},i ̸=j

|A(Xi, Xj)|+ dD(v)

≤
∑
i=1,k

n2
i − 2ni + 3

2
+

(
n0

2

)
+ n0(n1 + nk) + n1nk − r1sk + r1 + sk + 2

=
∑
i=1,k

n2
i − 2ni + 3

2
+

(
n0

2

)
+ n0(n1 + nk) + n1nk − (r1 − 1)(sk − 1) + 3

≤ n2 − 3n+ 12− n1 − nk

2
≤ n2 − 2n− 2

2
.

This completes the proof of Part B. □

Combining the proofs of Part A and Part B, we complete our proof of
Theorem 6.
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3.3. Construction of Ψ

We now show that the upper bound of Theorem 6 is tight by constructing a
suitable B2-free strong digraphs Ψ on n ≥ 3 vertices.

Construction of Ψ. Let Ψ be the digraph obtained from Θ by deleting all arcs
(vi+2, vi), where i ∈ {1, 2, . . . , n} and i is even.

Apparently, Ψ is a strong digraph on n vertices. Any arc (u, v) ∈ A(Ψ)
satisfies that |N+

Ψ (v)∩N−
Ψ (u)| ≤ 1, which indicates that Ψ is B2-free. Moreover,

one can deduce that |A(Ψ)| =
(
n
2

)
−
⌊
n
2

⌋
+ 1.

In summary, we conclude that ex(n,B2) =
(
n
2

)
−
⌊
n
2

⌋
+ 1.

4. Concluding Remarks

Recall that Ck = {C2, C3, . . . , Ck} and Ci is a directed cycle of length i ∈
{2, 3, . . . , k}. Let B1 be a triangle and Bt be the union of t triangles sharing
a unique common arc for t ≥ 2. In 1980, Bermond, Germa, Heydemann and Sot-
teau [1] gave the precise Turán number of Ck-free digraphs on n vertices, namely,

ex(n, Ck) = n2+(3−2k)n+k2−k−2
2 . Particularly, the Turán number of B1-free strong

digraph is exactly n2−n+4
2 , that is, ex(n,B1) =

n2−n+4
2 .

In this paper, we mainly obtain the Turán number of strong digraphs on n
vertices forbidden t ≥ 2 different B1. We construct a strong tournament Γ con-
taining no arc disjoint B1. Additionally, we present a Bt-free strong tournament
Θ for t ≥ 3. Finally, we verify that the maximum size of B2-free strong digraphs
on n vertices is at most

(
n
2

)
−

⌊
n
2

⌋
+ 1 and then show another strong digraph Ψ

whose size reaches this upper bound. That is, we determine the Turán number
of B2-free strong digraphs on n vertices.

Unfortunately, we do not fully characterize the structure of B2-free Turán
digraphs and we even do not known the minimum out-degree of such Turán
digraphs. It would be interesting to study whether the Turán number of B2-free
strong digraphs will decrease or not if we add a condition that the minimum
out-degree is at least two.

It would be also interesting to study the Turán number of strong digraphs
without t ≥ 2 vertex- or arc disjoint B1 with out-degree restriction.
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