Article in press
Authors:
Title:
The palette Index of some Cartesian products of graphs
PDFSource:
Discussiones Mathematicae Graph Theory
Received: 2025-03-14 , Revised: 2025-06-10 , Accepted: 2025-06-10 , Available online: 2025-07-24 , https://doi.org/10.7151/dmgt.2594
Abstract:
The palette of a vertex \( v \) in a graph \( G \) is the set of colors assigned
to the edges incident to \( v \). The palette index of \( G \) is the minimum
number of distinct palettes among the vertices, taken over all proper edge
colorings of \( G \). This paper presents results on the palette index of the
Cartesian product \( G \Box H \), where one of the factor graphs is a path or
a cycle. Additionally, it provides exact results and bounds on the palette index
of the Cartesian product of two graphs, where one factor graph is isomorphic to
a regular or class 1 nearly regular graph.
Keywords:
palette index, Cartesian product, regular graph
References:
- M. Avesani, A. Bonisoli and G. Mazzuoccolo, A family of multigraphs with large palette index, Ars Math. Contemp. 17 (2019) 115–124.
https://doi.org/10.26493/1855-3974.1528.d41 - A. Bonisoli, S. Bonvicini and G. Mazzuoccolo, On the palette index of a graph: the case of trees, Lec. Notes of Semin. Interdiscip. Mat. 14 (2017) 49–55.
- S. Bonvicini and M.M. Ferrari, On the minimum number of bond-edge types and tile types: An approach by edge-colorings of graphs, Discrete Appl. Math. 277 (2020) 1–13.
https://doi.org/10.1016/j.dam.2019.09.004 - S. Bonvicini and G. Mazzuoccolo, Edge-colorings of $4$-regular graphs with the minimum number of palettes, Graphs Combin. 32 (2016) 1293–1311.
https://doi.org/10.1007/s00373-015-1658-7 - C.J. Casselgren and P.A. Petrosyan, Some results on the palette index of graphs, Discrete Math. Theor. Comput. Sci. 21(3) (2019) #11.
https://doi.org/10.23638/DMTCS-21-3-11 - G. Chartrand, F. Harary and P. Zhang, On the geodetic number of a graph, Networks 39 (2002) 1–6.
https://doi.org/10.1002/net.10007 - R. Hammack, W. Imrich and S. Klavžar, Handbook of Product Graphs (CRC Press, Boca Raton, 2011).
- M. Horň\'ak and J. Hud\'ak, On the palette index of complete bipartite graphs, Discuss. Math. Graph Theory 38 (2018) 463–476.
https://doi.org/10.7151/dmgt.2015 - M. Horň\'ak, R. Kalinowski, M. Meszka and M. Woźniak, Minimum number of palettes in edge colorings, Graphs Combin. 30 (2014) 619–626.
https://doi.org/10.1007/s00373-013-1298-8 - E.S. Mahmoodian, On edge-colorability of Cartesian products of graphs, Canad. Math. Bull. 24 (1981) 107–108.
https://doi.org/10.4153/CMB-1981-017-9 - D. Mattiolo, G. Mazzuoccolo and G. Tabarelli, Graphs with large palette index, Discrete Math. 345 (2022) 112814.
https://doi.org/10.1016/j.disc.2022.112814 - B. Mohar, On edge-colorability of products of graphs, Publ. Inst. Math. (Beograd) 36 (1984) 13–16.
- K.S. Smbatyan, Some results on palette index of Cartesian product graphs, Math. Probl. Comput. Sci. 55 (2021) 26–34.
https://doi.org/10.51408/1963-0070 - K.S. Smbatyan, Two results on the palette index of graphs, Proc. YSU A: Phys. Math. Sci. 55 (2021) 36–43.
https://doi.org/10.46991/PYSU:A/2021.55.1.036
Close