
Discussiones Mathematicae
Graph Theory xx (xxxx) 1–16
https://doi.org/10.7151/dmgt.2594

THE PALETTE INDEX OF SOME CARTESIAN PRODUCTS
OF GRAPHS

Aleksander Vesel

Faculty of Natural Sciences and Mathematics
University of Maribor, Slovenia and

IMFM, Ljubljana, Slovenia

e-mail: aleksander.vesel@um.si

Abstract

The palette of a vertex v in a graph G is the set of colors assigned to
the edges incident to v. The palette index of G is the minimum number of
distinct palettes among the vertices, taken over all proper edge colorings of
G. This paper presents results on the palette index of the Cartesian product
G2H, where one of the factor graphs is a path or a cycle. Additionally, it
provides exact results and bounds on the palette index of the Cartesian
product of two graphs, where one factor graph is isomorphic to a regular or
class 1 nearly regular graph.
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1. Introduction

Let G = (V,E) be a simple connected graph. An edge-coloring of G is a map
that assigns colors to the edges of G. An edge coloring is proper if two incident
edges obtain different colors. A k-edge-coloring of G is a proper edge-coloring
with colors from the set {1, . . . , k}. The minimum number of colors required in a
proper edge-coloring of a graph G is called the chromatic index of G and denoted
by χ′(G).

It is well-known that the chromatic index of a graph G is equal either to ∆
or ∆+ 1, where ∆ denotes its maximum degree; we then say that G is of class 1
or class 2, respectively.

The palette of a vertex v ∈ V (G) with respect to a proper edge-coloring f of
G is the set Pf (v) = {f(e) : e ∈ E(G) and e is incident to v}.
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If f is a proper edge-coloring of G and X ⊆ V (G), then pf (X) is the number
of distinct palettes of the vertices of X with respect to f . The palette index of a
graph G, denoted by š(G), is the minimal value of pf (V (G)) taken over all proper
edge-colorings of G.

The palette index was introduced by Horňák et al. in [9], where initial results
on the palette index of cubic and complete graphs were provided. Subsequent
studies have investigated the palette index for other regular graphs [4, 11]. Fur-
ther classes of graphs explored in relation to this invariant include trees [2,4,11],
complete bipartite graphs [8], multigraphs [1] and Cartesian products. Specifi-
cally, [13] presents partial results on the palette index of the Cartesian product
of a path and a cycle, while [5] establishes the palette index of the Cartesian
product of two paths.

The palette index has also been analyzed in relation to the maximum and
minimum degree of a graph [5, 11]. Additionally, it has found applications in
modeling the self-assembly of DNA structures with branched junction molecules
that possess flexible arms [4].

In this paper, we build upon previous research on the palette index of the
Cartesian product of two graphs, focusing on cases where one factor graph is a
path or cycle. Additionally, we extend the study to families of Cartesian products
where one of the factors is a regular or class 1 “nearly regular” graph.

The next section provides necessary definitions and preliminary results used
throughout the paper. Section 3 introduces the class of nearly regular graphs and
presents results on the palette index of Cartesian products where one factor is
either regular or a class 1 nearly regular graph. Notably, this section establishes
that the palette index of a Cartesian product with a class 1 nearly regular graph
as one factor is always 2.

Section 4 continues the exploration of the palette index for Cartesian products
involving a path or cycle as one factor. In particular, it includes a construction
that produces an edge coloring with three palettes for the Cartesian product of
two odd cycles.

Finally, Section 5 concludes the paper by applying the results from earlier
sections to determine the palette index of Cartesian products where one factor
graph is either a cycle or a path and the other is a regular graph.

2. Preliminaries

The Cartesian product of graphs G and H is the graph G2H with vertex set
V (G)×V (H) and (x1, x2)(y1, y2) ∈ E(G2H) whenever x1y1 ∈ E(G) and x2 = y2,
or x2y2 ∈ E(H) and x1 = y1. The Cartesian product is clearly commutative.

Let [n] and [n]0 denote the sets {1, 2, . . . , n} and {0, 1, . . . , n−1}, respectively.
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We will assume in the sequel that V (Pn) = V (Cn) := [n]0 and V (Pn2Cm) =
V (Cn2Cm) := [n]0 × [m]0.

Let G be a graph. We define G as nontrivial if it contains at least one edge.
If X ⊂ E(G), then the spanning subgraph of G with the edge set E(G) \ X is
denoted by G−X.

A matching in a graph G is a subset M ⊆ E(G) such that no two edges in
M share a common vertex. Naturally, if f is a proper edge-coloring of G, the
set of edges assigned a specific color i under f constitutes a matching in G. A
matching M is called perfect if every vertex in V (G) is incident to exactly one
edge from M .

We begin with the following obvious observation.

Observation 2.1. If G is a graph such that the degree of every vertex of V (G)
is from the set {d1, d2, . . . , dk}, then š(G) ≥ k.

It is also not difficult to confirm the following result.

Proposition 2.2. If M is a perfect matching of a nontrivial graph G, then
š(G) ≤ š(G−M).

Proof. Let g : E(G − M) → C be an edge coloring of G − M with š(G − M)
palettes and let c ̸∈ C. It is easy to construct the edge coloring h of G, where for
every e ∈ M we set h(e) := c, while for every e′ ∈ E(G)\M we set h(e′) := g(e′).
Since for every v ∈ V (G) we have Ph(v) = Pg(v) ∪ {c}, it follows that š(G) ≤
š(G−M).
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Figure 1. An edge coloring of a 4-regular graph G with a perfect matching M .

With respect to Proposition 2.2, it is worth noting that does not necessarily
hold that š(G) ≥ š(G−M), even if G is a regular graph. Consider, for instance,
an edge coloring of the 4-regular graph G shown in Figure 1, where a perfect
matching M is indicated by dashed lines. In this case, we observe that š(G) = 1,
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while š(G − M) ̸= 1. This discrepancy arises because G − M is a cubic graph
without a perfect matching, and it contains a vertex v such that every edge
incident to v is a bridge of G − M . Consequently, š(G − M) = 4 (see [11,
Proposition 3.3]).

The following two results are shown in [8].

Proposition 2.3. Let G be an r-regular graph. Then χ′(G) = r if and only
š(G) = 1.

Proposition 2.4. If G is a regular graph, then š(G) ̸= 2.

As shown in [10], the Cartesian product of two graphs is class 1 if at least one
of the factors is class 1. This result is more formally stated in the next theorem.
(Since the proof of the theorem is based on a construction that we will need in the
sequel, we stated it explicitly although an analogous approach has been already
used in [10].)

Theorem 2.5. Let G and H be graphs. If G is class 1 nontrivial graph, then
G2H is class 1.

Proof. Note first that ∆(G2H) = ∆(G) + ∆(H).

Let g : E(G) → [∆(G)] be an edge coloring of G and h : E(H) → [∆(H)]
(respectively, h : E(H) → [∆(H) + 1]) an edge coloring of H if H is class 1
(respectively, class 2).

We construct an edge coloring f with ∆(G) + ∆(H) color as follows.

For every x2y2 ∈ E(H) and every z1 ∈ V (G) we set f((z1, x2)(z1, y2)) :=
h(x2y2). If H is class 1, then for every x1y1 ∈ E(G) and every z2 ∈ V (H) we
set f((x1, z2)(y1, z2)) := g(x1y1) + ∆(H). Note that f is clearly a proper edge
coloring of G2H with ∆(G) + ∆(H) colors.

If H is class 2, then we obtain f by choosing first an arbitrary color c ∈
[∆(G)]. Then for every x1y1 ∈ E(G) and every z2 ∈ V (H) we set

f((x1, z2)(y1, z2)) := g(x1y1) + ∆(H), if g(x1y1) ̸= c,

f((x1, z2)(y1, z2)) := c′, if g(x1y1) = c, where c′ ∈ [∆(H) + 1] \ Ph(z2).

Note that c′ always exists since |Ph(z2)| ≤ ∆(H).

We can see that f is a proper edge coloring of G2H with ∆(G) + ∆(H)
colors. It follows that G2H is class 1.

It will be needed in the sequel that, if in the proof of Theorem 2.5 we construct
an edge coloring f by choosing c = ∆(G), then f : E(G2H) → [∆(G) + ∆(H)]
is obtained.
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3. Palette Index of Cartesian Products of Regular and Class 1
Nearly Regular Graphs

For graphs G and H, it is shown in [14] that the palette index of G2H is bounded
above by the product of the palette indices of both factor graphs.

Proposition 3.1. If G and H are graphs, then š(G2H) ≤ š(G)š(H).

Considering Cartesian products of regular graphs, the following observation
from [4] is noteworthy.

Proposition 3.2. If G is an r-regular graph then š(G) ≤ r + 1.

We will show in the sequel that for the Cartesian products of regular and
some related graphs the above upper bounds can be significantly improved.

Notice that the Cartesian product of two regular graphs is clearly a regular
graph. Thus, Theorem 2.5 and Proposition 2.3 yield the following corollary.

Corollary 3.3. Let G and H be regular graphs. If G is class 1 nontrivial graph,
then š(G2H) = 1.

Let G′ be a connected r-regular class 1 nontrivial graph and G a spanning
subgraph of G′. We say that G is a class 1 nearly regular graph (derived from G′)
or shortly NRG if G′ admits a perfect matching M such that G′ −M is class 1
and G = G′ −X, where ∅ ≠ X ⊂ M .

Let g : E(G) → [r] be an edge coloring of a graph G and let Cg
1 , . . . , C

g
r be

the corresponding color classes. Note that if G is NRG derived from an r-regular
graph G′, then for every j ∈ [r] there exists an r-edge coloring g of G′, such that
G = G′ −X, where X ⊂ Cg

j .

Theorem 3.4. Let H be a connected regular graph. If G is NRG, then š(G2H)
= 2.

Proof. Since G is not a regular graph, we have š(G2H) ≥ 2. We will construct
a proper edge coloring f of G2H with two distinct palettes.

Suppose that H is a r′-regular graph, while G is derived from a class 1 r-
regular graph G′. It follows that there exists an edge coloring g : E(G′) → [r] of
G′ such that G = G′ −X, where X ⊂ Cg

r .
Remind that by Corollary 3.3, it holds that G′2H is class 1.
Let h : E(H) → [r′] (respectively, h : E(H) → [r′+1]) be an edge coloring of

H if H is class 1 (respectively, H is class 2). Since G′ is class 1, we can construct
an (r + r′)-edge coloring f of G′2H as we shown in the proof of Theorem 2.5.
That is to say, if H is class 2, then for every x1y1 ∈ E(G) and every z2 ∈ E(H)
we set

f((x1, z2)(y1, z2)) := g(x1y1) + r′ + 1, if g(x1y1) ̸= r,
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f((x1, z2)(y1, z2)) := c′, where c′ ∈ [r′ + 1] \ Ph(z2), if g(x1y1) = r.

It follows that the palette of every vertex of G′2H with respect to f equals [r+r′].
Moreover, f restricted to G2H admits two palettes

[r + r′], for every vertex of degree r + r′; and

[r + r′ − 1], for every vertex of degree r + r′ − 1, i.e., a vertex incident to an
edge of X in G′2H.

Since we showed that for every connected regular graph H and class 1 nearly
regular graph G we can always found an edge coloring of G2H with two palettes,
it follows that š(G2H) = 2.

If a connected regular graph G is class 1, then notice that G− e is NRG for
every e ∈ E(G). This observation provides the following corollary to Theorem
3.4.

Corollary 3.5. Let H and G be connected regular graphs. If G is a class 1
nontrivial graph and e ∈ E(G), then š((G− e)2H) = 2.
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Figure 2. An edge coloring of a subgraph of G2C3 with 2 palettes, where G is an NRG
derived from Q3.

A little more involved application of Theorem 3.4 considers the well known
class of hypercube graphs known as r-cubes. Remind that the vertex set of the
r-cube Qr consists of all r-tuples b1 · · · br, bi ∈ {0, 1}. Two vertices of Qr are
adjacent if corresponding r-tuples differ in precisely one coordinate. Note that
Q1 = K2, while for r ≥ 2 we have Qr = Qr−12K2. It is not difficult to see that
Qr is class 1.
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A subgraph H of a graph G is isometric if dH(u, v) = dG(u, v) for any pair
of vertices u and v from H. Isometric subgraphs of hypercubes are called partial
cubes.

Let α : V (G) → V (Qr) be an isometric embedding of G into the r-cube, i.e.,
for every u, v ∈ V (G) we have dG(u, v) = dQr(α(u), α(v)). We will denote the
i-th coordinate of α with αi, i.e., α = (α1, α2, . . . , αr).

By definition, end-vertices of an arbitrary edge of Qr differ exactly in coor-
dinate i for some i ∈ [r]. Let G be a partial cube with an isometric embedding
α : V (G) → V (Qr). The set of all edges uv ∈ E(G) satisfying the condition
αi(u) ̸= αi(v) is denoted by Ei, more formally: Ei = {uv : uv ∈ E(G), αi(u) ̸=
αi(v)}. (These sets are known as classes of the equivalence relation Θ, see [7] for
the details.)

Clearly, the sets E1, E2, . . . , Er partition the set of edges of G. Moreover,
the function f : E(G) → [r], where f(e) = i for every e ∈ Ei, is a proper edge
coloring of G. Thus, it is not difficult to see that the following result holds.

Proposition 3.6. Let G be a partial cube with an isometric embedding α :
V (G) → V (Qr), r ≥ 2, and H be a regular graph. If X ⊂ Ei, i ∈ [r], where
Ei = {uv : uv ∈ E(G), αi(u) ̸= αi(v)}, then

š((G−X)2H) = 2.

As an example to Proposition 3.6 consider an edge coloring of a subgraph
of Q32C3 isomorphic to G2C3, where G is an NRG derived from Q3. The edge
coloring f of G2C3 is constructed following the argument of the proof of Theorem
3.4, where h : E(C3) → [3] and g : E(Q3) → {4, 5, 6}.

4. Palette Index of Cartesian Products with a Path and Cycle

To establish the palette index of a path, note that Pn admits a perfect matching
if and only if n is even.

Proposition 4.1. Let n ≥ 3. Then

š(Pn) =

{
2, n even,
3, n odd.

The palette index of a cycle follows from Propositions 2.3 and 3.2.

Proposition 4.2. Let n ≥ 3. Then

š(Cn) =

{
1, n even,
3, n odd.
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The palette index of the Cartesian product of two paths is presented as follows
(see [5]).

Theorem 4.3. Let s, t ≥ 2. Then

š(Ps2Pt) =


1, s = t = 2,
2, min(s, t) = 2, max(s, t) ≥ 3,
3, s, t ≥ 3 and s · t is even,
5, s, t ≥ 3 and s · t is odd.

The palette index of the Cartesian product of a path and cycle is studied in
[13] where the following partial result is presented.

Proposition 4.4. Let s, t ≥ 3.

(i) If s and t are both odd, then š(Cs2Pt) = 4.

(ii) If s is even, then š(Cs2Pt) = 2.
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Figure 3. Edge colorings of: (a) C52P4 with two palettes, (b) C42P5 with two palettes
(c) C52C5 with three palettes.

Theorem 4.5. Let s, t ≥ 3. Then

š(Cs2Pt) =

{
4, s and t are both odd,
2, otherwise.

Proof. Clearly, š(Cs2Pt) ≥ 2 for every s and t. With respect to Proposition 4.4,
we have to confirm the result for every even t, i.e., to show that for every even
integer t and every s there exists an edge coloring of Cs2Pt with two palettes.
Since the existence of a proper construction clearly follows from Corollary 3.5
(see an example in the left-hand side of Figure 3), the proof is completed.
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Notice also an example of an edge coloring of C42P5 with two palettes in
Figure 3(b) which can be generalized as we will show in Section 5.

In the rest of this section we consider value of the palette index of Cartesian
products of two cycles.

Let G be a graph. An even cycle decomposition of G of size k is a partition
E = {E0, E1, . . . , Ek−1} of the edge-set of G such that the edges of Ei compose
disjoint even cycles of G. The studies presented in this section were inspired
by the results of Bonvicini and Mazzuoccolo [3], who showed that if a 4-regular
graph G admits palette index 3, then G has an even cycle decomposition of size
3 or an even 2-factor.

Let s ≥ t ≥ 3 be integers and j ∈ [s]0, k ∈ [t]0. Let us define two types of
vertical edges of Cs2Ct:

v+j,k := (j, k)(j, (k + 1)mod t) (an “ascending” vertical edge),

v−j,k := (j, k)(j, (k − 1)mod t) (a “descending” vertical edge);

and a horizontal edge

hj,k := (j, k)((j + 1)mod s, k).

The vertex (j, k) is called the initial vertex of v+j,k, v
−
j,k and hj,k. The other

end-vertex (i.e., not initial) of a vertical or horizontal edge is called the terminal
vertex.

Let ℓ := s−t
2 mod t and h :=

⌊
s−t
2t

⌋
. We will construct a partition of the edge

set of Cs2Ct based on the following sets

Zs,t
i = Zs,t

i,1 ∪ Zs,t
i,2 ∪ Zs,t

i,3 , i ∈ [t]0

such that

Zs,t
i,1 =

{
v+j,i+j , hj,i+j+1 | j ∈ [ℓ]0

}
,

Zs,t
i,2 =

{
v−j+ℓ,i−j+ℓ, hj+ℓ,i−j+ℓ−1 | j ∈ [ℓ]0

}
,

Zs,t
i,3 =

{
v−j+2ℓ,i−j , hj+2ℓ,i−j−1 | j ∈ [t(2h+ 1)]0

}
,

where additions and subtraction in the second coordinate are performed modulo t.

Consider for example Z13,5
2 depicted in Figure 4, where the edges of this set

are drawn with dashed lines. Note that the initial vertex with the smallest first
coordinate of Z13,5

2,1 is (0, 2), while its counterparts in Z13,5
2,2 and Z13,5

2,3 are (4, 1)
and (8, 2), respectively.

Proposition 4.6. If s ≥ t ≥ 3 are odd integers, then
{
Zs,t
0 , Zs,t

1 , . . . , Zs,t
t−1

}
partition the set of edges of Cs2Ct.
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Figure 4. An even cycle decomposition of C132C5.

Proof. Note that the first coordinates of vertices from the set Zs,t
i are pairwise

distinct.
We first show that for every i ̸= k we have Zs,t

i ∩ Zs,t
k = ∅. To confirm

this, notice that for every j and every i, k, i ̸= k, we have v+j,i+j ̸= v+j,k+j ,

v−j+ℓ,i−j+ℓ ̸= v−j+ℓ,k−j+ℓ, v
−
j+2ℓ,i−j ̸= v−j+2ℓ,k−j , hj,i+j+1 ̸= hj,k+j+1, hj+ℓ,i−j+ℓ−1 ̸=

hj+ℓ,k−j+ℓ−1, hj+2ℓ,i−j−1 ̸= hj+2ℓ,k−j−1, i.e., the initial vertices of Zs,t
i and Zs,t

k

do not coincide. It follows that Zs,t
i ∩ Zs,t

k = ∅.
Since |Zs,t

i | = 4ℓ + 2t(2h + 1), ℓ = s−t
2 mod t and h =

⌊
s−t
2t

⌋
, we obtain

|Zs,t
i | = 2s. It follows that∣∣∣∣∣

t−1⋃
i=0

Zs,t
i

∣∣∣∣∣ =
t−1∑
i=0

∣∣∣Zs,t
i

∣∣∣ = 2st = |E(Cs2Ct)|.

This assertion completes the proof.

Proposition 4.7. Let s ≥ t ≥ 3 be odd integers. If Ej =
⋃

i∈[t]0,i≡j (mod 3) Z
s,t
i ,

then E = {E0, E1, E2} is an even cycle decomposition of Cs2Ct.

Proof. Note first that in the set Zs,t
i the following pairs of edges are incident:

• for every j∈ [ℓ]0: v
+
j,i+j and hj,i+j+1 (edges in Zs,t

i,1); v
−
j+ℓ,i−j+ℓ and hj+ℓ,i−j+ℓ−1

(edges in Zs,t
i,2);

• for every j ∈ [t(2h+ 1)]0: v
−
j+2ℓ,i−j and hj+2ℓ,i−j−1 (edges in Zs,t

i,3);

• for every j ∈ [ℓ − 1]0: hj,i+j+1 and v+j+1,i+j+1 (edges in Zs,t
i,1); hj+ℓ,i−j+ℓ−1

and v−j+ℓ+1,i−j+ℓ+1l (edges in Zs,t
i,2);

• for every j ∈ [t(2h+ 1)]0: hj+2ℓ,i−j−1 and v−j+2ℓ+1,i−j+1 (edges in Zs,t
i,3).

Moreover, hℓ−1,i+ℓ is incident to v−ℓ,i+ℓ, h2ℓ−1,i is incident to v−2ℓ,i, and hs−1,i

is incident to v−0,i.
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It follows that edges of Zs,t
i compose a circle in Cs2Ct. As we can see in the

proof of Proposition 4.6, this cycle is of length 2s. Furthermore, if i ≡ k ≡ j (mod
3) and i ̸= k, then every initial vertex of an edge of Zs,t

i and every initial vertex of
an edge of Zs,t

k are at distance at least 2. Hence, the edges of Ej compose disjoint
even cycles of Cs2Ct. From Proposition 4.6 now it follows that E = {E0, E1, E2}
is an even cycle decomposition of Cs2Ct.

An even cycle decomposition of C132C5 is depicted in Figure 4.

Theorem 4.8. Let s ≥ t ≥ 3. Then

š(Cs2Ct) =

{
1, s or t is even,
3, s and t are both odd.

Proof. For s or t even, the theorem follows from Corollary 3.3 since a cycle of
even length is clearly class 1.

If s and t are both odd, then Cs2Ct is class 2 and by Proposition 2.4 we have
š(Cs2Ct) ≥ 3. As shown in [3], the existence of an even cycle decomposition of
size 3 in Cn2Cm implies that Cn2Cm admits the palette index 3.

It is shown in Proposition 4.7 that E = {E0, E1, E2} is an even cycle decom-
position of Cs2Ct of size 3, where Ej =

⋃
i∈[t]0,i≡j (mod 3) Z

s,t
i . We now construct

the edge coloring c : E(Cs2Ct) → [6] as follows

c(e) =

{
2j + 1, e is a horizontal edge in Ej ,
2j + 2, e is a vertical edge in Ej .

By the definition of the set Zs,t
i , every terminal vertex of an ascending verti-

cal edge of Zs,t
i equals the initial vertex of an ascending vertical edge of Zs,t

i+1,

while every initial vertex of a descending vertical edge of Zs,t
i corresponds to the

terminal vertex of a descending vertical edge of Zs,t
i+1 (addition modulo 3).

It follows that the palette of a vertex of Cs2Ct with respect to c is either
{1, 2, 3, 4}, {1, 2, 5, 6} or {3, 4, 5, 6}. This assertion completes the proof.

An example of a proper edge coloring with three palettes of C52C5 is depicted
in Figure 3.

5. Paths, Cycles and Regular Graphs

In this section, we show that general upper bounds on the palette index of a
Cartesian product can be significantly improved when one factor graph is a cycle
or path and the other is a regular graph.

Theorem 5.1. Let G be a nontrivial regular graph. If s ≥ 3, then
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(i) š(Cs2G) ≤ š(G) + 2.

Moreover,

(ii) if s is even or G is class 1, then š(Cs2G) = 1,

(iii) if G is a class 2 cubic graph with a perfect matching and s is odd, then
š(Cs2G) ∈ {1, 3}.

Proof. If s is even or G is class 1, then one of the factor graphs is class 1 and
(ii) follows from Corollary 3.3.

To prove (i), suppose then that s is odd and G a class 2 r-regular graph.
Let g : E(G) → [r + 1] be a proper edge coloring of G and let h be a proper
edge coloring of G with š(G) palettes such that h(v) ̸∈ {r + 2, r + 3} for every
v ∈ V (G). We will construct a proper edge coloring f of Cs2G for u, v ∈ V (G)
and i, j ∈ [s]0 as follows

f((u, i)(v, j)) =



g(uv), uv ∈ E(G) and i = j ̸= s− 1,
h(uv), uv ∈ E(G) and i = j = s− 1,
c, u = v, i ∈ [s− 2]0 is even and j = i+ 1,

where c ∈ [r + 1] \ Pg(v),
r + 2, u = v, i ∈ [s− 2] is odd and j = i+ 1,
r + 3, u = v, i = s− 1 and j = 0.

Since we can see that
– for every i ∈ [s− 2] and every v ∈ V (G) we have Pf ((v, i)) = [r + 2],
– for every v ∈ V (G) we have Pf ((v, 0)) = [r + 1] ∪ {r + 3},
– for every v ∈ V (G) we have Pf ((v, s− 1)) = Ph(v) ∪ {r + 2, r + 3},

case (i) is settled.
To prove (iii), let G denote a class 2 cubic graph with a perfect matching M

and FM the corresponding 1-factor of G, i.e., a 1-regular spanning subgraph of G.
Note that E(Cs2FM ) is a perfect matching of Cs2G and Cs2G−E(Cs2FM ) =
Cs2(G−M).

Since G is class 2, G is not bipartite. Moreover, since G − M is 2-regular,
its connected component are cycles with at least one of them having odd length.
Thus, Cs2(G−M) is a graph whose connected components are Cartesian prod-
ucts of two cycles. Remind from Theorem 4.8 that the palette index of the
Cartesian product of two cycles is either 1 (at least one of them is of even length)
or 3 (both of them are of odd length). Therefore, š(Cs2(G − M)) = 3. By
Proposition 2.2, we have š(Cs2G) ≤ š(Cs2(G −M)) = 3. Finally, Proposition
2.4 completes the proof.

As an example of edge colorings provided by Theorem 5.1(ii), observe Figure
5, where an edge coloring of the Cartesian product of the Petersen graph and the
triangle with three palettes is partially depicted. (For clarity, the labeling of the
”inner” product of C3 and C5 with colors 1, 3, and 5 is omitted.)
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Figure 5. A (partial) edge coloring of the Cartesian product of the Petersen graph and
triangle with three palettes.

Theorem 5.2. Let G be a nontrivial regular graph. If s ≥ 3, then

(i) š(Ps2G) ≤ š(G) + 2.

Moreover,

(ii) if s even or G is class 1, then š(Ps2G) = 2,

(iii) if G is a class 2 cubic graph with a perfect matching and s is odd, then
š(Ps2G) ∈ {2, 3, 4}.

Proof. Clearly, š(Ps2G) ≥ 2.

If s is even, then Ps is an NRG and (ii) follows from Theorem 3.4. If G is
class 1 and s is odd, we construct a suitable edge coloring of Ps2G in the sequel.

Let g, g′ and g′′ be proper edge colorings of G with exactly one palette, such
that for every v ∈ V (G) we have 1, 2 ̸∈ Pg(v)), Pg′(v) = {2} ∪ (Pg(v) \ {c}) and
Pg′′(v) = {1} ∪ (Pg(v) \ {c}), where c is an arbitrary color of g. We construct a
proper edge coloring f of Ps2G with two distinct palettes as follows

– for every odd i ∈ [s − 2] and every v ∈ V (G) we set f((v, i)(v, i − 1)) = 1
and f((v, i)(v, i+ 1)) = 2,

– for every i ∈ [s− 2] and every uv ∈ E(G) we set f((u, i)(v, i)) = g(uv),

– for every v ∈ V (G) we set f((u, 0)(v, 0)) = g′(uv) and f((u, s−1)(v, s−1)) =
g′′(uv).
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For example consider an edge coloring of P52C4 depicted in Figure 3(b). Note
that g, g′, and g′′ are edge colorings of C4 with one palette, where for every
v ∈ V (C4) we have Pg(v) = {3, 4}, Pg′(v) = {2, 3} and Pg′′(v) = {1, 3}.

Since we can see that for every i ∈ [s − 2] and every v ∈ V (G) we have
Pf ((v, i)) = Pg(v) ∪ {1, 2}, while for every v ∈ V (G) we have Pf ((v, 0)) =
Pf ((v, s− 1)) = (Pg(v) \ {c}) ∪ {1, 2}, case (ii) is settled.

To prove (i), consider again a proper edge coloring f of Cs2G constructed in
the proof of Theorem 5.1, where s is odd and G a class 2 r-regular graph. It is not
difficult to see that f restricted to Ps2G for every i ∈ [s−2] and every v ∈ V (G)
implies Pf ((v, i)) = [r+2], while for every v ∈ V (G) we have Pf ((v, 0)) = [r+1]
and Pf ((v, s−1)) = Ph((v))∪{r+2}. This argument settles the proof of case (i).

To prove (iii), let G be a cubic graph with a perfect matching M , and let
FM be the corresponding 1-factor of G. Analogously to the proof of Theorem
5.1(iii), we notice that Ps2(G−M) is a graph whose connected components are
Cartesian products of a path and a cycle, such that at least one of the factors is
induced on an odd number of vertices.

By Theorem 4.5, the palette index of the Cartesian product of a path and
a cycle is either 2 (if at least one of the factors has an even number of vertices)
or 4 (if both factors have an odd number of vertices). Thus, we obtain that
š(Ps2(G−M)) = 4.

By Proposition 2.2, we have š(Ps2G) ≤ š(Ps2(G−M)) = 4. It follows that
š(Ps2G) ∈ {2, 3, 4}, and the proof is completed.

Note that the bound provided by Theorem 5.1(i) improves the bounds from
Propositions 3.1 and 3.2. For example, let G be isomorphic to K7. From [9], we
know that š(K7) = 3, which implies š(Cs2K7) ≤ 5. In contrast, Propositions 3.1
and 3.2 provide the weaker bound š(Cs2K7) ≤ 9. However, it remains unknown
whether the bounds given by Theorem 5.1(i) and Theorem 5.2(i) are sharp.

Regarding the lower bound on š(G2H), it is worth noting that, in general,
it does not depend on š(G) and š(H). Specifically, if G and H are regular graphs
that both contain a perfect matching, then š(G2H) = 1, even if š(G) > 1 and
š(H) > 1 (see [12, Theorem 2.2]).
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[8] M. Horňák and J. Hudák, On the palette index of complete bipartite graphs, Discuss.
Math. Graph Theory 38 (2018) 463–476.
https://doi.org/10.7151/dmgt.2015

[9] M. Horňák, R. Kalinowski, M. Meszka and M.Woźniak,Minimum number of palettes
in edge colorings, Graphs Combin. 30 (2014) 619–626.
https://doi.org/10.1007/s00373-013-1298-8

[10] E.S. Mahmoodian, On edge-colorability of Cartesian products of graphs, Canad.
Math. Bull. 24 (1981) 107–108.
https://doi.org/10.4153/CMB-1981-017-9

[11] D. Mattiolo, G. Mazzuoccolo and G. Tabarelli, Graphs with large palette index ,
Discrete Math. 345 (2022) 112814.
https://doi.org/10.1016/j.disc.2022.112814

[12] B. Mohar, On edge-colorability of products of graphs, Publ. Inst. Math. (Beograd)
36 (1984) 13–16.

[13] K.S. Smbatyan, Some results on palette index of Cartesian product graphs, Math.
Probl. Comput. Sci. 55 (2021) 26–34.
https://doi.org/10.51408/1963-0070

[14] K.S. Smbatyan, Two results on the palette index of graphs, Proc. YSU A: Phys.
Math. Sci. 55 (2021) 36–43.
https://doi.org/10.46991/PYSU:A/2021.55.1.036

https://doi.org/10.1016/j.dam.2019.09.004
https://doi.org/10.1007/s00373-015-1658-7
https://doi.org/10.23638/DMTCS-21-3-11
https://doi.org/10.1002/net.10007
https://doi.org/10.7151/dmgt.2015
https://doi.org/10.1007/s00373-013-1298-8
https://doi.org/10.4153/CMB-1981-017-9
https://doi.org/10.1016/j.disc.2022.112814
https://doi.org/10.51408/1963-0070
https://doi.org/10.46991/PYSU:A/2021.55.1.036


16 A. Vesel

Received 14 March 2025
Revised 10 June 2025

Accepted 10 June 2025
Available online 24 July 2025

This article is distributed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License https://creativecommons.org/licens-
es/by-nc-nd/4.0/

Powered by TCPDF (www.tcpdf.org)

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.tcpdf.org

