DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2024): 0.8

5-year Journal Impact Factor (2024): 0.7

CiteScore (2024): 2.1

SNIP (2024): 1.162

Discussiones Mathematicae Graph Theory

Article in press


Authors:

J.A. Mudrock

Jeffrey Allen Mudrock

University of South Alabama

email: jammud@gmail.com

0000-0001-9527-9363

G. Sharbel

Gabriel Sharbel

University of South Alabama

email: gss2121@jagmail.southalabama.edu

Title:

On polynomial representations of dual DP color functions

PDF

Source:

Discussiones Mathematicae Graph Theory

Received: 2025-01-21 , Revised: 2025-05-24 , Accepted: 2025-06-01 , Available online: 2025-07-07 , https://doi.org/10.7151/dmgt.2593

Abstract:

DP coloring (also called correspondence coloring) is a generalization of list coloring that was introduced by Dvořák and Postle in 2015. The chromatic polynomial of a graph is an important notion in algebraic combinatorics that was introduced by Birkhoff in 1912; denoted $P(G,m)$, it equals the number of proper $m$-colorings of graph $G$. Counting function analogues of chromatic polynomials have been introduced for list colorings: $P_{\ell}$, list color functions (1990); DP colorings: $P_{DP}$, DP color functions (2019), and $P^*_{DP}$, dual DP color functions (2021). For any graph $G$ and $m \in \mathbb{N}$, $P_{DP}(G, m) \leq P_\ell(G,m) \leq P(G,m) \leq P_{DP}^*(G,m)$. In 2022 (improving on older results) Dong and Zhang showed that for any graph $G$, $P_{\ell}(G,m)=P(G,m)$ whenever $m \geq |E(G)|-1$. Consequently, the list color function of a graph is a polynomial for sufficiently large $m$. One of the most important and longstanding open questions on DP color functions asks: for every graph $G$ is there an $N \in \mathbb{N}$ and a polynomial $p(m)$ such that $P_{DP}(G,m) = p(m)$ whenever $m \geq N$? We show that the answer to the analogue of this question for dual DP color functions is no. Our proof reveals a connection between a dual DP color function and the balanced chromatic polynomial of a signed graph introduced by Zaslavsky in 1982.

Keywords:

correspondence coloring, DP coloring, DP color function, dual DP color function

References:

  1. J. Becker, J. Hewitt, H. Kaul, M. Maxfield, J.A. Mudrock, D. Spivey, S. Thomason and T. Wagstrom, The DP color function of joins and vertex-gluings of graphs, Discrete Math. 345 (2022) 113093.
    https://doi.org/10.1016/j.disc.2022.113093
  2. A. Bernshteyn, The asymptotic behavior of the correspondence chromatic number, Discrete Math. 339 (2016) 2680–2692.
    https://doi.org/10.1016/j.disc.2016.05.012
  3. A. Bernshteyn and A.V. Kostochka, Sharp Dirac's theorem for DP-critical graphs, J. Graph Theory 88 (2018) 521–546.
    https://doi.org/10.1002/jgt.22227
  4. A. Bernshteyn and A.V. Kostochka, On differences between DP-coloring and list coloring, Siberian Adv. Math. 21 (2018) 61–71.
    https://doi.org/10.3103/S1055134419030039
  5. A. Bernshteyn, A.V. Kostochka and X. Zhu, DP-colorings of graphs with high chromatic number, European J. Combin. 65 (2017) 122–129.
    https://doi.org/10.1016/j.ejc.2017.05.007
  6. G.D. Birkhoff, A determinant formula for the number of ways of coloring a map, Ann. Math. 14 (1912–1913) 42–46.
    https://doi.org/10.2307/1967597
  7. Z.Y. Cheng, Z. Lei, Y.T. Wang and Y.C. Zhang, A categorification for the signed chromatic polynomial, Electron. J. Combin. 29 (2022) #P2.49.
    https://doi.org/10.37236/10939
  8. S.L. Dahlberg, H. Kaul and J.A. Mudrock, An algebraic approach for counting DP-$3$-colorings of sparse graphs, European J. Combin. 118 (2024) 103890.
    https://doi.org/10.1016/j.ejc.2023.103890
  9. S.L. Dahlberg, H. Kaul and J.A. Mudrock, A polynomial method for counting colorings of sparse graphs (2023).
    arXiv: 2312.11744
  10. F.M. Dong and Y. Yang, DP color functions versus chromatic polynomials, Adv. Appl. Math. 134 (2022) 102301.
    https://doi.org/10.1016/j.aam.2021.102301
  11. F.M. Dong and M.Q. Zhang, An improved lower bound of $P(G,L)-P(G,k)$ for $k$-assignments $L$, J. Combin. Theory Ser. B 161 (2023) 109–119.
    https://doi.org/10.1016/j.jctb.2023.02.002
  12. Q. Donner, On the number of list-colorings, J. Graph Theory 16 (1992) 239–245.
    https://doi.org/10.1002/jgt.3190160307
  13. Z. Dvořák and L. Postle, Correspondence coloring and its application to list-coloring planar graphs without cycles of lengths $4$ to $8$, J. Combin. Theory Ser. B 129 (2018) 38–54.
    https://doi.org/10.1016/j.jctb.2017.09.001
  14. P. Erdős, A.L. Rubin and H. Taylor, Choosability in graphs, Congr. Numer. 26 (1979) 125–127.
  15. C. Halberg, H. Kaul, A. Liu, J.A. Mudrock, P. Shin and S. Thomason, On polynomial representations of the DP color function: Theta graphs and their generalizations, J. Combin. 15 (2024) 451–478.
    https://doi.org/10.4310/joc.240906222651
  16. H. Kaul and J.A. Mudrock, Combinatorial Nullstellensatz and DP-coloring of graphs, Discrete Math. 343 (2020) 112115.
    https://doi.org/10.1016/j.disc.2020.112115
  17. H. Kaul and J.A. Mudrock, On the chromatic polynomial and counting DP-colorings of graphs, Adv. Appl. Math. 123 (2021) 102131.
    https://doi.org/10.1016/j.aam.2020.102131
  18. H. Kaul, J.A. Mudrock, G. Sharma and Q. Stratton, DP-coloring Cartesian products of graphs, J. Graph Theory 103 (2023) 285–306.
    https://doi.org/10.1002/jgt.22917
  19. S.-J. Kim and K. Ozeki, A note on a Brooks' type theorem for DP-coloring, J. Graph Theory 91 (2019) 148–161.
    https://doi.org/10.1002/jgt.22425
  20. A.V. Kostochka and A.F. Sidorenko, Problem session, in: Fourth Czechoslovak Symposium on Combinatorics, Graphs and Complexity, J. Nešetřil and M. Fiedler (Ed(s)), Ann. Discrete Math. 51, (Elsevier Science Publishers B.V., 1992) 380.
  21. Z. Li and Y. Yang, Bounds for DP color function and canonical labelings, Graphs Combin. 40 (2024) 65.
    https://doi.org/10.1007/s00373-024-02794-5
  22. R. Liu, S. Loeb, Y. Yin and G. Yu, DP-$3$-coloring of some planar graphs, Discrete Math. 342 (2019) 178–189.
    https://doi.org/10.1016/j.disc.2018.09.025
  23. J.A. Mudrock, A deletion-contraction relation for the DP color function, Graphs Combin. 38 (2022) 115.
    https://doi.org/10.1007/s00373-022-02520-z
  24. J.A. Mudrock and S. Thomason, Answers to two questions on the DP color function, Electron. J. Combin. 28 (2021) #P2.24.
    https://doi.org/10.37236/9863
  25. J.A. Mudrock, A note on the DP-chromatic number of complete bipartite graphs, Discrete Math. 341 (2018) 3148–3151.
    https://doi.org/10.1016/j.disc.2018.08.003
  26. L. Postle and E. Smith-Roberge, Exponentially many correspondence colourings of planar and locally planar graphs (2023).
    arXiv: 2309.17291
  27. C. Thomassen, The chromatic polynomial and list colorings, J. Combin. Theory Ser. B 99 (2009) 474–479.
    https://doi.org/10.1016/j.jctb.2008.09.005
  28. G. Sharbel, Counting DP colorings, GitHub repository (2024).
    https://github.com/GSharb/Counting_DP_Colorings
  29. V.G. Vizing, Coloring the vertices of a graph in prescribed colors, Diskret. Analiz. 29 (1976) 3–10.
  30. W. Wang, J. Qian and Z. Yan, When does the list-coloring function of a graph equal its chromatic polynomial, J. Combin. Theory Ser. B 122 (2017) 543–549.
    https://doi.org/10.1016/j.jctb.2016.08.002
  31. D.B. West, Introduction to Graph Theory (Prentice Hall, Upper Saddle River, NJ, 2001).
  32. T. Zaslavsky, Signed graph coloring, Discrete Math. 39 (1982) 215–228.
    https://doi.org/10.1016/0012-365X(82)90144-3

Close