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Abstract

DP coloring (also called correspondence coloring) is a generalization
of list coloring that was introduced by Dvořák and Postle in 2015. The
chromatic polynomial of a graph is an important notion in algebraic com-
binatorics that was introduced by Birkhoff in 1912; denoted P (G,m), it
equals the number of proper m-colorings of graph G. Counting function
analogues of chromatic polynomials have been introduced for list color-
ings: Pℓ, list color functions (1990); DP colorings: PDP , DP color func-
tions (2019), and P ∗

DP , dual DP color functions (2021). For any graph G
and m ∈ N, PDP (G,m) ≤ Pℓ(G,m) ≤ P (G,m) ≤ P ∗

DP (G,m). In 2022
(improving on older results) Dong and Zhang showed that for any graph
G, Pℓ(G,m) = P (G,m) whenever m ≥ |E(G)| − 1. Consequently, the list
color function of a graph is a polynomial for sufficiently large m. One of
the most important and longstanding open questions on DP color functions
asks: for every graph G is there an N ∈ N and a polynomial p(m) such that
PDP (G,m) = p(m) whenever m ≥ N? We show that the answer to the ana-
logue of this question for dual DP color functions is no. Our proof reveals
a connection between a dual DP color function and the balanced chromatic
polynomial of a signed graph introduced by Zaslavsky in 1982.
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1. Introduction

In this paper all graphs are nonempty, finite, simple graphs unless otherwise
noted. Generally speaking we follow West [31] for terminology and notation.
The set of natural numbers is N = {1, 2, 3, . . .}. For m ∈ N, we write [m] for the
set {1, . . . ,m}. If G is a graph and S,U ⊆ V (G), we use G[S] for the subgraph
of G induced by S, and we use EG(S,U) for the set consisting of all the edges
in E(G) that have one endpoint in S and the other in U . If an edge in E(G)
connects the vertices u and v, the edge can be represented by uv or vu.

1.1. List coloring and DP coloring

In the classical vertex coloring problem we wish to color the vertices of a graph
G with up to m colors from [m] so that adjacent vertices receive different colors,
a so-called proper m-coloring. The chromatic number of a graph G, denoted
χ(G), is the smallest m such that G has a proper m-coloring. List coloring was
introduced independently by Vizing [29] and Erdős, Rubin, and Taylor [14] in the
1970s. For list coloring, we associate a list assignment L with a graph G which
assigns to each v ∈ V (G) a list of colors L(v). Then, G is L-colorable if there
exists a proper coloring f of G such that f(v) ∈ L(v) for each v ∈ V (G) (we refer
to f as a proper L-coloring of G). A list assignment L is called a k-assignment
for G if |L(v)| = k for each v ∈ V (G). The list chromatic number of a graph
G, denoted χℓ(G), is the smallest k such that G is L-colorable whenever L is a
k-assignment for G. Since G must be L-colorable when L is a χℓ(G)-assignment
for G that assigns the same list of colors to each element in V (G), it is clear that
χ(G) ≤ χℓ(G).

In 2015, Dvořák and Postle [13] introduced a generalization of list coloring
called DP coloring (they called it correspondence coloring) in order to prove that
every planar graph without cycles of lengths 4 to 8 has list chromatic number
at most 3. DP coloring has been extensively studied over the past 9 years (see
e.g., [1–5,16,17,19,22,25]). Intuitively, DP coloring is a variation on list coloring
where each vertex in the graph still gets a list of colors, but identification of which
colors are the same can vary from edge to edge. Formally, for a graph G, a DP
cover (or simply a cover) of G is an ordered pair H = (L,H), where H is a graph
and L : V (G) → 2V (H) is a function satisfying the following conditions.

• {L(v) : v ∈ V (G)} is a partition of V (H) into |V (G)| parts,
• for every pair of adjacent vertices u, v ∈ V (G), the edges in EH (L(u), L(v))

form a matching (possibly empty), and

• E(H) =
⋃

uv∈E(G)EH(L(u), L(v)).

Suppose H = (L,H) is a cover of a graph G. A transversal of H is a set of
vertices T ⊆ V (H) containing exactly one vertex from L(v) for each v ∈ V (G). A
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transversal T is said to be independent if T is an independent set in H. If H has
an independent transversal T , then T is said to be a proper H-coloring of G, and
G is said to be H-colorable. An m-fold cover of G is a cover H = (L,H) such that
|L(v)| = m for all v ∈ V (G). An m-fold cover H = (L,H) of a graph G is called
full if for each uv ∈ E(G), |EH(L(u), L(v))| = m. The DP chromatic number
of a graph G, denoted χDP (G), is the smallest m such that G is H-colorable
whenever H is an m-fold cover of G.

Given a cover H = (L,H) of G and subgraph G′ of G, the subcover of H
corresponding to G′ is H′ = (L′, H ′) where L′ is the restriction of L to V (G′)
and H ′ is the subgraph of H with vertex set V (H ′) =

⋃
u∈V (G′) L(u) that retains

those and only those edges of H that belong to the matchings corresponding to
the edges of G′.

Suppose H = (L,H) is an m-fold cover of G. We say that H has a canonical
labeling if it is possible to name the vertices of H so that L(u) = {(u, j) : j ∈ [m]}
and (u, j)(v, j) ∈ E(H) for each j ∈ [m] whenever uv ∈ E(G). Clearly, when
H has a canonical labeling, G has an H-coloring if and only if G has a proper
m-coloring. Also, given an m-assignment, L, for a graph G, it is easy to construct
an m-fold cover H′ of G such that G has an H′-coloring if and only if G has a
proper L-coloring (see [4]). It follows that χ(G) ≤ χℓ(G) ≤ χDP (G).

1.2. Counting proper colorings, list colorings, and DP colorings

In 1912 Birkhoff introduced the notion of the chromatic polynomial of a graph
in hopes of using it to make progress on the four color problem. For m ∈ N,
the chromatic polynomial of a graph G, P (G,m), is the number of proper m-
colorings of G. It can be shown that P (G,m) is a polynomial in m of degree
|V (G)| (see [6]). For example, for any n ∈ N, P (Kn,m) =

∏n−1
i=0 (m− i).

The notion of chromatic polynomial was extended to list coloring in the
1990s [20]. In particular, if L is a list assignment for G, we use P (G,L) to denote
the number of proper L-colorings of G. The list color function of G, denoted
Pℓ(G,m), is the minimum value of P (G,L) where the minimum is taken over
all possible m-assignments L for G. It is clear that Pℓ(G,m) ≤ P (G,m) for
each m ∈ N since we must consider an m-assignment that assigns the same m
colors to all the vertices in G when considering all possible m-assignments for
G. In general, the list color function can differ significantly from the chromatic
polynomial for small values of m. However, for large values of m, Dong and
Zang [11] (improving upon results in [12], [27], and [30]) showed the following.

Theorem 1 [11]. For any graph G, Pℓ(G,m) = P (G,m) whenever m ≥ |E(G)|
−1.

In 2019, Kaul and the first author introduced a DP coloring analogue of
the chromatic polynomial of a graph in hopes of using it as a tool for making
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progress on some open questions related to the list color function [17]. Since
its introduction in 2019, DP color functions have received some attention in the
literature (see e.g., [1, 8, 10, 15, 18, 21, 24, 26]). Suppose H = (L,H) is a cover
of graph G. Let PDP (G,H) be the number of H-colorings of G. Then, the DP
color function of G PDP (G,m) is the minimum value of PDP (G,H) where the
minimum is taken over all possible m-fold covers H of G.1 It is easy to show that
for any graph G and m ∈ N, PDP (G,m) ≤ Pℓ(G,m) ≤ P (G,m).

Interestingly, unlike the list color function, it is known that PDP (G,m) does
not necessarily equal P (G,m) for sufficiently large m. Indeed, in [17] it is shown
that if G is a graph with girth that is even, then there is an N ∈ N such that
PDP (G,m) < P (G,m) whenever m ≥ N (this result was further generalized by
Dong and Yang in [10]). This leads to a longstanding open question about DP
color functions that served as one of the motivations for this paper.

Question 2 [17]. For any graph G does there always exist an N ∈ N and a
polynomial p(m) such that PDP (G,m) = p(m) whenever m ≥ N?

Recently, the first author [23] introduced the dual DP color function of a
graph G, denoted P ∗

DP (G,m), which equals the maximum value of PDP (G,H)
where the maximum is taken over all full m-fold covers H of G. Every graph G
has a full m-fold cover with a canonical labeling. So, PDP (G,m) ≤ Pℓ(G,m) ≤
P (G,m) ≤ P ∗

DP (G,m). In addition to providing an upper bound on the chro-
matic polynomial, the dual DP color function of a graph also appears in a lower
bound for the DP color function of the graph based on a deletion-contraction
relation (see [23]).

In this paper, we show that the answer to the analogue of Question 2 for
the dual DP color function is no. We hope that our approach can provide new
insights into answering Question 2.

1.3. Summary of results

The results in this paper came from studying dual DP color functions of com-
plete graphs. It is known that P ∗

DP (K2,m) = m(m − 1) for each m ∈ N and
P ∗
DP (K3,m) = (m− 1)3 +1 for each m ≥ 2 (see [23]). In Section 2, we prove the

following.

Theorem 3. Suppose m ≥ 2. Then,

P ∗
DP (K4,m) =

{
m4 − 6m3 + 15m2 − 13m if m is even,

m4 − 6m3 + 15m2 − 13m− 3 if m is odd.

Consequently, there is no N ∈ N and polynomial p(m) such that P ∗
DP (K4,m) =

p(m) whenever m ≥ N .

1We take N to be the domain of the DP color function of any graph.
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Clearly, Theorem 3 shows that the answer to the analogue of Question 2 for
the dual DP color function is no. Interestingly, Theorem 3 also reveals a con-
nection between the dual DP color function of K4 and the balanced chromatic
polynomial of a signed version of K4 (balanced chromatic polynomials were in-
troduced by Zaslavsky in 1982 [32]).

Using the notation in [7], we now make this connection explicit. Suppose G is
a graph. A signed graph on G is a pair SG = (G, σ) where the sign on each edge of
SG is given by the function σ : E(G) → {1,−1}. For λ ≥ 2, a λ-coloring of SG is
a map f : V (G) → K where K = {−t, . . . , 1, 0, 1, . . . , t} when λ = 2t+1 for some
t ∈ N and K = {−t, . . . , 1, 1, . . . , t} when λ = 2t for some t ∈ N. Additionally, f
is a proper λ-coloring of SG if for each uv ∈ E(G), f(u) ̸= σ(uv)f(v). For each
λ ≥ 2, let PSG(λ) denote the number of proper λ-colorings of SG. The balanced
chromatic polynomial of SG is then PSG(2t) for each t ∈ N (it can be proven
PSG(2t) is a polynomial in t). Finally, suppose G = K4, σ : E(G) → {1,−1} is
identically -1, and SG = (G, σ). Then, it can be verified that Theorem 3 implies
P ∗
DP (K4, 2l) = PSG(2l) for each l ∈ N.

The following two questions are now natural.

Question 4. Suppose n ∈ N and G = Kn. Let σ : E(G) → {1,−1} be identically
-1, and let SG = (G, σ). Is it the case that P ∗

DP (Kn, 2l) = PSG(2l) for each
l ∈ N?

Question 5. For each n ≥ 4, is it the case that there is no N ∈ N and polynomial
p(m) such that P ∗

DP (Kn,m) = p(m) whenever m ≥ N?

It is easy to verify the answer to Question 4 is yes when n ∈ [3], and The-
orem 3 implies the answer is yes when n = 4. In proving Theorem 3 we will
discover that the interaction between the subcovers corresponding to the three
and four cycles contained in K4 is quite important. So, our final result, which
we prove in Section 3, can be viewed as progress toward both of the Questions
above.

Theorem 6. Suppose G = Kn with n ≥ 4, and let t =
(
n
2

)
. If m > 2t+1+t+n−6

and H = (L,H) is a full m-fold cover of G satisfying PDP (G,H) = P ∗
DP (G,m),

then H is triangle-free. Moreover, when m > 2t+1 + t+ n− 6,

f(m)− 2tmn−4 ≤ P ∗
DP (G,m) ≤ f(m) + 2tmn−4

where

f(m) = mn − tmn−1 +

(
t

2

)
mn−2 −

((
t

3

)
−
(
n

3

)
− 3

(
n

4

))
mn−3.

Note that if l, n ∈ N, n ≥ 4, G = Kn, σ : E(G) → {1,−1} is identically -1,
and SG = (G, σ), then Theorem 6 implies that P ∗

DP (G, 2l)− PSG(2l) = O(ln−4)
as l → ∞.
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2. Proof of Theorem 3

This section is organized as follows. We begin by showing that the formula in
Theorem 3 is an upper bound on the dual DP color function of K4. Then,
we construct covers to show that the upper bound is attainable. The key to
establishing the upper bound is generalizing the proof technique of the following
classical result to the context of DP coloring.

Theorem 7 [6]. Suppose G is a graph. Then,

P (G,m) =
∑

A⊆E(G)

(−1)|A|mkA

where kA is the number of components of the spanning subgraph of G with edge
set A.

We will now introduce some notation that will be used for the remainder
of this section. Suppose that G = K4, V (G) = {v1, v2, v3, v4}, and E(G) =
{e1, e2, e3, e4, e5, e6}. Also, for some m ≥ 4 we always have that H = (L,H) is a
full m-fold cover of G such that L(v) = {(v, i) : i ∈ [m]} for each v ∈ V (G) (we
will handle m < 4 computationally in Appendix 4). Additionally, for i, j ∈ [4]
with i < j, we let σi,j be the permutation of [m] that maps each q ∈ [m] to the
second coordinate of the vertex in L(vj) that is adjacent to (vi, q) in H.

Let U = {I ⊆ V (H) : |L(v) ∩ I| = 1 for each v ∈ V (G)}. Clearly, |U| = m4.
Now, for i ∈ [6], if ei = vrvs, let Si be the set consisting of each I ∈ U with the
property that H[I] contains an edge in EH(L(vr), L(vs)). Also, for each i ∈ [6]
let Ci = U − Si. Clearly,

PDP (G,H) =

∣∣∣∣∣
6⋂

i=1

Ci

∣∣∣∣∣ .
So, by the Inclusion-Exclusion Principle, we see that

PDP (G,H) = |U| −

∣∣∣∣∣
6⋃

i=1

Si

∣∣∣∣∣ = m4 −
6∑

k=1

(−1)k−1

 ∑
1≤i1<···<ik≤6

∣∣∣∣∣∣
k⋂

j=1

Sij

∣∣∣∣∣∣
 .

We now establish some bounds on the terms in this formula.

Lemma 8 [24]. Assuming the set-up established above, the following two state-
ments hold.

(i) For any k ∈ [2] and i1, . . . , ik ∈ [6] satisfying i1 < · · · < ik,
∣∣∣⋂k

j=1 Sij

∣∣∣ =
m4−k.
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(ii) If ei1 , . . . , ei3 are distinct edges that are not the edges of a 3-cycle in G,∣∣∣⋂3
j=1 Sij

∣∣∣ = m.

Lemma 9. Assuming the set-up established above, suppose k ∈ {3, 4, 5, 6}, and
i1, . . . , ik ∈ [6] satisfy i1 < · · · < ik. Let G′ be the subgraph of G with edge set
{ei1 , . . . , eik} and vertex set consisting of only the vertices that are an endpoint
of at least one element in E(G′). Suppose H′ = (L′, H ′) is the subcover of H
corresponding to G′. Let C(G′) be the number of copies of G′ contained in H ′. If
k = 3 and ei1 , . . . , ei3 are the edges of a 3-cycle in G, then∣∣∣∣∣∣

3⋂
j=1

Sij

∣∣∣∣∣∣ = mC(G′); otherwise,

∣∣∣∣∣∣
k⋂

j=1

Sij

∣∣∣∣∣∣ = C(G′).

Proof. Let C(G′) be the set consisting of the vertex set of each copy of G′ in
H ′. Note that any element of C(G′) is a transversal of H′. Also,

⋂k
j=1 Sij has

an element if and only if C(G′) has an element. So, both results are clear when
C(G′) = 0, and we suppose that C(G′) > 0.

First, suppose k = 3 and ei1 , . . . , ei3 are the edges of a 3-cycle in G. Suppose
{vq} = V (G)− V (G′). Let M : C(G′)× [m] →

⋂3
j=1 Sij be the function given by

M(V, x) = V ∪ {(vq, x)}. It is easy to verify that M is a bijection which means

that
∣∣∣⋂3

j=1 Sij

∣∣∣ = mC(G′).

In the case k ̸= 3, or k = 3 and ei1 , . . . , ei3 are not the edges of a 3-cycle in
G, C(G′) =

⋂k
j=1 Sij which completes the proof.

Now, suppose that T1, T2, T3, and T4 are the 3-cycles contained in G. For
each i ∈ [4], let ti be the number of 3-cycles contained in the second coordinate
of the subcover of H corresponding to Ti. Note that the vertex set of each such
3-cycle is a transversal of the subcover of H corresponding to Ti.

Lemma 10. Suppose G′ is the spanning subgraph of G such that E(G′) contains
all the edges of Ti for some i ∈ [4] and one additional edge er. Suppose H′ =
(L′, H ′) is the subcover of H corresponding to G′. Then, C(G′) = ti where C(G′)
is the number of copies of G′ contained in H ′

Proof. Let C(G′) be the set consisting of the vertex set of each copy of G′ in
H ′, and let T be the set consisting of the vertex set of each copy of Ti contained
in the second coordinate of the subcover of H corresponding to Ti. Since any
element of C(G′) is a transversal of H′, it is clear that if C(G′) = ∅, then T = ∅.
So, we may assume C(G′) > 0.

Suppose {vq} = V (G) − V (Ti) (note vq must be an endpoint of er). Let
M : C(G′) → T be the function that maps each I ∈ C(G′) to the set obtained
from I by deleting the element in I with first coordinate vq. It is easy to verify
that M is a bijection, and the result follows.
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Now, suppose that M1, . . . ,M6 are the copies of K4 minus an edge contained
in G. For each i ∈ [6], let mi be the number of copies of Mi contained in the
second coordinate of the subcover ofH corresponding to Mi. Note that the vertex
set of each such copy is a transversal of the subcover of H corresponding to Mi.

Lemma 11. Suppose G′ = Mi for some i ∈ [6], and assume E(G′) contains all
the edges of Tj and Tr for some j, r ∈ [4] with j ̸= r. Then, mi ≤ min{tj , tr}.

Proof. Since the result is clear when mi = 0, we suppose mi > 0. Suppose
H′ = (L′, H ′) is the subcover of H corresponding to G′. Let C(G′) be the set
consisting of the vertex set of each copy of G′ in H ′, and let Tj (resp. Tr) be
the set consisting of the vertex set of each copy of Tj (resp. Tr) contained in the
second coordinate of the subcover of H corresponding to Tj (resp. Tr). Now, let

T =
{
V1 ∪ V2 : V1 ∈ Tj , V2 ∈ Tr, |V1 ∩ V2| = 2

}
.

It is easy to see that C(G′) = T . Then since for each V ∈ Tj there is at most one
V ′ ∈ Tr such that |V ∩ V ′| = 2 (this also holds when j and r are interchanged),
min{tj , tr} ≥ |T |.

Next, suppose Q1, . . . , Q3 are the 4-cycles contained in G. For each i ∈ [3], let
qi be the number of 4-cycles contained in the second coordinate of the subcover
of H corresponding to Qi. Note that the vertex set of each such 4-cycle is a
transversal of the subcover of H corresponding to Qi. Finally let z be the number
of copies of K4 contained in H. Using this notation along with Lemmas 8, 9,
and 10 we see

PDP (G,H) = m4 +
6∑

k=1

(−1)k

 ∑
1≤i1<···<ik≤6

∣∣∣∣∣∣
k⋂

j=1

Sij

∣∣∣∣∣∣


= m4 − 6m3 + 15m2 − 16m−m(t1 + t2 + t3 + t4)

+
6∑

k=4

(−1)k

 ∑
1≤i1<···<ik≤6

∣∣∣∣∣∣
k⋂

j=1

Sij

∣∣∣∣∣∣
(1)

= m4 − 6m3 + 15m2 − 16m+ (3−m)
4∑

i=1

ti +
3∑

i=1

qi −
6∑

i=1

mi + z.

By Lemma 11, and noting that qi ≤ m for each i ∈ [3] and min{t1, t2, t3, t4} ≥
z, we obtain the following.

Lemma 12. For each m ≥ 4,

P ∗
DP (K4,m) ≤ m4 − 6m3 + 15m2 − 13m.



On Polynomial Representations of Dual DP Color Functions 9

Moreover, using the notation above, if H is a full m-fold cover of G = K4 such
that ti = 0 for each i ∈ [4] and qj = m for each j ∈ [3], then

PDP (G,H) = m4 − 6m3 + 15m2 − 13m.

We are now ready to prove two important results that apply when m is odd.
These results will allow us to improve on the upper bound in Lemma 12 in the
case that m is odd.

Lemma 13. Suppose m ≥ 5 and m is odd. If H is a full m-fold cover of G = K4

such that qj = m for each j ∈ [3], then
∑4

i=1 ti > 0.

Proof. For the sake of contradiction suppose H = (L,H) is a full m-fold cover
of G = K4 such that qj = m for each j ∈ [3] and

∑4
i=1 ti = 0 (equivalently ti = 0

for each i ∈ [4]). Using the notation above, suppose: the vertices of Q1 in cyclic
order are v1, v2, v3, v4, the vertices of Q2 in cyclic order are v1, v2, v4, v3, and the
vertices of Q3 in cyclic order are v1, v3, v2, v4.

Since q1 = m we may assume that the vertices of H are named so that σ1,2,
σ2,3, σ3,4, and σ1,4 are all the identity permutation. Since

∑4
i=1 ti = 0, we know

that both σ1,3 and σ2,4 have no fixed points. Now, suppose that x is an arbitrary
element of [m]. Also, suppose that σ1,3(x) = y. Since q2 = m, σ1,3(x) = y implies
σ−1
2,4(y) = x. Also, since q3 = m, σ2,4(y) = x. So, σ2,4(σ2,4(x)) = x. Since x was

arbitrary, we have that σ2,4 is an involution. Since σ2,4 is also a permutation of
[m], we know it can be decomposed into disjoint cycles of length one and two.
Finally, since m is odd, σ2,4 must have a fixed point which is a contradiction.

Lemma 14. Suppose m ≥ 5 and m is odd. If H is a full m-fold cover of G = K4

such that
∑4

i=1 ti = 0, then
∑3

j=1 qj ≤ 3m− 3.

Proof. For the sake of contradiction suppose H = (L,H) is a full m-fold cover
of G = K4 such that

∑4
i=1 ti = 0 and

∑3
j=1 qj ≥ 3m − 2. Note that Lemma 13

implies that
∑3

j=1 qj ∈ {3m−1, 3m−2}. Using the notation above, suppose: the
vertices of Q1 in cyclic order are v1, v2, v3, v4, the vertices of Q2 in cyclic order
are v1, v2, v4, v3, and the vertices of Q3 in cyclic order are v1, v3, v2, v4.

First, we claim that qj ̸= m − 1 for each j ∈ [3]. To see why suppose that
q1 = m − 1. Then, we may assume without loss of generality that σ1,2(i) = i,
σ2,3(i) = i, σ3,4(i) = i, and σ−1

1,4(i) = i for each i ∈ [m − 1]. Since H is full,
this implies that σ1,2, σ2,3, σ3,4, and σ1,4 are all the identity permutation on [m]
which implies q1 = m contradicting q1 = m− 1.

Since qj ̸= m − 1 for each j ∈ [3], we may suppose that
∑3

j=1 qj = 3m − 2,
q1 = m, q2 = m, and q3 = m − 2. As in the proof of Lemma 13 assume
that the vertices of H are named so that σ1,2, σ2,3, σ3,4, and σ1,4 are all the
identity permutation on [m]. Since

∑4
i=1 ti = 0, we know that both σ1,3 and
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σ2,4 have no fixed points. As in the proof of Lemma 13, q2 = m implies that
σ1,3(x) = σ2,4(x) for each x ∈ [m]. Since q3 = m− 2, there are b1, b2 ∈ [m] with
b1 ̸= b2 such that σ2,4(σ1,3(bi)) ̸= bi for each i ∈ [2], and σ2,4(σ1,3(t)) = t for
each t ∈ ([m] − {b1, b2}). So, we have that σ2,4(σ2,4(bi)) ̸= bi for each i ∈ [2],
σ2,4(σ2,4(t)) = t for each t ∈ ([m]− {b1, b2}), and σ2,4(x) ̸= x for each x ∈ [m].

Since σ2,4(σ2,4(bi)) ̸= bi for each i ∈ [2], we cannot have σ2,4(b1) = b2 and
σ2,4(b2) = b1. So, we may assume without loss of generality σ2,4(b1) = s for
some s ∈ ([m] − {b1, b2}). We then have that σ2,4(s) ̸= s and σ2,4(s) ̸= b1.
So suppose σ2,4(s) = q for some q ∈ ([m] − {s, b1}). This however implies
σ2,4(q) = σ2,4(σ2,4(s)) = s = σ2,4(b1) which contradicts the fact that σ2,4 is a
permutation.

Lemma 15. For each odd m ≥ 7,

P ∗
DP (K4,m) ≤ m4 − 6m3 + 15m2 − 13m− 3.

Proof. Suppose H = (L,H) is a full m-fold cover of G = K4 where PDP (G,H) =
P ∗
DP (G,m). Using the notation established above, we have from identity (1)

P ∗
DP (G,m) = m4 − 6m3 + 15m2 − 16m+ (3−m)

4∑
i=1

ti +
3∑

i=1

qi −
6∑

i=1

mi + z.

Notice that since m ≥ 7, if
∑4

i=1 ti > 0, (3 − m)
∑4

i=1 ti −
∑6

i=1mi + z ≤
(3−m)

∑4
i=1 ti +min{t1, t2, t3, t4} ≤ −3t1 − 4t2 − 4t3 − 4t4 ≤ −3. On the other

hand, if
∑4

i=1 ti = 0, Lemma 11 implies (3−m)
∑4

i=1 ti −
∑6

i=1mi + z = 0.

With these two observations in mind, we notice that if
∑3

i=1 ti = 0, Lemma 14
implies

∑3
i=1 qi ≤ 3m − 3 which establishes the desired bound. We also notice

that if
∑4

i=1 ti > 0, P ∗
DP (G,H) ≤ m4 − 6m3 + 15m2 − 16m − 3 +

∑3
i=1 qi ≤

m4 − 6m3 + 15m2 − 13m− 3.

We can now prove Theorem 3 by proving that the bounds in Lemmas 12
and 15 are attainable.

Theorem 3. Suppose m ≥ 2. Then,

P ∗
DP (K4,m) =

{
m4 − 6m3 + 15m2 − 13m if m is even,

m4 − 6m3 + 15m2 − 13m− 3 if m is odd.

Consequently, there is no N ∈ N and polynomial p(m) such that P ∗
DP (K4,m) =

p(m) whenever m ≥ N .

Proof. Note that the result can be computationally verified when m = 2, 3, 4, 5
(see Appendix 4). So, suppose that m is even and m ≥ 6. We will now construct
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a full m-fold cover, H = (L,H), of G = K4. For each i ∈ [4], let L(vi) =
{(vi, j) : j ∈ [m]} and let V (H) =

⋃4
i=1 L(vi). Finally, create edges in H so

that whenever i, j ∈ [4] and i < j, (vi, t)(vj , t + 1) ∈ E(H) when t is odd and
(vi, t)(vj , t − 1) ∈ E(H) when t is even. Now, using the notation established
above, it is easy to check that H is a full m-fold cover of G such that ti = 0
for each i ∈ [4] and qj = m for each j ∈ [3]. Lemma 12 then implies that
P ∗
DP (G,m) = PDP (G,H) = m4 − 6m3 + 15m2 − 13m.

Now suppose that m ≥ 7 and m is odd. To complete the proof, we must now
show that the upper bound in Lemma 15 is attainable. We will construct a fullm-
fold cover, H = (L,H), of G = K4. For each i ∈ [4], let L(vi) = {(vi, j) : j ∈ [m]}
and let V (H) =

⋃4
i=1 L(vi). Finally, using the notation above, create edges as

follows. First, create edges so that σ1,2, σ1,3, and σ1,4 are the identity permutation
on [m]. Let f be the permutation on [m] given by f(1) = 2, f(2) = 3, f(3) = 1,
f(x) = x+ 1 whenever x is even and 4 ≤ x ≤ m− 1, and f(x) = x− 1 whenever
x is odd and 5 ≤ x ≤ m. Finally, create edges so that σ2,3 = σ2,4 = f and
σ3,4 = f−1.

Now, using the notation established above, it is easy to check that H is a
full m-fold cover of G such that ti = 0 for each i ∈ [4]. Also, using the notation
above, if we suppose: the vertices of Q1 in cyclic order are v1, v2, v3, v4, the
vertices of Q2 in cyclic order are v1, v2, v4, v3, and the vertices of Q3 in cyclic
order are v1, v3, v2, v4, then it is clear that q1 = q3 = m. It is also easy to
check that q2 = m− 3. Finally, identity (1) and the fact that

∑4
i=1 ti = 0 implies

(3−m)
∑4

i=1 ti−
∑6

i=1mi+z = 0 yields PDP (G,H) = m4−6m3+15m2−13m−3.

3. Proof of Theorem 6

This section is organized as follows. We begin by generalizing the notation and
approach of Section 2 so that it applies to complete graphs with order larger than
4. Then, we establish a lower and upper bound on PDP (G,H) when G = Kn

with n ≥ 4 and H is an m-fold cover of G with m > 2t+1+t+n−6 where t =
(
n
2

)
.

These bounds allow us to prove the bounds in Theorem 6. Finally, we use the
bounds in Theorem 6 to show that when H = (L,H) is a full m-fold cover of G
satisfying PDP (G,H) = P ∗

DP (G,m) and m > 2t+1 + t+ n− 6, H is triangle-free.

We begin by generalizing the notation used in Section 2. This notation will
be used for the remainder of the paper. Suppose that G = Kn with n ≥ 4,
V (G) = {v1, . . . , vn}, E(G) = {e1, . . . , et} where t =

(
n
2

)
. Also, for some m >

2t+1 + t+ n− 6 we always have that H = (L,H) is a full m-fold cover of G such
that L(v) = {(v, i) : i ∈ [m]} for each v ∈ V (G). Additionally, for i, j ∈ [n] with
i < j, we let σi,j be the permutation of [m] that maps each q ∈ [m] to the second
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coordinate of the vertex in L(vj) that is adjacent to (vi, q) in H.

Let U = {I ⊆ V (H) : |L(v) ∩ I| = 1 for each v ∈ V (G)}. Clearly, |U| = mn.
Now, for i ∈ [t], if ei = vrvs, let Si be the set consisting of each I ∈ U with the
property that H[I] contains an edge in EH(L(vr), L(vs)). Also, for each i ∈ [t]
let Ci = U − Si. Clearly,

PDP (G,H) =

∣∣∣∣∣
t⋂

i=1

Ci

∣∣∣∣∣ .
So, by the Inclusion-Exclusion Principle, we see that

PDP (G,H) = |U| −

∣∣∣∣∣
t⋃

i=1

Si

∣∣∣∣∣ = mn −
t∑

k=1

(−1)k−1

 ∑
1≤i1<···<ik≤t

∣∣∣∣∣∣
k⋂

j=1

Sij

∣∣∣∣∣∣
 .

Now, suppose that T1, . . . , Ta are the 3-cycles contained in G (note that
a =

(
n
3

)
). For each i ∈ [a], let ti be the number of 3-cycles contained in the second

coordinate of the subcover of H corresponding to Ti. Next, suppose Q1, . . . , Qb

are the 4-cycles contained in G (note that b = 3
(
n
4

)
). For each i ∈ [b], let qi be

the number of 4-cycles contained in the second coordinate of the subcover of H
corresponding to Qi. Suppose that M1, . . . ,M2b are the copies of K4 minus an
edge contained in G. For each i ∈ [2b], let mi be the number of copies of Mi

contained in the second coordinate of the subcover of H corresponding to Mi.
Finally, suppose that Z1, . . . , Zb/3 are the copies of K4 contained in G. For each
i ∈ [b/3], let zi be the number of copies of Zi contained in the second coordinate
of the subcover of H corresponding to Zi.

We know from Section 2 that if for some i ∈ [2b], E(Mi) contains all the edges
of Tj and Tr for some j, r ∈ [a] with j ̸= r, then mi ≤ min{tj , tr}. Also, if for
some i ∈ [b/3], E(Zi) contains all the edges of Tj , Tq, Tr, Ts for some j, q, r, s ∈ [a]
with j < q < r < s, then zi ≤ min{tj , tq, tr, ts}. We are now ready to present
some bounds and identities that will be essential in our proof of Theorem 6.

Lemma 16. Assuming the set-up established above, the following statements
hold.

(i) For any k ∈ [2] and i1, . . . , ik ∈ [t] satisfying i1 < · · · < ik,
∣∣∣⋂k

j=1 Sij

∣∣∣ =
mn−k.

(ii) If ei1 , . . . , ei3 are distinct edges that are not the edges of a 3-cycle in G,∣∣∣⋂3
j=1 Sij

∣∣∣ = mn−3.

(iii) Suppose that 3 ≤ k ≤ 6, and i1, . . . , ik ∈ [t] satisfy i1 < · · · < ik. Let G′

be the subgraph of G with edge set {ei1 , . . . , eik} and vertex set consisting
of only the vertices that are an endpoint of at least one element in E(G′).
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Suppose H′ = (L′, H ′) is the subcover of H corresponding to G′. Let C(G′)
be the number of copies of G′ contained in H ′. If G′ is a 3-cycle in G, then∣∣∣⋂3

j=1 Sij

∣∣∣ = mn−3C(G′). Furthermore, if 4 ≤ k ≤ 6 and |V (G′)| = 4, then∣∣∣⋂k
j=1 Sij

∣∣∣ = mn−4C(G′).

(iv) Suppose G′ is the spanning subgraph of G such that E(G′) contains all the
edges of Tj for some j ∈ [a] and one additional edge. Suppose E(G′) =

{ei1 , . . . , ei4}. Then,
∣∣∣⋂4

j=1 Sij

∣∣∣ = tjm
n−4.

(v) Suppose that 4 ≤ k ≤ 6, and i1, . . . , ik ∈ [6] satisfy i1 < · · · < ik. Let G′

be the subgraph of G with edge set {ei1 , . . . , eik} and vertex set consisting of
only the vertices that are an endpoint of at least one element in E(G′). If
G′ is not a 3-cycle plus an edge, G′ ̸= Qi for some i ∈ [b], G′ ̸= Mi for some

i ∈ [2b], and G′ ̸= Zi for some i ∈ [b/3], then
∣∣∣⋂k

j=1 Sij

∣∣∣ ≤ mn−4.

(vi) For k ≥ 7,
∑

1≤i1<···<ik≤t

∣∣∣⋂k
j=1 Sij

∣∣∣ ≤ (tk)mn−4.

Proof. Statements (i), (ii), and (vi) are proven in a more general setting in [24].
So, we begin with a proof of Statement (iii). Let C(G′) be the set consisting of
the vertex set of each copy of G′ in H ′. We suppose G′ is a 3-cycle or 4 ≤ k ≤ 6
and |V (G′)| = 4. Note that

⋂k
j=1 Sij has an element if and only if C(G′) has

an element. So, both results are clear when C(G′) = 0, and we suppose that
C(G′) > 0.

Suppose C = V (G) − V (G′), and c = |C| (note that c = n − 3 when G′ is
a 3-cycle, and c = n − 4 when |V (G′)| = 4). Name the elements of C so that
C = {c1, . . . , cc}. Let M : C(G′) × [m]c →

⋂k
j=1 Sij be the function given by

M(V, (x1, . . . , xc)) = V ∪ {(ci, xi) : i ∈ [c]}. It is easy to verify that M is a

bijection which yields
∣∣∣⋂k

j=1 Sij

∣∣∣ = mcC(G′).

We now turn our attention to Statement (iv). Suppose without loss of gener-
ality that ei4 /∈ E(Tj). We may suppose that ei4 does not share an endpoint with
any element of E(Tj); otherwise, the desired result follows from Lemma 10 and
Statement (iii). Suppose ei4 = xy. Let M :

⋂4
j=1 Sij × [m] →

⋂3
j=1 Sij be the

function given by M(V, i) = (V − (V ∩L(y)))∪{(y, i)}. One can verify that M is

a bijection which yields m
∣∣∣⋂4

j=1 Sij

∣∣∣ = ∣∣∣⋂3
j=1 Sij

∣∣∣. Since Statement (iii) implies∣∣∣⋂3
j=1 Sij

∣∣∣ = tjm
n−3, our proof of Statement (iv) is complete.

For Statement (v) notice that for any G′ satisfying the hypotheses, the span-
ning subgraph of G with edge set E(G′) has at least n−4 components. The result
immediately follows (this idea is also used in [24] to prove Statement (vi)).
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Lemma 16 along with the fact there are (t−3) spanning subgraphs of G that
contain all the edges of Tj and one additional edge, now yields the following.

(2)

PDP (G,H)

= mn +

t∑
k=1

(−1)k

 ∑
1≤i1<···<ik≤t

∣∣∣∣∣∣
k⋂

j=1

Sij

∣∣∣∣∣∣


= mn − tmn−1 +

(
t

2

)
mn−2 −

((
t

3

)
−
(
n

3

))
mn−3 −

(
a∑

i=1

ti

)
mn−3

+
6∑

k=4

(−1)k

 ∑
1≤i1<···<ik≤t

∣∣∣∣∣∣
k⋂

j=1

Sij

∣∣∣∣∣∣
+

t∑
k=7

(−1)k

 ∑
1≤i1<···<ik≤t

∣∣∣∣∣∣
k⋂

j=1

Sij

∣∣∣∣∣∣


≥ mn − tmn−1 +

(
t

2

)
mn−2 −

((
t

3

)
−
(
n

3

))
mn−3 −

(
a∑

i=1

ti

)
mn−3

+

(
b∑

i=1

qi

)
mn−4 + (t− 3)

(
a∑

i=1

ti

)
mn−4 −

(
2b∑
i=1

mi

)
mn−4

+

 b/3∑
i=1

zi

mn−4 −
((

t

4

)
− b− a(t− 3)

)
mn−4 −

((
t

5

)
− 2b

)
mn−4

−
((

t

6

)
− b/3

)
mn−4 −

t∑
k=7

(
t

k

)
mn−4

≥ mn − tmn−1 +

(
t

2

)
mn−2 −

((
t

3

)
−
(
n

3

))
mn−3

+ (t− 3−m)

(
a∑

i=1

ti

)
mn−4

+

(
b∑

i=1

qi

)
mn−4 −

(
2b∑
i=1

mi

)
mn−4 +

 b/3∑
i=1

zi

mn−4

+ (b+ a(t− 3) + 2b+ b/3)mn−4 − 2tmn−4.

Similarly, using the fact thatm > 2t+1+t+n−6 which means n+t−m−6 < 0,
qi ≤ m for each i ∈ [b], and for each i ∈ [a], Ti is a subgraph of exactly (n− 3) of
the graphs Z1, . . . , Zb/3, we obtain
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(3)

PDP (G,H)

= mn − tmn−1 +

(
t

2

)
mn−2 −

((
t

3

)
−
(
n

3

))
mn−3 −

(
a∑

i=1

ti

)
mn−3

+

6∑
k=4

(−1)k

 ∑
1≤i1<···<ik≤t

∣∣∣∣∣∣
k⋂

j=1

Sij

∣∣∣∣∣∣
+

t∑
k=7

(−1)k

 ∑
1≤i1<···<ik≤t

∣∣∣∣∣∣
k⋂

j=1

Sij

∣∣∣∣∣∣


≤ mn − tmn−1 +

(
t

2

)
mn−2 −

((
t

3

)
−
(
n

3

))
mn−3 −

(
a∑

i=1

ti

)
mn−3

+

(
b∑

i=1

qi

)
mn−4 + (t− 3)

(
a∑

i=1

ti

)
mn−4 −

(
2b∑
i=1

mi

)
mn−4

+

 b/3∑
i=1

zi

mn−4 +

t∑
k=4

(
t

k

)
mn−4

≤ mn − tmn−1 +

(
t

2

)
mn−2 −

((
t

3

)
−
(
n

3

))
mn−3

+ (t− 3−m)

(
a∑

i=1

ti

)
mn−4 + bmn−3 + (n− 3)

(
a∑

i=1

ti

)
mn−4 + 2tmn−4

≤ mn − tmn−1 +

(
t

2

)
mn−2 −

((
t

3

)
−
(
n

3

)
− 3

(
n

4

))
mn−3 + 2tmn−4.

Notice that this establishes the upper bound in Theorem 6. We will now
construct covers and use bound (2) to establish the lower bound in Theorem 6.

Lemma 17. Suppose G = Kn with n ≥ 4, and let t =
(
n
2

)
. When m > 2t+1 +

t+ n− 6,

mn−tmn−1+

(
t

2

)
mn−2−

((
t

3

)
−
(
n

3

)
− 3

(
n

4

))
mn−3−2tmn−4 ≤ P ∗

DP (G,m).

Proof. We will first prove the result when m is even. Construct a full m-fold
cover, H = (L,H), of G as follows. For each i ∈ [n], let L(vi) = {(vi, j) : j ∈ [m]}
and let V (H) =

⋃n
i=1 L(vi). Finally, create edges in H so that whenever i, j ∈ [t]

and i < j, (vi, t)(vj , t + 1) ∈ E(H) when t is odd and (vi, t)(vj , t − 1) ∈ E(H)
when t is even. Now, using the notation established above, it is easy to check
that H is a full m-fold cover of G such that ti = 0 for each i ∈ [a] and qj = m
for each j ∈ [b]. The fact that ti = 0 for each i ∈ [a] also implies that mi = 0 for
each i ∈ [2b] and zi = 0 for each i ∈ [b/3]. Our desired bound now immediately
follows from bound (2) and the fact that PDP (G,H) ≤ P ∗

DP (G,m).
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Now suppose that m is odd. Construct a full m-fold cover, H = (L,H), of
G as follows. For each i ∈ [n], let L(vi) = {(vi, j) : j ∈ [m]} and let V (H) =⋃n

i=1 L(vi). Let f be the permutation on [m] given by f(1) = 2, f(2) = 3,
f(3) = 1, f(x) = x+ 1 whenever x is even and 4 ≤ x ≤ m− 1, and f(x) = x− 1
whenever x is odd and 5 ≤ x ≤ m. Now, create edges so that whenever i, j ∈ [t]
and i < j, σi,j = f .

Now, using the notation established above, we have that ti = 0 for each
i ∈ [a] since f−1(f(f(x))) = f(x) ̸= x for each x ∈ [m]. As in the case when m
is even, this implies mi = 0 for each i ∈ [2b] and zi = 0 for each i ∈ [b/3].

Now, suppose vi, vj , vk, vl are four arbitrary vertices in G such that i < j <
k < l. Additionally, suppose Qq, Qr, and Qs are the 4-cycles in G with vertex
set equal to {vi, vj , vk, vl}. We will now compute qq, qr, and qs. Without loss of
generality we may assume i = 1, j = 2, k = 3, and l = 4. We may also suppose
the vertices of Qq in cyclic order are v1, v2, v3, v4, the vertices of Qr in cyclic order
are v1, v2, v4, v3, and the vertices of Qs in cyclic order are v1, v3, v2, v4. Note that
for each x ∈ [m],

σ−1
1,4(σ3,4(σ2,3(σ1,2(x)))) = f−1(f(f(f(x)))) = f(f(x)).

Since f(f(x)) = x for each x ∈ [m] − [3] and f(f(x)) ̸= x for each x ∈ [3], we
have that qq = m − 3. Similarly, since f−1(f−1(f(f(x)))) = x for each x ∈ [m],
qr = m; additionally, since f−1(f(f−1(f(x)))) = x for each x ∈ [m], qs = m.
This means (

b∑
i=1

qi

)
mn−4 = (mb− b)mn−4 = bmn−3 − bmn−4.

Our desired bound now immediately follows from bound (2) and the fact that
PDP (G,H) ≤ P ∗

DP (G,m).

We are now ready to complete the proof of Theorem 6 which we restate.

Theorem 6. Suppose G = Kn with n ≥ 4, and let t =
(
n
2

)
. If m > 2t+1+t+n−6

and H = (L,H) is a full m-fold cover of G satisfying PDP (G,H) = P ∗
DP (G,m),

then H is triangle-free. Moreover, when m > 2t+1 + t+ n− 6,

f(m)− 2tmn−4 ≤ P ∗
DP (G,m) ≤ f(m) + 2tmn−4

where

f(m) = mn − tmn−1 +

(
t

2

)
mn−2 −

((
t

3

)
−
(
n

3

)
− 3

(
n

4

))
mn−3.
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Proof. Suppose H = (L,H) is a full m-fold cover of G satisfying PDP (G,H) =
P ∗
DP (G,m) and m > 2t+1+ t+n− 6. Since we have already proven both bounds

on P ∗
DP (G,m) above, we need only show that H is triangle-free.
For the sake of contradiction, suppose that H is not triangle-free. Using

the notation above, this implies that
∑a

i=1 ti > 0. Let S =
∑a

i=1 ti. Then, by
bound (3) and the fact that m > 2t+1 + t+ n− 6, we obtain

P ∗
DP (G,m) = PDP (G,H)

≤ mn − tmn−1 +

(
t

2

)
mn−2 −

((
t

3

)
−
(
n

3

)
− 3

(
n

4

))
mn−3

+ (t+ n− 6−m)Smn−4 + 2tmn−4

≤ mn − tmn−1 +

(
t

2

)
mn−2 −

((
t

3

)
−
(
n

3

)
− 3

(
n

4

))
mn−3

+ (2t + t+ n− 6−m)mn−4

< mn− tmn−1+

(
t

2

)
mn−2−

((
t

3

)
−
(
n

3

)
− 3

(
n

4

))
mn−3− 2tmn−4.

This however contradicts f(m)− 2tmn−4 ≤ P ∗
DP (G,m).
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4. Appendix

The program in this Appendix is written in Python, and it is available at [28]. The
program can be used to compute P ∗

DP (K4,m) when m = 2, 3, 4, 5. For our inputs for the
program we assume G = K4, V (G) = {v1, v2, v3, v4}, and E(G) = {e1, e2, e3, e4, e5, e6}
where e1 = v1v2, e2 = v1v3, e3 = v1v4, e4 = v2v3, e5 = v2v4, and e6 = v3v4. By
Corollary 12 in [9], P ∗

DP (G,m) can be computed by considering all full m-fold covers for
G such that σ1,2, σ1,3, and σ1,4 are all the identity permutation.

#################

#

# GUIDE

# 1.) Ask $|V(G)|$ and $|E(G)|$ from the user.

# 2.) Ask the user for the incidence matrix of $G$.

# 3.) Asks the user for the value of $m$.

# 4.) For each edge, $e = v_i v_j$ with $i < j$ the user indicates with

# a $0$ that $\sigma_{i,j}$ will be fixed as the identity permutation

# for all full $m$-fold covers that the program considers, or the user

# indicates with a $1$ that $\sigma_{i,j}$ is not fixed.

#

# PROCESS

# The program counts the number of proper $\mathcal{H}$-colorings of $G$

# for each full $m$-fold cover, $\mathcal{H}$ of $G$, satisfying:

# for any edge $v_i v_j$ with $i < j$ that received a 0 in the 4th step,

# $\mathcal{H}$ has $\sigma_{i,j}$ as the identity permutation.

# Thus if $q$ is the number of 1’s entered by the user,

# the program considers $(m!)^q$ full $m$-fold covers of $G$.

#

# OUTPUT

# The first output will be the maximum number of proper colorings

# over all $m$-fold covers that the program considers.

#

# The second output will be the minimum number of proper colorings

# over all $m$-fold covers that the program considers.

#

# To verify Theorem 3 for $m = 2,3,4,5$ use the following inputs:

# 1.) Enter the number of vertices: 4

# Enter the number of edges: 6

#

# 2.) Enter the incidence matrix(one row at a time and space-separated

# values) E1 E2 E3 E4 E5 E6

# V1: 1 1 1 0 0 0

# V2: 1 0 0 1 1 0

# V3: 0 1 0 1 0 1

# V4: 0 0 1 0 1 1

#

# 3.) Enter the fold number: m
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#

# 4.) Enter the edges that will correspond to the identity permutation

# in the cover (’0’ for identity, ’1’ otherwise):

# E1: 0

# E2: 0

# E3: 0

# E4: 1

# E5: 1

# E6: 1

#

# OUTPUTS FOR EACH VALUE OF $m$

# When $m = 2$:

# 2

# 0

#

# When $m = 3$:

# 12

# 0

#

# When $m = 4$:

# 60

# 24

#

# When $m = 5$:

# 182

# 120

#

#################

import math as math

import itertools as iter

from tqdm import tqdm

#

# Creation of the incidence matrix of $G$. Returns a 2D Matrix.

# When $G$ has $l$ vertices and $w$ edges, the user specifies $l$ and $w$

# and then the incidence matrix.

#

#

def incidenceM_Creation(l, w):

# Initialize the incidence matrix with zeros

matrix = [[0] * w] * l

print("Enter the incidence matrix "

"(one row at a time and space-separated values):")

for cols in range(w):

if (cols == 0):
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print(f" E{cols + 1}", end=" ")

else:

print(f"E{cols + 1}", end=" ")

for i in range(l):

print()

row = input(f"V{i + 1}: ").strip().split()

if len(row) != w:

print("Error: Number of elements in the row does "

"not match the number of columns.\n")

incidenceM_Creation(l, w)

return None

matrix[i] = [int(val) for val in row]

print()

return matrix

#

# Returns a 1D Matrix

#

# For each edge, $e = v_i v_j$ with $i < j$ the user indicates with a $0$

# that $\sigma_{i,j}$ will be fixed as the identity permutation for all

# full $m$-fold covers that the program considers, or the user

# indicates with a $1$ that $\sigma_{i,j}$ is not fixed.

#

def edgeID_Creation(w):

matrix = []

print("\nEnter the edges that will correspond to the identity

permutation" "in the cover(’0’ for identity, ’1’ otherwise): ")

for i in range(w):

matrix.append(int(input(f"Edge {i + 1}: ")))

print()

return matrix

#

# Generates every possible coloring based on the second coordinates of

# the elements of $L(v)$ for each $v \in V(G)$.

#

def generate_colorings(n, length):

return [list(perm) for perm in iter.product(range(1, n + 1),

repeat=length)]

#

# Determines whether a coloring is proper.

#

def coloring_function(m, v, e, incidence_matrix, p_edges, colorings):

c = 0

for i in range(m**v):

z = 0



On Polynomial Representations of Dual DP Color Functions 23

for j in range(e):

a = -1

b = -1

for k in range(v):

if (incidence_matrix[k][j] == 1):

a = b

b = k

if (p_edges[j][colorings[i][a] - 1] != colorings[i][b]):

z += 1

if (z == e):

c += 1

return c

##### DRIVER PROGRAM ######

# Ask $|V(G)|$ and $|E(G)|$ from the user.

v = int(input("Enter the number of vertices: "))

e = int(input("Enter the number of edges: "))

# Ask the user for the incidence matrix of $G$.

incidence_matrix = incidenceM_Creation(v, e)

# Ask the user for the value of $m$.

m = int(input("\nEnter the fold number: "))

# Generates every possible coloring based on the second coordinates of

# the elements of $L(v)$ for each $v \in V(G)$.

colorings = generate_colorings(m, v)

# D is the maximum number of proper colorings

# over all $m$-fold covers that the program considers.

# d is the minimum number of proper colorings

# over all $m$-fold covers that the program considers.

D = 0

d = (m**v)

# Generates all permutations of $[m]$.

permutations = list(iter.permutations(range(1, m + 1)))

# Enter the edges that will correspond to the identity permutation

# in the cover (’0’ for identity, ’1’ otherwise):

edges_id = edgeID_Creation(e)

# Determine the number of 1’s entered by the user.
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q = 0

for i in range(e):

q += edges_id[i]

# Generates all full $m$-fold covers that the program will consider.

covers = generate_colorings(math.factorial(m), q)

#

# Counts the number of proper $\mathcal{H}$-colorings of $G$

# for each full $m$-fold cover, $\mathcal{H}$ of $G$, satisfying:

# for any edge $v_i v_j$ with $i < j$ that received a 0,

# $\mathcal{H}$ has $\sigma_{i,j}$ as the identity permutation.

# Thus if $q$ is the number of 1’s entered by the user,

# the program considers $(m!)^q$ full $m$-fold covers of $G$.

#

p = [[0] * m] * e

for i in tqdm (range(math.factorial(m)**q), desc="Calculating..."):

for j in range(e):

count = 0

if edges_id[j]== 1:

p[j] = permutations[covers[i][count] - 1]

count += 1

else:

p[j] = permutations[0]

c = coloring_function(m, v, e, incidence_matrix, p, colorings)

if c > D:

D = c

if c < d:

d = c

# OUTPUTS

print(f’Max: {D}’)

print(f’Min: {d}’)
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