DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2024): 0.8

5-year Journal Impact Factor (2024): 0.7

CiteScore (2024): 2.1

SNIP (2024): 1.162

Discussiones Mathematicae Graph Theory

Article in press


Authors:

J. Lu

Jian Lu

Anhui University of Finance and Economics

email: lujianmath@163.com

X.-F. Pan

Xiang-Feng Pan

Anhui University

email: xfpan@ahu.edu.cn

Title:

On $S$-packing edge-coloring of graphs with given edge weight

PDF

Source:

Discussiones Mathematicae Graph Theory

Received: 2024-07-20 , Revised: 2025-05-25 , Accepted: 2025-06-01 , Available online: 2025-06-24 , https://doi.org/10.7151/dmgt.2591

Abstract:

Let $S=(s_1,\ldots, s_k)$ be a non-decreasing sequence of positive integers. A graph $G=(V(G), E(G))$ is said to be $S$-packing edge-colorable if $E(G)$ can be decomposed into disjoint sets $E_1,\ldots, E_k$ such that for every $1\leq i\leq k$, the distance between any two distinct edges in $E_i$ is at least $s_i+1$. The edge weight of $G$ is defined as $ew(G)=\max\{d(u)+d(v)|uv \in E(G)\}$. A fork is the graph obtained from $K_{1,3}$ by subdividing an edge once. In 2023, Liu et al. proved that every subcubic multigraph is $(1, 2^7)$-packing edge-colorable. Based on the work of Liu et al., we prove that every multigraph $G$ with $ew(G)\leq6$ is $(1, 2^7)$-packing edge-colorable, which confirms a conjecture of Yang and Wu (2022). In addition, we demonstrate that if $G$ is a fork-free graph with $ew(G)\leq6$, then $G$ is $(1, 2^6)$-packing edge-colorable.

Keywords:

$S$-packing edge-coloring, edge weight, fork-free graphs

References:

  1. J.-L. Fouquet and J.-M. Vanherpe, On parsimonious edge-colouring of graphs with maximum degree three, Graphs Combin. 29 (2013) 475–487.
    https://doi.org/10.1007/s00373-012-1145-3
  2. J.-L. Fouquet and J.L. Jolivet, Strong edge-colorings of graphs and applications to multi-$k$-gons, Ars Combin. 16A (1983) 141–150.
  3. N. Gastineau and O. Togni, On S-packing edge-colorings of cubic graphs, Discrete Appl. Math. 259 (2019) 63–75.
    https://doi.org/10.1016/j.dam.2018.12.035
  4. W. Goddard and H. Xu, The S-packing chromatic number of a graph, Discuss. Math. Graph Theory 32 (2012) 795–806.
    https://doi.org/10.7151/dmgt.1642
  5. P. Hall, On representatives of subsetes, J. Lond. Math. Soc. 10 (1935) 26–30.
    https://doi.org/10.1112/jlms/s1-10.37.26
  6. H. Hocquard, D. Lajou and B. Lužar, Between proper and strong edge-colorings of subcubic graphs, J. Graph Theory 101 (2022) 686–716.
    https://doi.org/10.1002/jgt.22848
  7. X.J. Liu, M. Santana and T. Short, Every subcubic multigraph is $(1, 2^7)$-packing edge-colorable, J. Graph Theory 104 (2023) 851–885.
    https://doi.org/10.1002/jgt.23004
  8. X. J. Liu and G. Yu, On the $(1^2,2^4)$-packing edge-coloring of subcubic graphs (2024).
    arXiv: 2402.18353v1
  9. K. Nakprasit, A note on the strong chromatic index of bipartite graphs, Discrete Math. 308 (2008) 3726–3728.
    https://doi.org/10.1016/j.disc.2007.07.034
  10. V.G. Vizing, On an estimate of the chromatic class of a $p$-graph, Diskret. Analiz. 3 (1964) 25–30, in Russian.
  11. W. Yang and B. Wu, On $S$-packing edge-colorings of graphs with small edge weight, Appl. Math. Comput. 418 (2022) 126840.
    https://doi.org/10.1016/j.amc.2021.126840

Close