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Abstract

Let S = (s1, . . . , sk) be a non-decreasing sequence of positive integers. A
graph G = (V (G), E(G)) is said to be S-packing edge-colorable if E(G) can
be decomposed into disjoint sets E1, . . . , Ek such that for every 1 ≤ i ≤ k,
the distance between any two distinct edges in Ei is at least si+1. The edge
weight of G is defined as ew(G) = max{d(u) + d(v)|uv ∈ E(G)}. A fork is
the graph obtained from K1,3 by subdividing an edge once. In 2023, Liu et

al. proved that every subcubic multigraph is (1, 27)-packing edge-colorable.
Based on the work of Liu et al., we prove that every multigraph G with
ew(G) ≤ 6 is (1, 27)-packing edge-colorable, which confirms a conjecture of
Yang and Wu (2022). In addition, we demonstrate that if G is a fork-free
graph with ew(G) ≤ 6, then G is (1, 26)-packing edge-colorable.
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1. Introduction

All graphs considered in this paper are finite and undirected. The distance be-
tween two vertices u and v in a graph G = (V (G), E(G)) is the length of a shortest
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path between u and v. For two edges e1, e2 in E(G), the distance d(e1, e2) be-
tween e1 and e2 is the distance between the corresponding vertices of e1 and e2
in the line graph of G.

Let S = (s1, s2, . . . , sk) be a non-decreasing sequence of integers. An S-
packing edge-coloring of G is a partition E1, E2, . . . , Ek of E(G) such that for
1 ≤ i ≤ k, d(e1, e2) ≥ si + 1 for any two edges e1 and e2 in Ei. Note that if all
si = 1 or all si = 2, then an S-packing edge-coloring is equivalent to a proper
edge-coloring or a strong edge-coloring [2], respectively. In this paper, we are
only concerned with the case where each si ∈ {1, 2}. For convenience, we use
exponents to indicate identical components repeated in S, e.g., (1, 1, 2, 2, 2) =
(12, 23). And we write the color set of the (1, 2k)-packing edge-coloring of G as
{0, 1, 2, . . . , k}, where 0 is the color that allows edges with distance at least 2 to
be colored, and we collectively refer to colors 1 through k as the 2-colors, which
are the colors allow edges with distance at least 3 to be colored.

The concept of S-packing edge-colorings is derived from its corresponding
vertex counterpart, which was first proposed by Gastineau and Togni [3] as a
logical extension of the packing chromatic number [4]. Fouquet and Vanherpe
[1] proved that any subcubic graph admits a (13, 2)-packing edge-coloring. A
spanning subgraph G′ of G is called a 2-factor of G if each component of G′ is a
cycle. Gastineau and Togni [3] demonstrated that for each cubic graph G with a
2-factor, G is (12, 25)-packing edge-colorable.

In light of Vizing’s [10] work ∆(G) ≤ χ′(G) ≤ ∆(G) + 1, we know that if
χ′(G) = ∆(G), then G is said to be in class I; if χ′(G) = ∆(G) + 1, then G
is said to be in class II, where χ′(G) and ∆(G) are the chromatic index and
the maximum degree of G, respectively. Gastineau et al. [3] and Hocquard et

al. [6] posed several conjectures of S-packing edge-coloring on subcubic graphs,
especially in class I.

Conjecture 1. If G is a simple subcubic graph, then G is

(a) (12, 24)-packing edge-colorable [3];

(b) (1, 27)-packing edge-colorable [3];

(c) (12, 23)-packing edge-colorable if G is in class I [3];

(d) (1, 26)-packing edge-colorable if G is in class I [6].

In [6], Hocquard et al. made progress towards these conjectures by proving
the following results.

Theorem 2 [6]. If G is a simple subcubic graph, then G is

(a) (12, 25)-packing edge-colorable;

(b) (1, 28)-packing edge-colorable;

(c) (12, 24)-packing edge-colorable if G is in class I;
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(d) (1, 27)-packing edge-colorable if G is in class I.

Moreover, Hocquard et al. posed several problems of S-packing edge-coloring
on planar graphs and bipartite graphs with ew(G) ≤ 5, where ew(G) = max{d(u)
+ d(v) : uv ∈ E(G)} is called the edge weight of G.

Problem 3 [6]. If G is a simple bipartite graph with ew(G) ≤ 5, then G is
(1, 24)-packing edge-colorable.

Recently, Liu et al. [7, 8] proved Conjecture 1(a) and (b), and in particular,
for Conjecture 1(b), they obtained a stronger conclusion.

Theorem 4 [8]. If G is a connected subcubic graph with more than 70 vertices,

then G is (12, 24)-packing edge-colorable.

Theorem 5 [7]. If G is a subcubic multigraph, then G is (1, 27)-packing edge-

colorable.

In [11], Yang and Wu solved Problem 3 and got a more favorable result.
They showed that every simple graph G with ew(G) ≤ 5 is (1, 24)-packing edge-
colorable. In addition, they proved that every simple graph G with ew(G) ≤ 6 is
(1, 28)-packing edge-colorable and made the following conjecture.

Conjecture 6 [11]. If G is a simple graph with ew(G) ≤ 6, then G is (1, 27)-
packing edge-colorable.

In this paper, by proving the following result and combining it with Theorem
5, we prove Conjecture 6.

Theorem 7. For every multigraph G with ew(G) ≤ 6 and ∆(G) ≥ 4, G is

(1, 27)-packing edge-colorable.

The graph obtained from K1,3 (usually called claw) by subdividing an edge
once is called a fork. A graph is H-free if it does not contain H as an induced
subgraph. In this paper, we also consider the S-packing edge-coloring on fork-free
graphs with ew(G) ≤ 6 and get the following result.

Theorem 8. For every fork-free multigraph G with ew(G) ≤ 6, G is (1, 26)-
packing edge-colorable.

The graphs G′ and G′′ in Figure 1 show that our results in Theorems 7–8 are
sharp. In [6], Hocquard et al. showed that G′ is (1, 27)-packing edge-colorable
but not (1, 26)-packing edge-colorable. For the graph G′′, it can be seen that G′′

is (1, 26)-packing edge-colorable. Note that |E(G′′)| = 9, the distance between
any two edges in E(G′′) is at most two, and the maximum size of a matching in
G′′ is three. Hence, at most three edges in G′′ can be colored with color 0, and
the remaining six edges must be colored with different 2-colors. Therefore, G′′ is
not (1, 25)-packing edge-colorable.
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G′ G′′

Figure 1. Sharpness examples of Theorems 7–8.

2. Preliminaries

Let G = (V (G), E(G)) be a graph. For v ∈ V (G), NG(v) is the set of all neighbors
of v. We denote the degree of v by dG(v) = |NG(v)|. If dG(v) = d, then v is
called a d-vertex. When G is clear from the context, then we write N(v) and d(v)
instead of NG(v) and dG(v), respectively. Let δ(G) = min{d(v)|v ∈ V (G)}. We
denote by N ′(e) the set of edges with distance 1 to e and N ′′(e) the set of edges
with distance at most 2 to e. Clearly, N ′(e) ⊆ N ′′(e). For V ′ ⊆ V (G), the graph
induced by V (G) \ V ′ is denoted as G− V ′. If V ′ = {v}, we simplify G− {v} to
G− v.

To prove Theorem 7, we need the following two lemmas. Let T1, . . . , Tn be n
subsets of a set T . A subset {t1, t2, . . . , tn} ⊆ T is called the system of distinct
representatives of {T1, . . . , Tn} if ti ∈ Ti and ti 6= tj for 1 ≤ i, j ≤ n.

Lemma 9 (Hall’s marriage theorem [5]). Let T1, . . . , Tn be n subsets of a set T . A
system of distinct representatives of {T1, . . . , Tn} exists if and only if for all k, 1 ≤
k ≤ n and every subcollection of size k, {Ti1 , . . . , Tik}, we have |Ti1∪· · ·∪Tik | ≥ k.

Recall that a strong k-edge-coloring is a (2k)-packing edge-coloring. Due to
the work of Nakprasit [9] on strong edge-coloring of bipartite graphs, we have the
following lemma.

Lemma 10 [9]. Let G be a simple bipartite graph in which the vertices in one

part have maximum degree 2. Then G is (22∆(G))-packing edge-colorable.

From now on, a (1, 2k)-coloring in this paper refers to (1, 2k)-packing edge-
coloring, where k = 6 or 7. A partial coloring of G is a coloring of any subset of
E(G) using the colors {0, 1, 2, . . . , k}, such that for any two colored edges e1 and
e2, if they are both colored with the color 0, then d(e1, e2) ≥ 2; if they are both
colored with a same 2-color, then d(e1, e2) ≥ 3.

Let G1 be a proper subgraph of G with a partial coloring ϕ. For any e ∈
E(G) \ E(G1), we denote by Aϕ(e) the set of 0-color and 2-colors that can be
used to color e, and by A2

ϕ(e) the set of 2-colors that can be used to color e.
And we write Aϕ(e) and A2

ϕ(e) as A(e) and A2(e), respectively, if it is clear
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from the context. Obviously, if no edges in N ′(e) are colored 0 under ϕ, then
A(e) = A2(e) ∪ {0}, and we can color e with color 0. Otherwise, A(e) = A2(e),
we can only color e with a 2-color in A2(e). We say that ϕ is finished when we
extend ϕ from G1 to G.

3. Proof of Theorem 7

Assume that Theorem 7 fails, and H is a counterexample with |V (H)|+ |E(H)|
as small as possible. By the choice of H, H is a connected multigraph with
ew(H) ≤ 6 and any proper subgraph of H has a (1, 27)-coloring.

Claim 11. H is simple.

Proof. Suppose that there are k multiple edges e1, e2, . . . , ek between two vertices
u and v in H, where k ≥ 2. Since ew(H) ≤ 6, k ≤ 3. If k = 3, then H is the graph
with 2 vertices and 3 edges. Obviously, H is (1, 27)-colorable, a contradiction.
Hence k = 2. Let H1 = H − e1. Then H1 has a (1, 27)-coloring ϕ by the
minimality of H. Note that there are at most 7 edges in N ′′(e1) as ew(H) ≤ 6.
Hence, |A(e1)| ≥ 1. If all the edges in N ′′(e1) are colored with different 2-colors
under ϕ, then we can finish ϕ by coloring e1 with color 0. Otherwise, we can
finish ϕ by coloring e1 with a 2-color in A2(e1), a contradiction.

Claim 12. δ(H) ≥ 2.

Proof. Suppose that v is a 1-vertex in H with a neighbor u. By the minimality
of H, H1 = H − v has a (1, 27)-coloring ϕ. Since ew(H) ≤ 6, there are at most 6
edges in N ′′(uv). Hence, |A2(uv)| ≥ 1, and we can finish ϕ by coloring uv with
a 2-color in A2(uv), a contradiction.

Claim 13. H has no adjacent 2-vertices.

Proof. Suppose that u and v are two adjacent 2-vertices in H. Denote N(u) =
{u1, v} and N(v) = {v1, u}. Since ew(H) ≤ 6, d(v1) ≤ 4 and d(u1) ≤ 4. Let
H1 = H − {u, v}. Then H1 has a (1, 27)-coloring ϕ by the minimality of H.

If 0 ∈ Aϕ(vv1) and 0 ∈ Aϕ(uu1), then we first color vv1 and uu1 with color
0 and call this coloring φ1. Observe that |A2

φ1
(uv)| ≥ 7− ((d(v1)− 1) + (d(u1)−

1)) ≥ 1. Hence, we can finish φ1 by coloring uv with a 2-color in A2
φ1
(uv), a

contradiction.
If only one of Aϕ(vv1) and Aϕ(uu1), say Aϕ(uu1), does not contain color 0,

then there must exist some edge e ∈ N ′(uu1) \ {uv} such that ϕ(e) = 0. We
first color vv1 with 0 and call this coloring φ2. Observe that |A2

φ2
(uu1)| ≥ 2 and

|A2
φ2
(uv)| ≥ 2. Hence, we can finish φ2 by coloring uv and uu1 with different

2-colors, a contradiction.
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If 0 /∈ Aϕ(vv1) and 0 /∈ Aϕ(uu1), then there are two edges e1 ∈ N ′(uu1)\{uv}
and e2 ∈ N ′(vv1) \ {uv} such that ϕ(e1) = ϕ(e2) = 0. We first color uv with
color 0 and call this coloring φ3. Observe that |A2

φ3
(uu1)| ≥ 2 and |A2

φ3
(vv1)| ≥

2. Hence, we can finish φ3 by coloring uu1 and vv1 with different 2-colors, a
contradiction.

Claim 14. H has no 4-cycle that contains a 4-vertex.

Proof. Suppose that C4 = v1v2v3v4v1 is a 4-cycle in H with d(v1) = 4. Denote
N(v1) = {w1, w2, v2, v4}. Since ew(H) ≤ 6 and δ(H) ≥ 2 (by Claim 12), d(w1) =
d(w2) = d(v2) = d(v4) = 2. By Claim 13, 3 ≤ d(v3) ≤ 4.

w1 w2

v1
v4 v2

v3

w

z1 z2
w1 w2

v1
v4 v2

v3w3 w4

z3 z4

(a) (b)

v1

w1 w2

w′

1
w′

2

v5 v2

v4 v3

(c)

v
w

uu3z3 u1 z1
u2
z2

(d)

Figure 2. The reducible configurations of Claims 14–16.

Case 1. d(v3) = 3. Denote N(v3) = {w, v2, v4} (see Figure 2(a)). Let
H1 = H − v1. Then H1 has a (1, 27)-coloring ϕ by the minimality of H. Next,
we erase the color of v3v4 and v3v2 in H1. If ϕ(v3w) = 0, then we first color
v1v4 with color 0 and call this partial coloring φ1. Observe that |A2

φ1
(e)| ≥ 5

for e ∈ E(C4) \ {v1v4} and |A2
φ1
(v1wi)| ≥ 2 for 1 ≤ i ≤ 2. Hence, we can finish

φ1 by sequentially coloring v1w1, v1w2, v1v2, v2v3, v3v4 with different 2-colors, a
contradiction. If ϕ(v3w) 6= 0, then we first color v1v2 and v3v4 with color 0 and
call this partial coloring φ2. Observe that |A2

φ2
(v1v4)| ≥ 4, |A2

φ2
(v2v3)| ≥ 4 and

|A2
φ2
(v1wi)| ≥ 2 for 1 ≤ i ≤ 2. Hence, we can finish φ2 by sequentially coloring

v1w1, v1w2, v2v3, v1v4 with different 2-colors, a contradiction.

Case 2. d(v3) = 4. Denote N(v3) = {w3, w4, v2, v4} (see Figure 2(b)). Let
H2 = H − {v1, v3}. Then H2 has a (1, 27)-coloring ψ by the minimality of H.
Since ew(H) ≤ 6 and δ(H) ≥ 2, d(w3) = d(w4) = 2. By Claim 13, w3w4 /∈ E(H).

Subcase 2.1. w3 = w1. We first color v3w1 and v1v4 with color 0 and call this
partial coloring ψ1. Observe that |A2

ψ1
(v1w2)| ≥ 3, |A2

ψ1
(v3w4)| ≥ 3, |A2

ψ1
(v1w1)|

≥ 6, |A2
ψ1
(v1v2)| ≥ 6, |A2

ψ1
(v2v3)| ≥ 6 and |A2

ψ1
(v3v4)| ≥ 6. Hence, we can

finish ψ1 by sequentially coloring v1w2, v3w4, v1w1, v1v2, v2v3, v3v4 with different
2-colors, a contradiction.
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Subcase 2.2. w3 6= w1. By the symmetry of w1, w2, w3 and w4, we have
wi 6= wj for 1 ≤ i 6= j ≤ 4. Recall that d(wi) = 2 for 1 ≤ i ≤ 4. Let zi be the
neighbor of wi not in C4 for 1 ≤ i ≤ 4.

Subcase 2.2.1. ϕ(wizi) = 0 for all 1 ≤ i ≤ 4. We first color v1v4 with color
0 and call this partial coloring ψ2. Since d(wi) = 2 and d(zi) ≤ 4 for 1 ≤ i ≤ 4,
we have |A2

ψ2
(v1w1)| ≥ 4, |A2

ψ2
(v1w2)| ≥ 4, |A2

ψ2
(v3w3)| ≥ 4, |A2

ψ2
(v3w4)| ≥ 4,

|A2
ψ2
(v1v2)| ≥ 7, |A2

ψ2
(v2v3)| ≥ 7 and |A2

ψ2
(v3v4)| ≥ 7. Hence, we can finish ψ2

by sequentially coloring v1w1, v1w2, v3w3, v3w4, v1v2, v2v3, v3v4 with different
2-colors, a contradiction.

Subcase 2.2.2. ϕ(wjzj) 6= 0 for some 1 ≤ j ≤ 4. Assume ϕ(w3z3) 6= 0
by symmetry. We first color v3w3 with color 0 and call this partial coloring
ψ3. Then we delete the color of w2z2 under ψ3. Observe that |A2

ψ3
(v1w1)| ≥ 3,

|A2
ψ3
(v1w2)| ≥ 3, |A2

ψ3
(v1v2)| ≥ 6, |A2

ψ3
(v1v4)| ≥ 6, |A2

ψ3
(v2v3)| ≥ 5, |A2

ψ3
(v3v4)| ≥

5, |A2
ψ3
(v3w4)| ≥ 2 and |Aψ3

(w2z2)| ≥ 2.

Subcase 2.2.2.1. 0 ∈ Aψ3
(w2z2). Note that d(w2z2, v1v4) = 2, hence we can

color w2z2 and v1v4 with color 0 and then color v3w4, v1w1, v1w2, v2v3, v3v4,
v1v2 with different 2-colors in order to finish ψ3, a contradiction.

Subcase 2.2.2.2. 0 /∈ Aψ3
(w2z2). Then ψ3(z2z

′
2) = 0, where z′2 ∈ N(z2)\{w2}.

Hence, |A2
ψ3
(w2z2)| ≥ 2. We first color v1w2 with color 0. Recall that for 1 ≤

i ≤ 2, wi 6= w4, and by Claim 13, wiw4 /∈ E(H). Thus d(v1wi, v3w4) > 2 for
1 ≤ i ≤ 2 and d(w2z2, v2v3) > 2. If A2

ψ3
(w2z2) ∩ A2

ψ3
(v2v3) 6= ∅, then we can

color w2z2 and v2v3 with a same color in A2
ψ3
(w2z2) ∩ A

2
ψ3
(v2v3) and then finish

ψ3 by sequentially coloring v3w4, v1w1, v3v4, v1v4, v1v2 with different 2-colors, a
contradiction. If A2

ψ3
(w2z2) ∩ A

2
ψ3
(v2v3) = ∅, then |A2

ψ3
(w2z2) ∪ A

2
ψ3
(v2v3)| ≥ 7.

Let T = {w2z2, v3w4, v1w1, v1v2, v2v3, v3v4, v4v1}. Observe that for any T ′ ⊆ T ,
|
⋃
e∈T ′ A2

ψ3
(e)| ≥ |T ′|. Hence, by Lemma 9, we can finish ψ3 by coloring each

edge in T with a different 2-color, which is a contradiction.

Claim 15. H has no 5-cycle that contains a 4-vertex.

Proof. Suppose otherwise that there is a 5-cycle v1v2v3v4v5v1 in H with d(v1) =
4. Denote N(v1) = {w1, w2, v2, v5}. Since ew(H) ≤ 6, d(w1) = d(w2) = d(v2) =
d(v4) = 2. Denote N(w1) = {v1, w

′
1} and N(w2) = {v1, w

′
2}. Then d(w′

1) ≤ 4
and d(w′

2) ≤ 4 as ew(H) ≤ 6. By Claim 13, d(v3) = d(v4) = 3 (see Figure 2(c)).
Let H1 = H − {v1, v2, v5}. Then H1 has a (1, 27)-coloring ϕ by the minimality
of H. We erase the color of v3v4 in H1 under ϕ. Observe that |Aϕ(v1w1)| ≥ 3,
|Aϕ(v1w2)| ≥ 3, |Aϕ(v1v2)| ≥ 5, |Aϕ(v1v5)| ≥ 5, |Aϕ(v5v4)| ≥ 4, |Aϕ(v3v4)| ≥ 2
and |Aϕ(v2v3)| ≥ 4.

Case 1. 0 /∈ Aϕ(v2v3). Then ϕ(v3v
′
3) = 0, where v′3 ∈ N(v3) \ {v2, v4}.

Denote N(v4) = {v3, v5, v
′
4}. Since ew(H) ≤ 6, there are at most 7 colored edges
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in N ′′(v4v
′
4), including v3v

′
3. We first erase the color of v4v

′
4 and recolor v4v

′
4 with

a 2-color not used on the edges in N ′′(v4v
′
4) to ensure that ϕ(v4v

′
4) 6= 0. Then

color v4v5 with color 0 and call this partial coloring φ. Next, if 0 ∈ Aφ(v1w1),
then we color v1w1 with color 0. Observe that |A2

φ(v3v4)| ≥ 2, |A2
φ(v1w2)| ≥

2, |A2
φ(v2v3)| ≥ 4, |A2

φ(v1v5)| ≥ 4 and |A2
φ(v1v2)| ≥ 5. Hence, we can finish

φ by sequentially coloring v3v4, v1w2, v2v3, v1v5, v1v2 with different 2-colors, a
contradiction. Hence, 0 /∈ Aφ(v1w1), which implies φ(w1w

′
1) = 0, where w′

1 ∈
N(w1)\{v1}. Then |A2

φ(v3v4)| ≥ 2, |A2
φ(v1w1)| ≥ 3, |A2

φ(v1w2)| ≥ 3, |A2
φ(v2v3)| ≥

4, |A2
φ(v1v5)| ≥ 5 and |A2

φ(v1v2)| ≥ 6. Hence, we can finish φ by sequentially
coloring v3v4, v1w1, v1w2, v2v3, v1v5, v1v2 with different 2-colors, a contradiction.

Case 2. 0 ∈ Aϕ(v2v3). By symmetry of v3 and v4, we also have 0 ∈ Aϕ(v4v5).
We first color v2v3 and v4v5 with color 0 and call this partial coloring τ . If
0 ∈ Aτ (v1w1), then we color v1w1 with color 0. Observe that |A2

τ (v3v4)| ≥ 1,
|A2

τ (v1w2)| ≥ 2, |A2
τ (v1v5)| ≥ 4 and |A2

τ (v1v2)| ≥ 4. Hence, we can finish τ by
sequentially coloring v3v4, v1w2, v1v5, v1v2 with different 2-colors, a contradiction.
Hence, 0 /∈ Aτ (v1w1), which implies τ(w1w

′
1) = 0, where w′

1 ∈ N(w1)\{v1}. Then
|A2

τ (v3v4)| ≥ 1, |A2
τ (v1w1)| ≥ 3, |A2

τ (v1w2)| ≥ 3, |A2
τ (v1v5)| ≥ 5 and |A2

τ (v1v2)| ≥
5. Hence, we can finish τ by sequentially coloring v3v4, v1w1, v1w2, v1v5, v1v2
with different 2-colors, a contradiction.

Claim 16. No 2-vertex in H is adjacent to a 4-vertex and a 3-vertex.

Proof. Suppose that v is a 2-vertex in H adjacent to a 4-vertex u and a 3-vertex
w. Denote N(u) = {v, u1, u2, u3}. Since ew(H) ≤ 6, d(u1) = d(u2) = d(u3) = 2
by Claim 12. By Claim 13, vui /∈ E(H) and uiuj /∈ E(H) for 1 ≤ i 6= j ≤ 3.
Denote N(ui) = {u, zi} for 1 ≤ i ≤ 3, then d(zi) ≤ 4 as ew(H) ≤ 6. By Claim
14, zi 6= zj and zi 6= w for 1 ≤ i 6= j ≤ 3. By Claim 15, ziw /∈ E(H) and
zizj /∈ E(H) for 1 ≤ i 6= j ≤ 3. Hence, the distance between any two edges
in {u1z1, u2z2, u3z3, wv} is 3 (see Figure 2(d)). Let H1 = H − N(u), then H1

has a (1, 27)-coloring ϕ by the minimality of H. Observe that |Aϕ(vw)| ≥ 2,
|Aϕ(uv)| ≥ 6, |Aϕ(uizi)| ≥ 2 and |Aϕ(uui)| ≥ 5 for 1 ≤ i ≤ 3. We first color uu3
with color 0.

Case 1. 0 ∈ Aϕ(wv). Then we color wv with color 0 and call this partial
coloring φ.

Subcase 1.1. 0 ∈
⋃

1≤i≤3Aφ(uizi). By symmetry, let 0 ∈ Aφ(u1z1) and we

color u1z1 with color 0. Observe that |A2
φ(u2z2)| ≥ 1, |A2

φ(u3z3)| ≥ 1, |A2
φ(uu1)| ≥

4, |A2
φ(uu2)| ≥ 4 and |A2

φ(uv)| ≥ 5. Hence, we can finish φ by sequentially coloring
u2z2, u3z3, uu1, uu2, uv, a contradiction.

Subcase 1.2. 0 /∈
⋃

1≤i≤3Aφ(uizi). It follows that for each 1 ≤ i ≤ 3,
there exists some edge ziz

′
i with φ(ziz

′
i) = 0, where z′i ∈ N(zi) \ {ui}. Hence,

|A2
φ(uv)| ≥ 5, |A2

φ(uu1)| ≥ 5, |A2
φ(uu2)| ≥ 5 and |A2

φ(uizi)| ≥ 2 for 1 ≤ i ≤ 3.
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If there exist two edges in {u1z1, u2z2, u3z3}, say u1z1 and u2z2, that satisfy
A2
φ(u1z1)∩A

2
φ(u2z2) 6= ∅, then we can color u1z1 and u2z2 with the same color in

A2
φ(u1z1)∩A

2
φ(u2z2) and then finish φ by sequentially coloring u3z3, uu1, uu2, uv

with different 2-colors, a contradiction.

If A2
φ(uizi) ∩ A2

φ(ujzj) = ∅ for 1 ≤ i 6= j ≤ 3, then |
⋃

1≤i≤3A
2
φ(uizi)| ≥

6. Let T = {u1z1, u2z2, u3z3, uu1, uu2, uv}. Observe that for any T ′ ⊆ T ,
|
⋃
e∈T ′ A2

φ(e)| ≥ |T ′|. Hence, by Lemma 9, we can finish φ by coloring each
edge in T with a different 2-color, which is a contradiction.

Case 2. 0 /∈ Aϕ(wv). Then there exists some edge ww′ with ϕ(ww′) = 0,
where w′ ∈ N(w) \ {v}.

Subcase 2.1. 0 ∈
⋃

1≤i≤3Aφ(uizi). By symmetry, let 0 ∈ Aφ(u1z1). We color
u1z1 with color 0 and call this partial coloring τ .

If 0 /∈ Aτ (u2z2), then there exists some edge z2z
′
2 with τ(z2z

′
2) = 0, where

z′2 ∈ N(z2) \ {u2}. Observe that |A2
τ (u3z3)| ≥ 1, |A2

τ (u2z2)| ≥ 2, |A2
τ (wv)| ≥ 2,

|A2
τ (uu1)| ≥ 4, |A2

τ (uu2)| ≥ 5 and |A2
τ (uv)| ≥ 6. Hence, we can finish τ by

sequentially coloring u3z3, u2z2, wv, uu1, uu2, uv, a contradiction.

If 0 ∈ Aϕ(u2z2), then we color u2z2 with color 0. Observe that |A2
τ (u3z3)| ≥ 1,

|A2
τ (wv)| ≥ 2, |A2

τ (uu1)| ≥ 4, |A2
τ (uu2)| ≥ 4 and |A2

τ (uv)| ≥ 6. Hence, we can
finish τ by sequentially coloring u3z3, wv, uu1, uu2, uv with different 2-colors, a
contradiction.

Subcase 2.2. 0 /∈
⋃

1≤i≤3Aφ(uizi). It is followed that for each 1 ≤ i ≤ 3,
there exists some edge ziz

′
i with ϕ(ziz

′
i) = 0, where z′i ∈ N(zi) \ {ui}. Hence,

|A2
ϕ(vw)| ≥ 2, |A2

ϕ(uv)| ≥ 6, |A2
ϕ(uu1)| ≥ 5, |A2

ϕ(uu2)| ≥ 5 and |A2
ϕ(uizi)| ≥ 2

for 1 ≤ i ≤ 3. Let T = {u1z1, u2z2, u3z3, wv}. Note that if any two edges e1
and e2 in T have A2

ϕ(e1) ∩ A
2
ϕ(e2) = ∅, then |

⋃
1≤i≤3A

2
ϕ(uizi) ∪ A

2
ϕ(wv)| ≥ 8, a

contradiction. Therefore, there must exist at least two edges of T , say u1z1 and
wv, that satisfy A2

ϕ(u1z1) ∩ A
2
ϕ(wv) 6= ∅. We can first color u1z1 and wv with

the same color in A2
ϕ(u1z1) ∩ A

2
ϕ(wv) and then finish ϕ by sequentially coloring

u2z2, u3z3, uu1, uu2, uv, a contradiction.

Since ew(H) ≤ 6 and δ(H) ≥ 2, then ∆(H) = 4. Let v be a 4-vertex in H.
Then each neighbor of v is a 2-vertex as ew(H) ≤ 6 and δ(H) ≥ 2. Let w be a
2-vertex in N(v). Then by Claims 13 and 16, each neighbor of w is a 4-vertex. It
follows that H is a bipartite graph with one vertex part consisting of 2-vertices
and the other vertex part consisting of 4-vertices. By Lemma 10, there exists a
28-coloring φ of H. By replacing a 2-color of φ to a 0-color, then we obtain a
(1, 27)-coloring of H, a contradiction.

The proof is complete.
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4. Proof of Theorem 8

Assume that Theorem 8 fails, and H is a counterexample with |V (H)|+ |E(H)|
as small as possible. By the choice of H, H is a connected fork-free multigraph
with ew(H) ≤ 6 and any proper subgraph of H has a (1, 26)-coloring.

Claim 17. H is simple.

Proof. Suppose that there are k multiple edges e1, e2, . . . , ek between two vertices
u and v in H, where k ≥ 2. Since ew(H) ≤ 6, k ≤ 3. If k = 3, then H is the graph
with 2 vertices and 3 edges. Obviously, H is (1, 26)-colorable, a contradiction.
Hence, k = 2. Let H1 = H − e1. Then H1 has a (1, 26)-coloring ϕ by the
minimality of H. Assume d(u) ≤ d(v), then 2 ≤ d(u) ≤ 3 as ew(H) ≤ 6.

Case 1. d(u) = 2. Then d(v) ≤ 4 as ew(H) ≤ 6. If d(v) = 4, denote
N(v) = {v1, v2, u}. Then d(v1) ≤ 2 and d(v2) ≤ 2 as ew(H) ≤ 6. Hence, there
are at most 5 edges in N ′′(e1). If d(v) ≤ 3, then there are at most 4 edges in
N ′′(e1). Thus, we always have |A2

ϕ(e1)| ≥ 1 and we can finish ϕ by coloring e1
with a 2-color in A2

ϕ(e1), a contradiction.

Case 2. d(u) = 3. Then d(v) = 3 as ew(H) ≤ 6. Denote N(v) = {u, v1},
N(u) = {v, u1}. Then d(v1) ≤ 3 and d(u1) ≤ 3. If v1 = u1, then |A2

ϕ(e1)| ≥ 2.
Hence, we can finish ϕ by coloring e1 with a 2-color in A2

ϕ(e1), a contradiction.
Thus, v1 6= u1. If u1v1 ∈ E(H), then there are at most 6 edges in N ′′(e1). Hence,
|Aϕ(e1)| ≥ 1 and we can finish ϕ by coloring e1 with the color 0 or some 2-color
in A2

ϕ(e1), a contradiction. Therefore, u1v1 /∈ E(H). It follows that there are at
most 7 edges in N ′′(e1). Denote by N ′(u1) and N ′(v1) the edges incident with
u1 and v1, respectively.

If there exists two edges e′ ∈ N ′(v1) and e
′′ ∈ N ′(u1) satisfy ϕ(e

′) = ϕ(e′′) =
0, then |A2

ϕ(e1)| ≥ 1 and we can finish ϕ by coloring e1 with a 2-color in A2
ϕ(e1),

a contradiction.

If there is only one edge e′ ∈ N ′(v1)∪N
′(u1) that satisfies ϕ(e

′) = 0 (assume
e′ ∈ N ′(v1) by symmetry), then we first erase the color of e2 and uu1 under ϕ.
Next, we recolor uu1 with color 0 and call this partial coloring ψ. Observe that
|A2

ψ(ei)| ≥ 2 for each 1 ≤ i ≤ 2. Hence, we can finish ψ by coloring e1 and e2
with different 2-colors, a contradiction.

If there is no edge e′ ∈ N ′(v1) ∪ N ′(u1) that satisfies ϕ(e′) = 0, then we
first erase the color of vv1, uu1 and e2 under ϕ. Next, we recolor both vv1 and
uu1 with color 0 and call this partial coloring φ. Observe that |A2

φ(ei)| ≥ 2 for
each 1 ≤ i ≤ 2. Hence, we can also finish φ by coloring e1 and e2 with different
2-colors, a contradiction.

Claim 18. δ(H) ≥ 2.
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Proof. Suppose that v is a 1-vertex in H with a neighbor u. By the minimality
of H, H1 = H − v has a (1, 26)-coloring ϕ. Since ew(H) ≤ 6, there are at most
6 edges in N ′′(uv). Hence, |A(uv)| ≥ 1. If all the edges in N ′′(uv) are colored
different 2-colors under ϕ, then we can finish ϕ by coloring vu with color 0.
Otherwise, we can finish ϕ by coloring vu with a 2-color in A2(uv), which is a
contradiction.

Claim 19. ∆(H) ≤ 3.

Proof. Since ew(H) ≤ 6, we have ∆(H) ≤ 4 by Claim 18. Suppose to the
contrary that v is a 4-vertex with N(v) = {v1, v2, v3, v4}. Then d(vi) = 2 for
1 ≤ i ≤ 4 as ew(H) ≤ 6 and δ(H) ≥ 2. Note that H is fork-free, we consider the
following two cases.

Case 1. v1v2 ∈ E(H). Let H1 = H − v1. Then H1 has a (1, 26)-coloring ϕ
by the minimality of H. Observe that |A2(vv1)| ≥ 1 and |A2(v1v2)| ≥ 3, hence
we can finish ϕ by coloring vv1 and v1v2 with different 2-colors, a contradiction.

Case 2. v1v2 /∈ E(H). By symmetry, we have vivj /∈ E(H) for 1 ≤ i 6= j ≤ 4.
Denote N(v1) = {v, w}. Then w is adjacent to at least two vertices in N(v)\{v1}.
For otherwise there is a fork induced by v, v1, w and the two vertices in N(v)\{v1}
not adjacent to w. By symmetry, we may assume {v2w, v3w} ⊆ E(H). If v4w /∈
E(H), then there is a fork induced by v, v1, v2, v4 and z, where z ∈ N(v4) \ {v},
a contradiction. Hence, v4w ∈ E(H). Therefore, H ∼= G1 (see Figure 3), and it
can be seen that there is a (1, 26)-coloring of H, which is a contradiction.

Claim 20. If C3 = v1v2v3v1 is a 3-cycle in H, then each vi is a 3-vertex.

Proof. Suppose that v1 is not a 3-vertex. Then by Claims 18 and 19, v1 is a
2-vertex. Let H1 = H − v1. Then H1 has a (1, 26)-coloring ϕ by the minimality
of H. By Claim 19, d(v2) ≤ 3 and d(v3) ≤ 3. If d(v2) = 2, then |A2(v1v3)| ≥ 2
and |A2(v1v2)| ≥ 4, hence we can finish ϕ by sequentially coloring v1v3 and v1v2
with different 2-colors, a contradiction.

Therefore, d(v2) = 3, and by the symmetry of v2 and v3, d(v3) = 3. Observe
that |A(v1v2)| ≥ 2 and |A(v1v3)| ≥ 2. If no edges in N ′(v1v2) are colored 0 under
ϕ, then we can finish ϕ by coloring v1v2 with color 0 and coloring v1v3 with a
2-color in A2(v1v3), a contradiction. If an edge in N ′(v1v2) is colored 0 under ϕ,
then |A2(v1v2)| ≥ 2 and |A2(v1v3)| ≥ 2. Hence, we can finish ϕ by coloring v1v2
and v1v3 with different 2-colors, which is also a contradiction.

Claim 21. H has no adjacent 2-vertices.

Proof. Suppose that u and v are two adjacent vertices in H. Denote by N(u) =
{u1, v} and N(v) = {u, v1}. By Claim 20, u1 6= v1, and by Claim 19, d(u1) ≤ 3,
d(v1) ≤ 3. Let H1 be the graph obtained from H by contracting uv. Obviously,
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ew(H1) ≤ 6 and H1 is simple and fork-free. Hence, H1 has a (1, 26)-coloring ϕ
by the minimality of H. If uu1 and vv1 are not colored 0 under ϕ, then we can
finish ϕ by coloring uv with color 0, a contradiction. Otherwise, we can extend
ϕ to H by coloring uv with a 2-color in A2(uv) as there are at most 6 edges in
N ′′(uv), which is also a contradiction.

Claim 22. H is claw-free.

Proof. Suppose to the contrary that there is a claw in H. By Claim 19, we may
assume that the claw is induced by {v} ∪ N(v), where N(v) = {v1, v2, v3}. By
Claims 18–19, 2 ≤ d(vi) ≤ 3 for 1 ≤ i ≤ 3.

Case 1. d(v1) = 2. Let N(v1) = {v, w}. By Claim 21, d(w) = 3. Since H is
fork-free, wvj ∈ E(H) for some 2 ≤ j ≤ 3. We assume wv3 ∈ E(H) by symmetry.
Denote N(w) = {z, v1, v3}. Then d(z) ≤ 3 by Claim 19.

Subcase 1.1. d(v3) = 2. LetH1 = H−{v1, v3}. ThenH1 has a (1, 2
6)-coloring

ϕ by the minimality of H. If ϕ(vv2) = 0, then |Aϕ(wv1)| ≥ 4, |Aϕ(wv3)| ≥ 4,
|Aϕ(vv1)| ≥ 3 and |Aϕ(vv3)| ≥ 3. Hence, we can finish ϕ by sequentially coloring
vv1, vv3, wv1 and wv3, a contradiction. Therefore, ϕ(vv2) 6= 0. By symmetry of
vv2 and wz, ϕ(wz) 6= 0. Then we first color vv1 and wv3 with color 0 and call this
partial coloring τ . Observe that |A2

τ (vv3)| ≥ 2 and |A2
τ (wv1)| ≥ 2. Thus, we can

finish τ by sequentially coloring v1w, vv3 with different 2-colors, a contradiction.

Subcase 1.2. d(v3) = 3. Denote N(v3) = {v, w, z1}. Then z1v2 ∈ E(H), for
otherwise there is a fork induced by {v, z1} ∪ N(v). Recall that d(w) = 3 and
N(w) = {z, v1, v3}.

Subcase 1.2.1. z = v2. If d(z1) = 3, then there is a fork induced by {v, v3, w,
z1, z

′
1}, where z

′
1 ∈ N(z1)\{v3, v2}. Hence d(z1) = 2. It follows that H ∼= G2 (see

Figure 3), and it can be seen that there is a (1, 26)-coloring of G2, a contradiction.

Subcase 1.2.2. z = z1. If d(v2) = 3, then there is a fork induced by
{v′2, v2, v, z1, w}, where v

′
2 ∈ N(v2) \ {v, z1}. Hence d(v2) = 2. It follows that

H ∼= G3 (see Figure 3), and it can be seen that there is a (1, 26)-coloring of G3,
a contradiction.

Subcase 1.2.3. z /∈ {v2, z1}. Then zz1 ∈ E(H), otherwise there is a fork
induced by {v, v3, z1, w, z}. If d(z) = 3, we can find a fork induced by {v1, v3, w,
z, z′}, where z′ ∈ N(z)\{w, z1}, a contradiction. If d(v2) = 3, we can find a fork
induced by {v1, v3, v, v2, v

′
2}, where v

′
2 ∈ N(v2)\{v, z1}, a contradiction. Hence,

d(z) = d(v2) = 2 and H ∼= G4 (see Figure 3), and it can be seen that there is a
(1, 26)-coloring of G4, a contradiction.

Case 2. d(v1) = 3. By symmetry of v1, v2 and v3, d(v2) = d(v3) = 3. Denote
N(v1) = {u1, u2}. Then u2 must be adjacent to v2 or v3, for otherwise there is
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a fork induced by N(v) ∪ {v, u2}. We may assume u2v3 ∈ E(H) by symmetry.
Similarly, u1 must be adjacent to v2 or v3.

G1 G2 G3 G4 G5

G6 G7 G8 G9 G10

Figure 3. The graphs G1–G10 and their corresponding (1, 26)-coloring, where the red
color represents color 0.

Subcase 2.1. u1v3 ∈ E(H). Since d(v2) = 3, we have v2u1 ∈ E(H) and
v2u2 ∈ E(H). For otherwise there is a fork induced by N(v) ∪ {v, v′2}, where
v′2 ∈ N(v2) \ {v, u1, u2}. Therefore, H ∼= G5 (see Figure 3), and it can be seen
that there is a (1, 26)-coloring of G5, a contradiction.

Subcase 2.2. u1v3 /∈ E(H). Then u1v2 ∈ E(H). Since H has no adjacent
2-vertices (by Claim 21), if both u1, u2, v2 and v3 have no other neighbors except
the vertices inN(v)∪N(v1), thenH is isomorphic to one of G5−G7 (see Figure 3),
and it can be seen that each Gi is (1, 2

6)-colorable for 5 ≤ i ≤ 7, a contradiction.
Hence, there is a vertex in {u1, u2, v2, v3}, say v2, that has a neighbor v′2 /∈
N(v) ∪ N(v1). Then v′2v3 ∈ E(H), for otherwise there is a fork induced by
N(v) ∪ {v, v′2}.

If v′2u1 ∈ E(H), then d(u2) = 2 (as if d(u2) = 3, there is a fork induced by
N(u2) ∪ {u2, v

′
2}). Hence, H ∼= G8 (see Figure 3), and it can be seen that there

is a (1, 26)-coloring of G8, a contradiction.

Therefore, v′2u1 /∈ E(H). By symmetry of u1 and u2, v
′
2u2 /∈ E(H). If

d(v′2) = 3, then v′′2u1 ∈ E(H) and v′′2u2 ∈ E(H), where v′′2 ∈ N(v′2) \ {v2, v3}. For
otherwise there is a fork induced by N(v′2)∪ {v′2, u1} or N(v′2)∪ {v′2, u2}. Hence,
H ∼= G9 (see Figure 3), and there is a (1, 26)-coloring of G9, a contradiction.
Thus, d(v′2) = 2. By symmetry of v′2, u1 and u2, d(u1) = d(u2) = 2. Then
H ∼= G10 (see Figure 3), and it can be seen that there is a (1, 26)-coloring of G10,
a contradiction.

Claim 23. H has no two 3-cycles share one common edge.
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Proof. Suppose that v1v2v3v1 and v2v3v4v2 are two 3-cycles in H with common
edge v2v3. By Claim 20, d(vi) = 3 for 1 ≤ i ≤ 4. Note that v1v4 /∈ E(H),
otherwise H ∼= K4 and hence H is (1, 26)-colorable, a contradiction. Denote
N(v1) = {w1, v2, v3} and N(v4) = {w2, v2, v3}. By Claim 19, d(wj) ≤ 3 for
1 ≤ j ≤ 2. Let H1 = H −{v1, v2, v3, v4}. Then H1 has a (1, 26)-coloring ϕ by the
minimality of H. We first color v1v3 and v2v4 with color 0 and call this partial
coloring ψ.

Case 1. w1 = w2. Observe that |A2
ψ(v1w1)| ≥ 3, |A2

ψ(v4w1)| ≥ 3, |A2
ψ(v1v2)| ≥

5, |A2
ψ(v3v4)| ≥ 5 and |A2

ψ(v2v3)| ≥ 6. Hence, we can color v1w1, v4w1, v1v2, v3v4,
v2v3 with different 2-colors in order to finish ψ, a contradiction.

Case 2. w1 6= w2. Since w1 and w2 may be adjacent in H, we consider the
following two subcases.

Subcase 2.1. w1w2 /∈ E(H). Since H is claw-free (by Claim 22), we can
observe that there are at most five edges in N ′′(vjwj) that are colored 2-colors for
1 ≤ j ≤ 2. Thus, |A2

ψ(v1w1)| ≥ 1 and |A2
ψ(v4w2)| ≥ 1. Note that |A2

ψ(v1v2)| ≥ 4,

|A2
ψ(v3v4)| ≥ 4 and |A2

ψ(v2v3)| ≥ 6. Therefore, we can finish ψ by sequentially
coloring v1w1, v4w2, v1v2, v3v4, v2v3 with different 2-colors, a contradiction.

Subcase 2.2. w1w2 ∈ E(H). Since H has no adjacent 2-vertices (by Claim
21), we may assume d(w2) = 3. Let z ∈ N(w2) \ {v4, w1}. Then zw1 ∈ E(H),
otherwise, there is a claw induced by N(w2) ∪ {w2}, which contradicts to Claim
22. Hence, |A2

ψ(v1w1)| ≥ 2, |A2
ψ(v4w2)| ≥ 2, |A2

ψ(v1v2)| ≥ 4, |A2
ψ(v3v4)| ≥ 4 and

|A2
ψ(v2v3)| ≥ 6. Therefore, we can color v1w1, v4w2, v1v2, v3v4, v2v3 with different

2-colors in order to finish ψ, a contradiction.

v1
v2v3

w1

w2w3

z1 z2
z11 z21

Figure 4. The edge coloring sequence of H.

By Claims 18–19, 2 ≤ δ(H) ≤ ∆(H) ≤ 3. If ∆(H) = 2, then H is a cycle.
Hence, H is (1, 26)-colorable, a contradiction. Therefore, ∆(H) = 3. Let v1 be a
3-vertex in H with three neighbors v2, v3 and w1. Since H is claw-free (by Claim
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22), we may assume v2v3 ∈ E(H). Then by Claim 20, d(v2) = d(v3) = 3. Let
wj be the neighbor of vj that is not in the cycle C = v1v2v3v1 for 2 ≤ j ≤ 3.
Then w1 6= w2 6= w3 by Claim 23. For a vertex x ∈ V (H) \ V (C), the distance

between x and the cycle C is denoted by d(C, x) = min{d(x, vi)|1 ≤ i ≤ 3}. For
an edge e = uv ∈ E(H) \ E(C), the distance between e and C is denoted by
d(C, e) = d(C, u) + d(C, v). In the below, we will give a (1, 26)-coloring of H in
four steps.

Step 1. Color v1w1, v2w2 and v3w3 with the same color 0.

Step 2. Color the edges in E(H) \ E(C) except the edges incident with the
vertices in

⋃
1≤i≤3N(wi) according to their distance from the cycle C from far

to near. That is, for two uncolored edges e1 and e2, if d(C, e1) > d(C, e2), then
we color e1 before e2; if d(C, e1) = d(C, e2), then we randomly pick one of them
to be colored first.

Denote by S the edge coloring sequence. Next, we will show that every edge
in S can be colored. Let xy be an edge in S. Clearly, if there are at most 6 edges
in N ′′(xy) colored before xy, then we can color xy with a 2-color or a 0-color. To
illustrate this, we discuss it in the following two cases.

Case 1. d(C, x) = d(C, y). Then there are vertices x1 ∈ N(x) \ {y} and
y1 ∈ N(y) \ {x} that satisfy d(C, x1) < d(C, x) and d(C, y1) < d(C, y). For any
edge x1x2 incident with x1, since d(C, x2) ≤ d(C, x), d(C, x1x2) = d(C, x1) +
d(C, x2) < 2d(C, x) = d(C, x) + d(C, y) = d(C, xy). Similarly, for any edge y1y2
incident with y1, d(C, y1y2) < d(C, xy). Hence, the edges incident with x1 and y1
are colored after xy in S, as they are closer to C than xy. Note that ∆(H) ≤ 3
(by Claim 19), thus there are at most 6 edges in N ′′(xy) that are colored before
xy.

Case 2. d(C, x) > d(C, y). Then there is at least one vertex y1 ∈ N(y) \ {x}
that satisfy d(C, y1) < d(C, y), and hence the edges incident with y1 are colored
after xy in S. When d(y) = 2, obviously there are at most 6 edges in N ′′(xy)
that are colored before xy since ∆(H) ≤ 3. Hence, we only need to consider
d(y) = 3. Denote y2 ∈ N(y) \ {x, y1}. Since H is claw-free (by Claim 22), y2 is
adjacent to y1 or x. If y2 is adjacent to x, then there are at most 6 edges that
are colored before xy in S (three edges incident with y2 and three edges incident
with the vertex t ∈ N(x) \ {y, y2}). Thus, we may assume y2 is adjacent to y1.
Then d(C, y2) ≤ d(C, y) < d(C, x), which implies yy2 and the edges incident with
y1 are colored after xy in S. Note that there are at most five edges incident with
the vertices in N(x) \ {y}, as H is claw-free and ∆(H) ≤ 3. Therefore, there are
at most 6 edges in N ′′(xy) that may be colored before xy in S (one edge incident
with y2 and five edges incident with the vertices in N(x) \ {y}).

Step 3. Color the edges incident with the vertices in
⋃

1≤i≤3N(wi) \ {vi}.
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Based on the symmetry of w1, w2 and w3, it is clear that if the edges incident
with the vertices in N(w1)\{v1} can be colored, then the edges incident with the
vertices in

⋃
2≤j≤3N(wj) \ {vj} can also be colored. Next, we will first color the

edges zt, where z ∈ N(w1) \ {v1} and t ∈ N(z) \ {w1}, then color the edges w1z.

Case 1. d(w1) = 2. Denote N(w1) = {v1, z1}. Since H has no adjacent
2-vertices (by Claim 21), d(z1) = 3. Denote N(z1) = {z11, z12, w1}. Since H is
claw-free, z11z12 ∈ E(H). Now we color z1z11, z1z12, z1w1 in order. Note that
since ∆(H) ≤ 3, there are at most 6 colored edges in N ′′(z1z11) including v1w1.
Hence, we can color z1z11 with a 2-color. Then there are at most 7 colored edges
in N ′′(z1z12) including v1w1. If some edge incident with z12 is colored with 0,
then we can color z1z12 with a 2-color, otherwise we can color z1z12 with color 0.
Finally, for the edge z1w1, it can be seen that there are at most 6 colored edges
in N ′′(z1w1) including v1w1, hence we can color it with a 2-color.

Case 2. d(w1) = 3. Denote N(w1) = {v1, z1, z2}. Then z1z2 ∈ E(H) as H is
claw-free. Since H has no 2-vertices in 3-cycle (by Claim 20), d(z1) = d(z2) = 3.
Let z11 and z21 be the neighbors of z1 and z2 not in the 3-cycle z1z2w1 respectively
(see Figure 4). Next, we color z1z11, z2z21, z1z2, z1w1 and z2w1 in order. Note
that there are at most 6 colored edges in N ′′(z1z11) including v1w1. Hence, we can
color z1z11 with a 2-color. Then there are at most 7 colored edges in N ′′(z2z21).
If some edge incident with z21 is colored with 0, then we can color z2z21 with
a 2-color, otherwise we can color z2z21 with color 0. For the edge z1z2, there
are also at most 7 colored edges in N ′′(z1z2) including v1w1. If z1z11 or z2z21 is
colored with 0, then we can color z1z2 with a 2-color, otherwise we can color z1z2
with color 0. Now for the edge z1w1, observe that there are at most 6 colored
edges in N ′′(z1w1) including v1w1, hence we can color it with a 2-color. Finally,
for the edge z2w1, there are at most 7 colored edges in N ′′(z2w1). The only case
in which z2w1 cannot be colored is when all the colored edges in N ′′(z2w1), except
w1v1, are colored with different 2-colors. In this case, we can erase the 2-color,
say α, of z1z2. Then color z1z2 and z2w1 with color 0 and α, respectively.

Step 4. Color the edges in E(C).

Denote by ϕ the coloring of H after steps 1–3. Observe that |A2
ϕ(vivj)| ≥ 2

for 1 ≤ i 6= j ≤ 3. If w1w2 ∈ E(H) or there are two colored edges in N ′(v1w1) ∪
N ′(v2w2) that are colored with the same 2-color, then |A2

ϕ(v1v2)| ≥ 3. Hence, we
can finish ϕ by coloring v1v3, v2v3, v1v2 in order, a contradiction. Therefore, we
have wiwj /∈ E(H) for 1 ≤ i 6= j ≤ 3 by symmetry, and all the six colored edges
in

⋃
1≤i≤3N

′(viwi) are colored with different 2-colors. In this case, we can color
each vivj with the same 2-color of a colored edge in N ′(vtwt), where 1 ≤ i 6= j ≤ 3
and t ∈ {1, 2, 3} \ {i, j}, to obtain a (1, 26)-coloring of H, a contradiction.

The proof is complete.
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