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Abstract
Let S = (s1,...,sk) be a non-decreasing sequence of positive integers. A
graph G = (V(G), E(G)) is said to be S-packing edge-colorable if E(G) can
be decomposed into disjoint sets E, ..., E} such that for every 1 <i < k,

the distance between any two distinct edges in F; is at least s;+1. The edge
weight of G is defined as ew(G) = max{d(u) + d(v)|uv € E(G)}. A fork is
the graph obtained from K, 3 by subdividing an edge once. In 2023, Liu et
al. proved that every subcubic multigraph is (1, 27)-packing edge-colorable.
Based on the work of Liu et al., we prove that every multigraph G with
ew(G@) < 6 is (1,27)-packing edge-colorable, which confirms a conjecture of
Yang and Wu (2022). In addition, we demonstrate that if G is a fork-free
graph with ew(G) < 6, then G is (1,2°)-packing edge-colorable.
Keywords: S-packing edge-coloring, edge weight, fork-free graphs.
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1. INTRODUCTION

All graphs considered in this paper are finite and undirected. The distance be-
tween two vertices u and v in a graph G = (V(G), E(G)) is the length of a shortest
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path between u and v. For two edges e1, ez in E(G), the distance d(ey, ez) be-
tween e; and es is the distance between the corresponding vertices of e; and eo
in the line graph of G.

Let S = (s1,82,...,8;) be a non-decreasing sequence of integers. An S-
packing edge-coloring of G is a partition Ei, Es, ..., E; of E(G) such that for
1 <i<k, d(ep,e2) > s; + 1 for any two edges e; and e in E;. Note that if all
s; = 1 or all s; = 2, then an S-packing edge-coloring is equivalent to a proper
edge-coloring or a strong edge-coloring [2], respectively. In this paper, we are
only concerned with the case where each s; € {1,2}. For convenience, we use
exponents to indicate identical components repeated in S, e.g., (1,1,2,2,2) =
(12,23). And we write the color set of the (1,2¥)-packing edge-coloring of G as
{0,1,2,...,k}, where 0 is the color that allows edges with distance at least 2 to
be colored, and we collectively refer to colors 1 through k as the 2-colors, which
are the colors allow edges with distance at least 3 to be colored.

The concept of S-packing edge-colorings is derived from its corresponding
vertex counterpart, which was first proposed by Gastineau and Togni [3] as a
logical extension of the packing chromatic number [4]. Fouquet and Vanherpe
[1] proved that any subcubic graph admits a (13,2)-packing edge-coloring. A
spanning subgraph G’ of G is called a 2-factor of G if each component of G’ is a
cycle. Gastineau and Togni [3] demonstrated that for each cubic graph G with a
2-factor, G is (12,25)-packing edge-colorable.

In light of Vizing’s [10] work A(G) < X/(G) < A(G) + 1, we know that if
X' (G) = A(G), then G is said to be in class I; if x'(G) = A(G) + 1, then G
is said to be in class II, where x/(G) and A(G) are the chromatic index and
the maximum degree of G, respectively. Gastineau et al. [3] and Hocquard et
al. [6] posed several conjectures of S-packing edge-coloring on subcubic graphs,
especially in class 1.

Conjecture 1. If G is a simple subcubic graph, then G is
(a) (12, 2%)-packing edge-colorable [3];
(b) (1,27)-packing edge-colorable [3];
(c) (12, 23)-packing edge-colorable if G is in class 1 [3];
(d) (1,2%)-packing edge-colorable if G is in class 1 [6].
In [6], Hocquard et al. made progress towards these conjectures by proving
the following results.
Theorem 2 [6]. If G is a simple subcubic graph, then G is
(a) (12, 2%)-packing edge-colorable;
(b) (1,28)-packing edge-colorable;
(c) (12, 2%)-packing edge-colorable if G is in class I;
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(d) (1,27)-packing edge-colorable if G is in class 1.

Moreover, Hocquard et al. posed several problems of S-packing edge-coloring
on planar graphs and bipartite graphs with ew(G) < 5, where ew(G) = max{d(u)
+d(v) : wv € E(G)} is called the edge weight of G.

Problem 3 [6]. If G is a simple bipartite graph with ew(G) < 5, then G is
(1,2%)-packing edge-colorable.

Recently, Liu et al. [7, 8] proved Conjecture 1(a) and (b), and in particular,
for Conjecture 1(b), they obtained a stronger conclusion.

Theorem 4 [8]. If G is a connected subcubic graph with more than 70 vertices,
then G is (12,2%)-packing edge-colorable.

Theorem 5 [7]. If G is a subcubic multigraph, then G is (1,27)-packing edge-
colorable.

In [11], Yang and Wu solved Problem 3 and got a more favorable result.
They showed that every simple graph G with ew(G) < 5 is (1, 2*)-packing edge-
colorable. In addition, they proved that every simple graph G with ew(G) < 6 is
(1,2%)-packing edge-colorable and made the following conjecture.

Conjecture 6 [11]. If G is a simple graph with ew(G) < 6, then G is (1,27)-
packing edge-colorable.

In this paper, by proving the following result and combining it with Theorem
5, we prove Conjecture 6.

Theorem 7. For every multigraph G with ew(G) < 6 and A(G) > 4, G is
(1,27)-packing edge-colorable.

The graph obtained from K3 (usually called claw) by subdividing an edge
once is called a fork. A graph is H-free if it does not contain H as an induced
subgraph. In this paper, we also consider the S-packing edge-coloring on fork-free
graphs with ew(G) < 6 and get the following result.

Theorem 8. For every fork-free multigraph G with ew(G) < 6, G is (1,25)-
packing edge-colorable.

The graphs G’ and G” in Figure 1 show that our results in Theorems 7-8 are
sharp. In [6], Hocquard et al. showed that G’ is (1,27)-packing edge-colorable
but not (1, 2%)-packing edge-colorable. For the graph G”, it can be seen that G”
is (1,2%)-packing edge-colorable. Note that |E(G")| = 9, the distance between
any two edges in E(G”) is at most two, and the maximum size of a matching in
G" is three. Hence, at most three edges in G” can be colored with color 0, and
the remaining six edges must be colored with different 2-colors. Therefore, G” is
not (1,2°)-packing edge-colorable.
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G/ G//

Figure 1. Sharpness examples of Theorems 7-8.

2. PRELIMINARIES

Let G = (V(G), E(G)) be a graph. For v € V(G), Ng(v) is the set of all neighbors
of v. We denote the degree of v by dg(v) = |Ng(v)|. If dg(v) = d, then v is
called a d-vertex. When G is clear from the context, then we write N(v) and d(v)
instead of Ng(v) and dg(v), respectively. Let §(G) = min{d(v)|v € V(G)}. We
denote by N'(e) the set of edges with distance 1 to e and N”(e) the set of edges
with distance at most 2 to e. Clearly, N'(e) C N”(e). For V! C V(G), the graph
induced by V(G) \ V' is denoted as G — V'. If V' = {v}, we simplify G — {v} to
G —v.

To prove Theorem 7, we need the following two lemmas. Let T1,...,T, ben
subsets of a set T. A subset {t1,to,...,t,} C T is called the system of distinct
representatives of {T1,...,T,} if t; € T; and t; # t; for 1 <4,j < n.

Lemma 9 (Hall’s marriage theorem [5]). Let T1,...,T, ben subsets of a setT. A
system of distinct representatives of {11, ..., T,} exists if and only if for allk, 1 <
k < n and every subcollection of size k, {T;,,...,T;,}, we have |T;, U---UT;, | > k.

Recall that a strong k-edge-coloring is a (2F)-packing edge-coloring. Due to
the work of Nakprasit [9] on strong edge-coloring of bipartite graphs, we have the
following lemma.

Lemma 10 [9]. Let G be a simple bipartite graph in which the vertices in one
part have mazrimum degree 2. Then G is (22A(G))-packing edge-colorable.

From now on, a (1,2%)-coloring in this paper refers to (1,2F)-packing edge-
coloring, where k = 6 or 7. A partial coloring of G is a coloring of any subset of
E(QG) using the colors {0,1,2,...,k}, such that for any two colored edges e; and
ea, if they are both colored with the color 0, then d(e1,e2) > 2; if they are both
colored with a same 2-color, then d(eg,es) > 3.

Let G; be a proper subgraph of G with a partial coloring . For any e €
E(G) \ E(G1), we denote by A,(e) the set of 0-color and 2-colors that can be
used to color e, and by Ai(e) the set of 2-colors that can be used to color e.
And we write A, (e) and A?D(e) as A(e) and A2(e), respectively, if it is clear
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from the context. Obviously, if no edges in N'(e) are colored 0 under ¢, then
A(e) = A%(e) U {0}, and we can color e with color 0. Otherwise, A(e) = A2(e),
we can only color e with a 2-color in A?(e). We say that ¢ is finished when we
extend ¢ from G to G.

3. PROOF OF THEOREM 7

Assume that Theorem 7 fails, and H is a counterexample with |V (H)| + |E(H)|
as small as possible. By the choice of H, H is a connected multigraph with
ew(H) < 6 and any proper subgraph of H has a (1, 27)-coloring.

Claim 11. H is simple.

Proof. Suppose that there are k multiple edges e1, ea, . . ., e between two vertices
wand v in H, where k > 2. Since ew(H) < 6, k < 3. If k = 3, then H is the graph
with 2 vertices and 3 edges. Obviously, H is (1,27)-colorable, a contradiction.
Hence k = 2. Let Hy = H —e;. Then H; has a (1,27)-coloring ¢ by the
minimality of H. Note that there are at most 7 edges in N”(e1) as ew(H) < 6.
Hence, |A(e1)| > 1. If all the edges in N”(e1) are colored with different 2-colors
under ¢, then we can finish ¢ by coloring e; with color 0. Otherwise, we can
finish ¢ by coloring e; with a 2-color in A2%(ey), a contradiction. |

Claim 12. 6(H) > 2.

Proof. Suppose that v is a 1-vertex in H with a neighbor u. By the minimality
of H, H; = H — v has a (1, 27)-coloring . Since ew(H) < 6, there are at most 6
edges in N”(uv). Hence, |A?(uv)| > 1, and we can finish ¢ by coloring uv with
a 2-color in A%(uv), a contradiction. |

Claim 13. H has no adjacent 2-vertices.

Proof. Suppose that u and v are two adjacent 2-vertices in H. Denote N(u) =
{u1,v} and N(v) = {v1,u}. Since ew(H) < 6, d(v1) < 4 and d(u;) < 4. Let
Hy = H — {u,v}. Then H; has a (1,2")-coloring ¢ by the minimality of H.

If 0 € Ay(vvr) and 0 € Ay (uug), then we first color vuy and wuy with color
0 and call this coloring ¢;. Observe that \Ail (wv)| > 7—((d(v1) — 1) + (d(u1) —
1)) > 1. Hence, we can finish ¢ by coloring uv with a 2-color in Aél (uv), a
contradiction.

If only one of A, (vvi) and Ay (uuy), say Ay (uui), does not contain color 0,
then there must exist some edge e € N'(uuqy) \ {uv} such that p(e) = 0. We
first color vv; with 0 and call this coloring ¢3. Observe that |A§52 (uup)| > 2 and
|A§)2 (uv)| > 2. Hence, we can finish ¢o by coloring wv and wu; with different
2-colors, a contradiction.
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If0 ¢ A,(vur) and 0 ¢ Ay (uuy), then there are two edges e; € N'(uuq)\ {uv}
and ey € N'(vv1) \ {uv} such that ¢(e1) = p(ea) = 0. We first color uv with
color 0 and call this coloring ¢3. Observe that \Ai?) (uuy)| > 2 and ‘A<2753 (vvr)] >
2. Hence, we can finish ¢3 by coloring uwu; and vv; with different 2-colors, a
contradiction. [ ]

Claim 14. H has no 4-cycle that contains a 4-vertex.

Proof. Suppose that Cy = vivevsvavy is a 4-cycle in H with d(v1) = 4. Denote
N(v1) = {w1,wa,v2,v4}. Since ew(H) < 6 and 6(H) > 2 (by Claim 12), d(w;) =
d(wy) = d(vy) = d(vg) = 2. By Claim 13, 3 < d(v3) < 4.

Figure 2. The reducible configurations of Claims 14-16.

Case 1. d(vz) = 3. Denote N(v3) = {w,v2,v4} (see Figure 2(a)). Let
Hy, = H —vy. Then H; has a (1,27)-coloring ¢ by the minimality of H. Next,
we erase the color of vsvy and vsvy in Hy. If p(vzw) = 0, then we first color
vivg with color 0 and call this partial coloring ¢1. Observe that |Ail(e)| >5
for e € E(Cy) \ {vive} and ]Ail(vlwi)] > 2 for 1 < i < 2. Hence, we can finish
¢1 by sequentially coloring vywy, viws, v1ve, vovs, v3v4 with different 2-colors, a
contradiction. If p(vsw) # 0, then we first color v1vy and vzvy with color 0 and
call this partial coloring ¢2. Observe that |Aé2 (vivg)| > 4, |A22(v2v3)] > 4 and
|A§)2 (nqw;)| > 2 for 1 < i < 2. Hence, we can finish ¢ by sequentially coloring
v1W1, V1 Wa, Vo3, V1v4 with different 2-colors, a contradiction.

Case 2. d(vz) = 4. Denote N(v3) = {ws, w4, va,v4} (see Figure 2(b)). Let
Hy = H — {v1,v3}. Then Hy has a (1,27)-coloring 1 by the minimality of H.
Since ew(H) < 6 and 6(H) > 2, d(w3) = d(ws) = 2. By Claim 13, wawy ¢ E(H).

Subcase 2.1. wg = wy. We first color vgwy and vyv4 with color 0 and call this
partial coloring ;. Observe that ]Ai}l (viwg)| > 3, |AZ (vzws)] > 3, \Ail (viw)]
> 6, |A?pl(v1v2)| > 6, \Ail(v2v3)| > 6 and |A3p1(v3v4)| > 6. Hence, we can
finish 11 by sequentially coloring viws, v3wy, V1w, V1V, Vovs, v3vy With different
2-colors, a contradiction.
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Subcase 2.2. ws # wy. By the symmetry of wi,ws,ws and wy, we have
w; # w; for 1 <4 # j < 4. Recall that d(w;) = 2 for 1 <14 < 4. Let z; be the
neighbor of w; not in Cy for 1 <i < 4.

Subcase 2.2.1. p(w;z;) = 0 for all 1 < i < 4. We first color vjvs with color
0 and call this partial coloring 1. Since d(w;) = 2 and d(z;) < 4 for 1 < i < 4,
we have |Ai2(vlw1)\ > 4, |AZ (nwy)| > 4, ’Aiz(’l)gwg,” > 4, \A12/}2(v3w4)| > 4,
|A?pQ(v1v2)| > 17, |A12pQ(U2’L)3)| > 7 and |Ai2 (vsvg)| > 7. Hence, we can finish 19
by sequentially coloring viwi, viws, vsws, vswy, V1V, VovUs, v3v4 with different
2-colors, a contradiction.

Subcase 2.2.2. @(w;zj) # 0 for some 1 < j < 4. Assume p(wsz3) # 0
by symmetry. We first color vsws with color 0 and call this partial coloring
3. Then we delete the color of wszo under 3. Observe that \Aid (vywy)] > 3,
| A7, (v1wa)] > 3, [A7 (viv2)] > 6, |A] (viva)] > 6, [A7 (vavs)| > 5, |A7 (vsv4)] >
5, ]Aig(v3w4)| > 2 and |Ay, (wez2)| > 2.

Subcase 2.2.2.1. 0 € Ay, (wa22). Note that d(wszz,v1v4) = 2, hence we can
color wozo and vivy with color 0 and then color vswy, viwi, viws, VoU3, V3V4,
v1ve with different 2-colors in order to finish 3, a contradiction.

Subcase 2.2.2.2. 0 ¢ Ay, (waz2). Then 3(2225) = 0, where 25, € N(22)\{w2}.
Hence, \Aig (waz2)| > 2. We first color vjws with color 0. Recall that for 1 <
i < 2, w; # wy, and by Claim 13, wywy ¢ E(H). Thus d(viw;,vswy) > 2 for
1 < i < 2 and d(waze,vouvs) > 2. If A?pg(wgzg) N A12p3(1127)3) # (), then we can
color wyzy and vevs with a same color in Aig (waz2) N A?pg (vavs) and then finish
13 by sequentially coloring vswy, viwy, v3v4, V104, V1V with different 2-colors, a
contradiction. If Ais (waz2) N Ais (vau3) = 0, then |Ai3 (wazg) U Ais (vaus)| > 7.
Let T = {wa22, v3wy, v1w1, v1V2, V23, V304, V4v1 }. Observe that for any T C T,
| Ueer Ais(e)| > |T'|. Hence, by Lemma 9, we can finish 13 by coloring each
edge in T with a different 2-color, which is a contradiction. [

Claim 15. H has no 5-cycle that contains a 4-vertez.

Proof. Suppose otherwise that there is a 5-cycle vivavsvgvsvy in H with d(vq) =
4. Denote N(v1) = {w1,ws,ve,vs}. Since ew(H) < 6, d(w1) = d(ws) = d(vy) =
d(vg) = 2. Denote N(wy) = {v1,w]} and N(w2) = {v1,wh}. Then d(w)) < 4
and d(wh) < 4 as ew(H) < 6. By Claim 13, d(v3) = d(v4) = 3 (see Figure 2(c)).
Let Hy = H — {v1,v2,v5}. Then H;j has a (1,27)-coloring ¢ by the minimality
of H. We erase the color of vzvy in Hy under . Observe that |Ay,(viwi)| > 3,
[Ap(viwz)| = 3, [Ap(v1v2)| = 5, [Ap(vivs)| = 5, [Ap(vsva)| = 4, |Ap(vgvs)| > 2
and |A@(U2U3)| > 4.

Case 1. 0 ¢ A,(vovg). Then @(vzvy) = 0, where v5 € N(v3) \ {v2,v4}.
Denote N(vyq) = {vs, vs,vy}. Since ew(H) < 6, there are at most 7 colored edges
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in N”(vqv}), including vgvf. We first erase the color of v4v) and recolor v4vy with
a 2-color not used on the edges in N”(v4v}) to ensure that p(vqv)) # 0. Then
color v4vs with color 0 and call this partial coloring ¢. Next, if 0 € Ag(viwy),
then we color vyw; with color 0. Observe that \Ai(vgv4)| > 2, |Ai(vlw2)| >
2, ]Ai(vgvg)\ > 4, \Ai(m%)] > 4 and ]Ai(vlvg)\ > 5. Hence, we can finish
¢ by sequentially coloring wvswvy, viwe, v9v3, V15, v1v9 with different 2-colors, a
contradiction. Hence, 0 ¢ Ay(viwi), which implies ¢p(wiw]) = 0, where w] €
N(w1)\{v1}. Then ]Aé(v3114)| > 2, \Ai(vlwl)] >3, |Ai(v1w2)| >3, |A§)(212’U3)| >
4, |Ai(v1v5)| > 5 and |Ai(vlv2)| > 6. Hence, we can finish ¢ by sequentially
coloring v3vg, viwy, V1w, V2U3, V1Vs5, V1V With different 2-colors, a contradiction.

Case 2. 0 € Ay(vou3). By symmetry of v3 and v4, we also have 0 € A, (vqvs).
We first color vovs and vgqvs with color 0 and call this partial coloring 7. If
0 € A-(viwy), then we color vjw; with color 0. Observe that |A2(vsvy)| > 1,
| A2 (vyws)| > 2, |A2(vivs)| > 4 and |A2(vive)| > 4. Hence, we can finish 7 by
sequentially coloring vsvy, viwe, v1vs, v1v2 with different 2-colors, a contradiction.
Hence, 0 ¢ A;(vywy), which implies 7(wjw)) = 0, where w} € N(w1)\{v1}. Then
| A (v3va)| > 1, [AZ(viwn)] > 3, |AZ(viws)| > 3, [AZ(vivs)| > 5 and [AF(vive)] >
5. Hence, we can finish 7 by sequentially coloring vsvy, viwy, viws, v1vV5, V1V
with different 2-colors, a contradiction. [

Claim 16. No 2-vertex in H is adjacent to a 4-vertex and a 3-vertez.

Proof. Suppose that v is a 2-vertex in H adjacent to a 4-vertex u and a 3-vertex
w. Denote N(u) = {v,u1,ug,us}. Since ew(H) < 6, d(u1) = d(uz) = d(uz) = 2
by Claim 12. By Claim 13, vu; ¢ E(H) and w;u; ¢ E(H) for 1 < i # j < 3.
Denote N(u;) = {u, z} for 1 <i < 3, then d(z;) < 4 as ew(H) < 6. By Claim
14, z; # zj and z; # w for 1 < i # j < 3. By Claim 15, zw ¢ E(H) and
zizj ¢ E(H) for 1 < i # j < 3. Hence, the distance between any two edges
in {u121,u222, uzzz, wo} is 3 (see Figure 2(d)). Let Hy = H — N(u), then H;
has a (1,27)-coloring ¢ by the minimality of H. Observe that |A,(vw)| > 2,
|Ap(uv)| > 6, [Ap(uiz;)| > 2 and [Ag(uu;)| > 5 for 1 <4 < 3. We first color uug
with color 0.

Case 1. 0 € Ay(wv). Then we color wv with color 0 and call this partial
coloring ¢.

Subcase 1.1. 0 € |Jy<;<3 Ap(uiz;). By symmetry, let 0 € Ay(ui21) and we
color uy 2, with color 0. Observe that \Aé(uQ22)| > 1, ’Aé(U3Z3)‘ > 1, |Ai(uu1)| >
4, |A§s(uu2)| >4 and |Aé(uv)] > 5. Hence, we can finish ¢ by sequentially coloring
U9 2o, U323, UL, Uls, UV, a contradiction.

Subcase 1.2. 0 ¢ |Jj<;<3 Ap(uiz;). It follows that for each 1 < 7 < 3,
there exists some edge z;2/ with ¢(2;2]) = 0, where z/ € N(2) \ {u;}. Hence,
|Ai(uv)| > 5, ]Ai(uul)\ > 5, |Aé(uuQ)| > 5 and ]Ai(uzzm >2for1<i<3.
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If there exist two edges in {ujz1, u222, u323}, say uiz; and ugzo, that satisfy
Ai(ulzl) N Ai(qug) # (), then we can color u;z; and uszy with the same color in
Aé(ulzl) N Ai(uQZQ) and then finish ¢ by sequentially coloring uszs, uuy, uug, uv
with different 2-colors, a contradiction.

If Ai(uzzz) N Ai(ujzj) =0 for 1 <i#j <3, then [U;c;3 Ai(uzzz)\ >
6. Let T = {ujz1,u229,us3z3, uus,uug,uv}. Observe that for any 77 C T,
| Ueer Ai(e)| > |T’|. Hence, by Lemma 9, we can finish ¢ by coloring each
edge in T with a different 2-color, which is a contradiction.

Case 2. 0 ¢ A,(wv). Then there exists some edge ww' with p(ww') = 0,
where w' € N(w) \ {v}.

Subcase 2.1. 0 € Jy ;<3 Ap(u;iz;). By symmetry, let 0 € Ag(ui21). We color
u1z1 with color 0 and call this partial coloring 7.

If 0 ¢ A;(u222), then there exists some edge z9z5 with 7(2225) = 0, where
2h € N(z2) \ {uz}. Observe that [A2(uzzg)| > 1, |A2(ug22)| > 2, |A2(wv)| > 2,
|A2(uuy)| > 4, |A2(uug)| > 5 and |A%(uv)| > 6. Hence, we can finish 7 by
sequentially coloring uszs, uszs, wv, uuy, uus, uv, a contradiction.

If 0 € Ay (ug22), then we color ugzg with color 0. Observe that |42 (ugzs)| > 1,
| A2 (wv)| > 2, |A2(uuy)| > 4, |A2(uug)| > 4 and |A2(uv)| > 6. Hence, we can
finish 7 by sequentially coloring uszs, wv, uuy, uus, uv with different 2-colors, a
contradiction.

Subcase 2.2. 0 ¢ Uy<;<3 Ap(uizi). It is followed that for each 1 < i < 3,
there exists some edge z;z] with ¢(z;z}) = 0, where 2/ € N(z;) \ {u;}. Hence,
|A?0(vw)] > 2, |A?0(uv)| > 6, |A?0(uu1)| > 5, |A%(uu2)| > 5 and |Ai(uizi)| > 2
for 1 < i < 3. Let T = {ujz1,u222,usz3, wv}. Note that if any two edges e;
and eg in T" have Ai(el) N Ai(GQ) = (), then |U;<;<3 Ai(uizi) U Ai(wv)| > 8, a
contradiction. Therefore, there must exist at least two edges of T', say u12; and
wv, that satisfy Ai(ulzl) N Ai(wv) # (. We can first color u12z; and wv with
the same color in Ai(ulzl) N A?p(wv) and then finish ¢ by sequentially coloring
Ug 2o, U323, UL, ULy, UV, & contradiction. [ |

Since ew(H) < 6 and §(H) > 2, then A(H) = 4. Let v be a 4-vertex in H.
Then each neighbor of v is a 2-vertex as ew(H) < 6 and §(H) > 2. Let w be a
2-vertex in N (v). Then by Claims 13 and 16, each neighbor of w is a 4-vertex. It
follows that H is a bipartite graph with one vertex part consisting of 2-vertices
and the other vertex part consisting of 4-vertices. By Lemma 10, there exists a
28_coloring ¢ of H. By replacing a 2-color of ¢ to a O-color, then we obtain a
(1,27)-coloring of H, a contradiction.

The proof is complete.
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4. PROOF OF THEOREM &

Assume that Theorem 8 fails, and H is a counterexample with |V (H)| + |E(H)|
as small as possible. By the choice of H, H is a connected fork-free multigraph
with ew(H) < 6 and any proper subgraph of H has a (1,25)-coloring.

Claim 17. H is simple.

Proof. Suppose that there are k multiple edges eq, eo, .. ., e between two vertices
wand v in H, where k > 2. Since ew(H) < 6, k < 3. If k = 3, then H is the graph
with 2 vertices and 3 edges. Obviously, H is (1,2%)-colorable, a contradiction.
Hence, k = 2. Let Hy = H — e;. Then H; has a (1,25)-coloring ¢ by the
minimality of H. Assume d(u) < d(v), then 2 < d(u) < 3 as ew(H) < 6.

N(v) = {vi,v9,u}. Then d(vi) < 2 and d(v2) < 2 as ew(H) < 6. Hence, there
are at most 5 edges in N”(ey). If d(v) < 3, then there are at most 4 edges in
N"(e1). Thus, we always have \A?D(el)\ > 1 and we can finish ¢ by coloring e;
with a 2-color in A?O(el), a contradiction.

Case 1. d(u) = 2. Then d(v) < 4 as ew(H) < 6. If d(v) = 4, denote

Case 2. d(u) = 3. Then d(v) = 3 as ew(H) < 6. Denote N(v) = {u,v},
N(u) = {v,u1}. Then d(v1) < 3 and d(u1) < 3. If v; = uy, then |A%(e1)| > 2.
Hence, we can finish ¢ by coloring e; with a 2-color in A?o(el), a contradiction.
Thus, v1 # uy. If uyv; € E(H), then there are at most 6 edges in N”(e1). Hence,
|As(e1)] > 1 and we can finish ¢ by coloring e; with the color 0 or some 2-color
in Ai(el), a contradiction. Therefore, uyv1 ¢ E(H). It follows that there are at
most 7 edges in N”(e;). Denote by N'(u;) and N'(v;) the edges incident with
uy and vy, respectively.

If there exists two edges €' € N'(vy) and ¢” € N'(uy) satisfy ¢(e') = ¢(e) =
0, then |Ai(el)| > 1 and we can finish ¢ by coloring e; with a 2-color in Ai(el),
a contradiction.

If there is only one edge ¢’ € N'(v1) U N'(uq) that satisfies ¢(e¢’) = 0 (assume
¢/ € N'(v1) by symmetry), then we first erase the color of ez and wu; under ¢.
Next, we recolor uu; with color 0 and call this partial coloring ). Observe that
|A12p(ei)] > 2 for each 1 < i < 2. Hence, we can finish ¢ by coloring e; and es
with different 2-colors, a contradiction.

If there is no edge ¢ € N'(v1) U N'(u1) that satisfies p(e’) = 0, then we
first erase the color of vvy, uuy and es under ¢. Next, we recolor both vv; and
uuy with color 0 and call this partial coloring ¢. Observe that |Ai(ei)| > 2 for
each 1 <14 < 2. Hence, we can also finish ¢ by coloring e; and ez with different
2-colors, a contradiction. [

Claim 18. 6(H) > 2.
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Proof. Suppose that v is a 1-vertex in H with a neighbor u. By the minimality
of H, Hi = H — v has a (1,2%)-coloring . Since ew(H) < 6, there are at most
6 edges in N”(uv). Hence, |A(uv)| > 1. If all the edges in N”(uv) are colored
different 2-colors under ¢, then we can finish ¢ by coloring vu with color 0.
Otherwise, we can finish ¢ by coloring vu with a 2-color in A?(uv), which is a
contradiction. [

Claim 19. A(H) < 3.

Proof. Since ew(H) < 6, we have A(H) < 4 by Claim 18. Suppose to the
contrary that v is a 4-vertex with N(v) = {v1,v2,v3,v4}. Then d(v;) = 2 for
1<i<4asew(H)<6and d(H) > 2. Note that H is fork-free, we consider the
following two cases.

Case 1. vive € E(H). Let Hy = H —v;. Then H; has a (1,2%)-coloring ¢
by the minimality of H. Observe that |A%(vv)| > 1 and |A?(viv2)| > 3, hence
we can finish ¢ by coloring vv; and vive with different 2-colors, a contradiction.

Case 2. vivy ¢ E(H). By symmetry, we have v;v; ¢ E(H) for 1 <1i # j <4.
Denote N(v1) = {v,w}. Then w is adjacent to at least two vertices in N (v)\{v1}.
For otherwise there is a fork induced by v, v1, w and the two vertices in N (v)\{v1}
not adjacent to w. By symmetry, we may assume {vow,vsw} C E(H). If vqw ¢
E(H), then there is a fork induced by v, v1,vs,v4 and z, where z € N(vg) \ {v},
a contradiction. Hence, vqw € E(H). Therefore, H = G (see Figure 3), and it
can be seen that there is a (1,2%)-coloring of H, which is a contradiction. [

Claim 20. If C3 = vivousvy is a 3-cycle in H, then each v; is a 3-vertez.

Proof. Suppose that vy is not a 3-vertex. Then by Claims 18 and 19, v; is a
2-vertex. Let Hy = H — vy. Then Hj has a (1,2°)-coloring ¢ by the minimality
of H. By Claim 19, d(v2) < 3 and d(vs) < 3. If d(v2) = 2, then |A%(viv3)| > 2
and \Az(vlvg)] > 4, hence we can finish ¢ by sequentially coloring viv3 and vivs
with different 2-colors, a contradiction.

Therefore, d(ve) = 3, and by the symmetry of ve and vs, d(vs) = 3. Observe
that |A(vivg)| > 2 and |A(viv3)| > 2. If no edges in N'(vjv2) are colored 0 under
©, then we can finish ¢ by coloring vivs with color 0 and coloring vivs with a
2-color in A2%(vjv3), a contradiction. If an edge in N’ (vqvz) is colored 0 under ¢,
then |A2(viv2)| > 2 and |A?(v1v3)| > 2. Hence, we can finish ¢ by coloring vive
and viv3 with different 2-colors, which is also a contradiction. [ |

Claim 21. H has no adjacent 2-vertices.

Proof. Suppose that u and v are two adjacent vertices in H. Denote by N (u) =
{u1,v} and N(v) = {u,v1}. By Claim 20, u; # v, and by Claim 19, d(u;) < 3,
d(v1) < 3. Let Hj be the graph obtained from H by contracting uv. Obviously,
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ew(H;) < 6 and H; is simple and fork-free. Hence, H; has a (1,2%)-coloring ¢
by the minimality of H. If uu; and vv; are not colored 0 under ¢, then we can
finish ¢ by coloring uv with color 0, a contradiction. Otherwise, we can extend
¢ to H by coloring uv with a 2-color in A?(uv) as there are at most 6 edges in
N"(uv), which is also a contradiction. u

Claim 22. H is claw-free.

Proof. Suppose to the contrary that there is a claw in H. By Claim 19, we may
assume that the claw is induced by {v} U N(v), where N(v) = {v1,v2,v3}. By
Claims 18-19, 2 < d(v;) <3 for 1 <i < 3.

Case 1. d(v1) = 2. Let N(v1) = {v,w}. By Claim 21, d(w) = 3. Since H is
fork-free, wv; € E(H) for some 2 < j < 3. We assume wvz € E(H) by symmetry.
Denote N(w) = {z,v1,v3}. Then d(z) < 3 by Claim 19.

Subcase 1.1. d(vs) = 2. Let Hy = H—{v1,v3}. Then H; has a (1,25)-coloring
¢ by the minimality of H. If p(vvs) = 0, then |Ag,(wvr)| > 4, |Ay(wovs)| > 4,
|Ap(vvr)| > 3 and |A,(vvs)| > 3. Hence, we can finish ¢ by sequentially coloring
vuy, vus, wop and wvs, a contradiction. Therefore, p(vvy) # 0. By symmetry of
vvg and wz, ¢(wz) # 0. Then we first color vv; and wvs with color 0 and call this
partial coloring 7. Observe that |A2(vv3)| > 2 and |A2(wvq)| > 2. Thus, we can
finish 7 by sequentially coloring viw, vvs with different 2-colors, a contradiction.

Subcase 1.2. d(vs) = 3. Denote N(v3) = {v,w,21}. Then zjvy € E(H), for
otherwise there is a fork induced by {v,z1} U N(v). Recall that d(w) = 3 and
N(w) = {z,v1,v3}.

Subcase 1.2.1. z = vy. If d(z1) = 3, then there is a fork induced by {v, v3, w,
21,21}, where 2] € N(z1)\ {vs,va}. Hence d(z1) = 2. It follows that H = G4 (see
Figure 3), and it can be seen that there is a (1,2%)-coloring of G, a contradiction.

Subcase 1.2.2. z = z;. If d(v2) = 3, then there is a fork induced by
{vh,ve,v, 21, w}, where v) € N(va) \ {v,21}. Hence d(ve) = 2. It follows that
H = (3 (see Figure 3), and it can be seen that there is a (1,2%)-coloring of G,
a contradiction.

Subcase 1.2.3. z ¢ {va,z1}. Then zz; € E(H), otherwise there is a fork
induced by {v,vs, z1,w, z}. If d(z) = 3, we can find a fork induced by {v1, v3, w,
z,2'}, where 2/ € N(2)\{w, 21}, a contradiction. If d(ve) = 3, we can find a fork
induced by {vi,v3,v,v2,v5}, where vy € N(v2)\{v, 21}, a contradiction. Hence,
d(z) = d(v2) = 2 and H = G4 (see Figure 3), and it can be seen that there is a
(1,25)-coloring of Gy, a contradiction.

Case 2. d(v1) = 3. By symmetry of vy, vs and vs, d(ve) = d(v3) = 3. Denote
N(v1) = {u1,u2}. Then us must be adjacent to vy or vs, for otherwise there is
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a fork induced by N(v) U {v,u2}. We may assume ugvs € E(H) by symmetry.
Similarly, u1 must be adjacent to vy or vs.

& e 4K
iy Bl h

Figure 3. The graphs G1-G1¢ and their corresponding (1,2%)-coloring, where the red
color represents color 0.

Subcase 2.1. ujvs € E(H). Since d(v2) = 3, we have vou; € E(H) and
voup € E(H). For otherwise there is a fork induced by N(v) U {v,v5}, where
vh € N(v2) \ {v,u1,uz2}. Therefore, H = G5 (see Figure 3), and it can be seen
that there is a (1,2%)-coloring of G5, a contradiction.

Subcase 2.2. uyvs ¢ FE(H). Then ujve € E(H). Since H has no adjacent
2-vertices (by Claim 21), if both w1, ug, v2 and vz have no other neighbors except
the vertices in N (v)UN (v1), then H is isomorphic to one of G5 —G7 (see Figure 3),
and it can be seen that each Gj is (1, 26)—colorable for 5 <i <7, a contradiction.
Hence, there is a vertex in {uj,us,ve,vs3}, say va, that has a neighbor v} ¢
N(v) U N(v1). Then vhvs € E(H), for otherwise there is a fork induced by
N(v) U{v,v5}.

If viu; € E(H), then d(uz) = 2 (as if d(uz) = 3, there is a fork induced by
N(ug) U {ug,v5}). Hence, H = Gy (see Figure 3), and it can be seen that there
is a (1, 2%)-coloring of G, a contradiction.

Therefore, viu; ¢ E(H). By symmetry of u; and ug, vhug ¢ E(H). If
d(vh) = 3, then vhu; € E(H) and vjuy € E(H), where v§ € N(v)) \ {ve,v3}. For
otherwise there is a fork induced by N (v)) U {vh, us} or N(vh)U{vh, us}. Hence,
H = Gy (see Figure 3), and there is a (1,25)-coloring of Gy, a contradiction.
Thus, d(vy) = 2. By symmetry of v}, u; and ug, d(u1) = d(ug) = 2. Then
H = G (see Figure 3), and it can be seen that there is a (1, 2%)-coloring of G1,
a contradiction. [ ]

Claim 23. H has no two 3-cycles share one common edge.
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Proof. Suppose that vivovzv; and vevszv v are two 3-cycles in H with common
edge vovsz. By Claim 20, d(v;) = 3 for 1 < ¢ < 4. Note that vivy ¢ E(H),
otherwise H = K4 and hence H is (1,2%)-colorable, a contradiction. Denote
N(vi) = {wi,v2,v3} and N(v4) = {wa,v2,v3}. By Claim 19, d(w;) < 3 for
1<j <2 Let H = H—{v1,v2,vs3,v4}. Then Hj has a (1,25)-coloring ¢ by the
minimality of H. We first color vivs and vev4 with color 0 and call this partial
coloring 1.

Case 1. w1 = wq. Observe that ]Ai(vlw1)| >3, |A12p(v4w1)| >3, |A12p(v1v2)| >
5, |A12Z)(113v4)] > 5 and ]Ai(vgvg)] > 6. Hence, we can color viwi, V4W1, V1V2, V304,
v9vs with different 2-colors in order to finish 1, a contradiction.

Case 2. wy # wo. Since wi and ws may be adjacent in H, we consider the
following two subcases.

Subcase 2.1. wiwe ¢ E(H). Since H is claw-free (by Claim 22), we can
observe that there are at most five edges in N”(vjw;) that are colored 2-colors for
1 <j < 2. Thus, |A?p(v1w1)] > 1 and |A12/)(U4w2)| > 1. Note that ’Ai(’Uﬂ]Q)‘ >4,
\Ai(v3v4)| > 4 and ’Ai}(vgvg)’ > 6. Therefore, we can finish ¥ by sequentially
coloring viw1, v4we, V1V, V34, Vovs With different 2-colors, a contradiction.

Subcase 2.2. wiwe € E(H). Since H has no adjacent 2-vertices (by Claim
21), we may assume d(wz) = 3. Let z € N(w2) \ {vs,w1}. Then zw; € E(H),
otherwise, there is a claw induced by N(wz) U {ws}, which contradicts to Claim
22. Hence, ]A?p(vlwlﬂ > 2, |A12p(v4w2)| > 2, |A3p(vlv2)| > 4, ]Ai(vgm)\ > 4 and
|A12p (vou3)| > 6. Therefore, we can color viwi, v4ws, V1V2, V3Vy, vVov3 with different
2-colors in order to finish v, a contradiction. [

Figure 4. The edge coloring sequence of H.

By Claims 18-19, 2 < 6(H) < A(H) < 3. If A(H) = 2, then H is a cycle.
Hence, H is (1,25)-colorable, a contradiction. Therefore, A(H) = 3. Let v; be a
3-vertex in H with three neighbors v, v3 and wy. Since H is claw-free (by Claim
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22), we may assume vavs € E(H). Then by Claim 20, d(v2) = d(v3) = 3. Let
w; be the neighbor of v; that is not in the cycle C' = vivvzvy for 2 < 5 < 3.
Then w; # wy # ws by Claim 23. For a vertex x € V(H) \ V(C), the distance
between x and the cycle C' is denoted by d(C, x) = min{d(z,v;)|1 < i < 3}. For
an edge e = w € E(H) \ E(C), the distance between e and C' is denoted by
d(C,e) = d(C,u) + d(C,v). In the below, we will give a (1, 25)-coloring of H in
four steps.

Step 1. Color viwi, vows and vzws with the same color 0.

Step 2. Color the edges in E(H) \ E(C) except the edges incident with the
vertices in | J; ;<3 N(w;) according to their distance from the cycle C' from far
to near. That is, for two uncolored edges e; and es, if d(C,e;) > d(C, es), then
we color e before eg; if d(C,eq1) = d(C,ez), then we randomly pick one of them
to be colored first.

Denote by S the edge coloring sequence. Next, we will show that every edge
in S can be colored. Let zy be an edge in S. Clearly, if there are at most 6 edges
in N”(xy) colored before zy, then we can color zy with a 2-color or a 0-color. To
illustrate this, we discuss it in the following two cases.

Case 1. d(C,z) = d(C,y). Then there are vertices x; € N(z) \ {y} and
y1 € N(y) \ {z} that satisfy d(C,z1) < d(C,z) and d(C,y1) < d(C,y). For any
edge z122 incident with z1, since d(C,z2) < d(C,z), d(C,z122) = d(C,z1) +
d(C,x2) < 2d(Cyx) = d(C,x) + d(C,y) = d(C, zy). Similarly, for any edge y1y2
incident with y1, d(C,y1y2) < d(C, zy). Hence, the edges incident with z; and y;
are colored after xy in S, as they are closer to C' than zy. Note that A(H) < 3
(by Claim 19), thus there are at most 6 edges in N”(zy) that are colored before

zy.

Case 2. d(C,z) > d(C,y). Then there is at least one vertex y; € N(y) \ {z}
that satisfy d(C,y;1) < d(C,y), and hence the edges incident with y; are colored
after zy in S. When d(y) = 2, obviously there are at most 6 edges in N”(xy)
that are colored before xy since A(H) < 3. Hence, we only need to consider
d(y) = 3. Denote y2 € N(y) \ {z,y1}. Since H is claw-free (by Claim 22), y, is
adjacent to y; or x. If yo is adjacent to x, then there are at most 6 edges that
are colored before xy in S (three edges incident with yo and three edges incident
with the vertex t € N(z) \ {y,y2}). Thus, we may assume yo is adjacent to y.
Then d(C,y2) < d(C,y) < d(C,x), which implies yys and the edges incident with
y1 are colored after zy in S. Note that there are at most five edges incident with
the vertices in N(z) \ {y}, as H is claw-free and A(H) < 3. Therefore, there are
at most 6 edges in N”(zy) that may be colored before zy in S (one edge incident
with y2 and five edges incident with the vertices in N(z) \ {y}).

Step 3. Color the edges incident with the vertices in (J; ;<3 NV (w;i) \ {vi}.
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Based on the symmetry of w1, ws and ws, it is clear that if the edges incident
with the vertices in N(wy)\ {v1} can be colored, then the edges incident with the
vertices in (Jy< ;<3 N(w;) \ {v;} can also be colored. Next, we will first color the
edges zt, where z € N(w;) \ {v1} and ¢t € N(z) \ {w1}, then color the edges w z.

Case 1. d(w;) = 2. Denote N(w;1) = {vi,2z1}. Since H has no adjacent
2-vertices (by Claim 21), d(z1) = 3. Denote N(z1) = {211, 212, w1}. Since H is
claw-free, z11212 € E(H). Now we color zjz11, 21212, z1w1 in order. Note that
since A(H) < 3, there are at most 6 colored edges in N”(z1211) including vjw.
Hence, we can color 21211 with a 2-color. Then there are at most 7 colored edges
in N”(z1212) including vyw;. If some edge incident with z19 is colored with 0,
then we can color 21212 with a 2-color, otherwise we can color zjz12 with color 0.
Finally, for the edge zjw1, it can be seen that there are at most 6 colored edges
in N”(z1w1) including v1w1, hence we can color it with a 2-color.

Case 2. d(wy) = 3. Denote N(w;) = {v1,21,22}. Then z120 € E(H) as H is
claw-free. Since H has no 2-vertices in 3-cycle (by Claim 20), d(z1) = d(z2) = 3.
Let 211 and 291 be the neighbors of z1 and z9 not in the 3-cycle z1 zow1 respectively
(see Figure 4). Next, we color z12z11, 22221, 2122, 271w1 and zow; in order. Note
that there are at most 6 colored edges in N”(z1211) including v;w;. Hence, we can
color 21217 with a 2-color. Then there are at most 7 colored edges in N”(23291).
If some edge incident with zo1 is colored with 0, then we can color zoz91 with
a 2-color, otherwise we can color zoz9; with color 0. For the edge 2129, there
are also at most 7 colored edges in N”(z122) including viwy. If 21217 or 29291 is
colored with 0, then we can color zz9 with a 2-color, otherwise we can color z12
with color 0. Now for the edge zjw;, observe that there are at most 6 colored
edges in N”(zjw;) including v1wi, hence we can color it with a 2-color. Finally,
for the edge zowq, there are at most 7 colored edges in N”(22w;). The only case
in which zow; cannot be colored is when all the colored edges in N”(zow1 ), except
wyv1, are colored with different 2-colors. In this case, we can erase the 2-color,
say «, of z1z9. Then color z1z9 and zow; with color 0 and «, respectively.

Step 4. Color the edges in E(C).

Denote by ¢ the coloring of H after steps 1-3. Observe that [AZ (v;v;)| > 2
for 1 <i#j <3.If wywy € E(H) or there are two colored edges in N'(viw;) U
N'(vows) that are colored with the same 2-color, then |Ai(vlv2)| > 3. Hence, we
can finish ¢ by coloring vyvs, vovs, v1v2 in order, a contradiction. Therefore, we
have wyw; ¢ E(H) for 1 <i # j < 3 by symmetry, and all the six colored edges
in (J;<;<3 N'(vsw;) are colored with different 2-colors. In this case, we can color
each v_iv; with the same 2-color of a colored edge in N'(vywy), where 1 <4 # j <3
and t € {1,2,3}\ {i,}, to obtain a (1,2%)-coloring of H, a contradiction.

The proof is complete.
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