DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2024): 0.8

5-year Journal Impact Factor (2024): 0.7

CiteScore (2024): 2.1

SNIP (2024): 1.162

Discussiones Mathematicae Graph Theory

Article in press


Authors:

M.A. Henning

Michael A. Henning

University of Johannesburg

email: mahenning@uj.ac.za

0000-0001-8185-067X

J. Topp

Jerzy Topp

The State University of Applied Sciences in Elbląg, Poland

email: jtopp@inf.ug.edu.pl

0000-0002-8069-7850

Title:

On total domination subdivision numbers of trees

PDF

Source:

Discussiones Mathematicae Graph Theory

Received: 2024-05-26 , Revised: 2025-05-07 , Accepted: 2025-05-07 , Available online: 2025-05-21 , https://doi.org/10.7151/dmgt.2586

Abstract:

A set $S$ of vertices in a graph $G$ is a total dominating set of $G$ if every vertex is adjacent to a vertex in $S$. The total domination number $\gamma_t(G)$ is the minimum cardinality of a total dominating set of $G$. The total domination subdivision number $\mbox{sd}_{\gamma_t}(G)$ of a graph $G$ is the minimum number of edges that must be subdivided (where each edge in $G$ can be subdivided at most once) in order to increase the total domination number. Haynes et al. [Total domination subdivision numbers of trees, Discrete Math. 286 (2004) 195–202] have given a constructive characterization of trees whose total domination subdivision number is $3$. In this paper, we give new characterizations of trees whose total domination subdivision number is 3.

Keywords:

trees, total domination number, total domination subdivision number

References:

  1. T.W. Haynes, S.T. Hedetniemi and M.A. Henning, Topics in Domination in Graphs, Dev. Math. 64 (Springer, Cham, 2020).
    https://doi.org/10.1007/978-3-030-51117-3
  2. T.W. Haynes, S.T. Hedetniemi and M.A. Henning, Structures of Domination in Graphs, Dev. Math. 66 (Springer, Cham, 2021).
    https://doi.org/10.1007/978-3-030-58892-2
  3. T.W. Haynes, S.T. Hedetniemi and M.A. Henning, Domination in Graphs: Core Concepts, Springer Monogr. Math. (Springer, Cham, 2023).
    https://doi.org/10.1007/978-3-031-09496-5
  4. T.W. Haynes, S.T. Hedetniemi and L.C. van der Merwe, Total domination subdivision numbers, J. Combin. Math. Combin. Comput. 44 (2003) 115–128.
  5. T.W. Haynes, M.A. Henning and L. Hopkins, Total domination subdivision numbers of graphs, Discuss. Math. Graph Theory 24 (2004) 457–467.
    https://doi.org/10.7151/dmgt.1244
  6. T.W. Haynes, M.A. Henning and L. Hopkins, Total domination subdivision numbers of trees, Discrete Math. 286 (2004) 195–202.
    https://doi.org/10.1016/j.disc.2004.06.004
  7. M.A. Henning and A. Yeo, Total Domination in Graphs, Springer Monogr. Math. (Springer, New York, 2013).
    https://doi.org/10.1007/978-1-4614-6525-6

Close