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Abstract

A set S of vertices in a graph G is a total dominating set of G if every
vertex is adjacent to a vertex in S. The total domination number γt(G) is
the minimum cardinality of a total dominating set of G. The total domi-
nation subdivision number sdγt(G) of a graph G is the minimum number
of edges that must be subdivided (where each edge in G can be subdivided
at most once) in order to increase the total domination number. Haynes
et al. [Total domination subdivision numbers of trees, Discrete Math. 286
(2004) 195–202] have given a constructive characterization of trees whose
total domination subdivision number is 3. In this paper, we give new char-
acterizations of trees whose total domination subdivision number is 3.
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1. Introduction

For graph theory notation and terminology, we generally follow [3]. Specifically,
let G be a graph with vertex set V (G) and edge set E(G), and of order n(G) =
|V (G)| and size m(G) = |E(G)|. Two vertices u and v of G are adjacent if
uv ∈ E(G), and are called neighbors. The open neighborhood NG(v) of a vertex
v in G is the set of neighbors of v, while the closed neighborhood of v is the set
NG[v] = {v} ∪NG(v). In general, for a subset X ⊆ V (G), its open neighborhood
is the set NG(X) =

⋃
v∈X NG(v), and its closed neighborhood is the set NG[X] =

NG(X) ∪X.

The degree of a vertex v in G is the number of neighbors of v in G, and
is denoted by degG(v), and so degG(v) = |NG(v)|. An isolated vertex in G is a
vertex of degree zero. A graph without any isolated vertex is called an isolate-free
graph. A vertex of degree 1 is called a leaf, and its (unique) neighbor is called a
support vertex. The edge incident with a support vertex and a leaf neighbor of the
support vertex is called a pendant edge. A strong support vertex is a vertex with
at least two leaf neighbors, and a weak support vertex is a vertex with exactly one
leaf neighbor. The set of leaves and the set of support vertices of G are denoted
by L(G) and S(G), respectively.

A graph G is connected if there is a (u, v)-path in G joining every two vertices
u and v in G. The distance between two vertices u and v in a connected graph
G, denoted by dG(u, v), is the minimum length among all (u, v)-paths in G. If X
and Y are subsets of vertices of G, then the distance dG(X,Y ) between X and Y
in G is the minimum distance dG(x, y) among all pairs of vertices where x ∈ X
and y ∈ Y . The distance dG(e1, e2) between two edges e1 = u1v1 and e2 = u2v2
of G is the distance between the sets {u1, v1} and {u2, v2}. The distance dG(e, F )
between an edge e and a subset F of edges in G is the minimum distance dG(e, f)
between the edge e and all edges f ∈ F . If k is a positive integer and u is a vertex
in G, then the k-neighborhood of u, denoted by Nk

G(u), is the set of vertices at
distance k from u, that is, Nk

G(u) = {x ∈ V (G) : dG(u, x) = k}.
We use Pn, Cn, and Kn to denote a path, a cycle, and a complete graph,

respectively, on n vertices. The complete bipartite graph Kr,s is a bipartite graph
with partite sets X and Y , where |X| = r, |Y | = s, and every vertex in X is
adjacent to every vertex in Y . A star is a tree with at most one vertex that is not
a leaf; that is, stars consist of complete bipartite graphs K1,s for s ≥ 1 along with
the trivial graph K1. For k ≥ 1 an integer, we let [k] denote the set {1, . . . , k}
and we let [k]0 = [k] ∪ {0} = {0, 1, . . . , k}.

A total dominating set, abbreviated TD-set, of a graph G is a set S of vertices
of G such that every vertex has a neighbor in S, and so NG(S) = V (G). The
total domination number of G, denoted by γt(G), is the minimum cardinality of a
TD-set in G. For fundamentals on total domination theory in graphs we refer the
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reader to the authors’ book [7], and to the so-called “domination books” [1, 2, 3].
The total domination subdivision number sdγt(G) of a graph G is the min-

imum number of edges that must be subdivided (where each edge in G can be
subdivided at most once) in order to increase the total domination number. The
total domination subdivision number was introduced by Haynes et al. [4] and is
now well studied in the literature, see [4, 5, 6], to mention but a few papers on
the topic. Haynes et al. [4] have shown that the total domination subdivision
number of a graph can be arbitrarily large, but the total domination subdivision
number of a tree is either 1, 2, or 3, and so trees can be classified as Class 1, Class
2, or Class 3 depending on whether their total domination subdivision number is
1, 2, or 3, respectively. A constructive characterization of all trees in Class 3 has
been provided by Haynes, Henning, and Hopkins in [6]. In this paper, inspired
by results of Haynes, Henning, and Hopkins [6], we continue their studies of trees
in Class 3 and, in particular, we provide a different new characterizations of the
trees that belong to this class.

1.1. Known results

In this section, we present the constructive characterization of trees in Class 3
presented in [6]. For this purpose the authors of [6] describe a procedure to build
a family T of labeled trees that are of Class 3 as follows. We assign to each vertex
v a label, also called its status, and denoted by sta(v).

Definition 1. Let T be the family of labeled trees that

(1) contains a path P6 where the two leaves have status C, the two support
vertices have status B, and the two central vertices have status A; and

(2) is closed under the two operations T1 and T2, which extend the labeled tree
T belonging to T by attaching a tree to the vertex y ∈ V (T ).

• Operation T1. Assume sta(y) = A. Then add a path xwv and the edge xy.
Let sta(x) = A, sta(w) = B, and sta(v) = C.

• Operation T2. Assume sta(y) ∈ {B,C}. Then add a path xwvu and the
edge xy. Let sta(x) = sta(w) = A, sta(v) = B, and sta(u) = C.

The operations T1 and T2, and a labeled tree belonging to the family T are
illustrated in Figure 1. The underlying tree of a labeled tree T is the tree obtained
from T by removing the vertex labels.

If T ∈ T , we let SA(T ), SB(T ), and SC(T ) be the sets of vertices of status
A, B, and C, respectively, in T . The following observation is immediate from the
way in which each tree in the family T is constructed.

Observation 1.1 [6]. If T ∈ T , then the following properties hold.

1. If v ∈ SA(T ), then |NT (v) ∩ (SB(T ) ∪ SC(T ))| = 1 and NT (v) ∩ SA(T ) ̸= ∅;
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Figure 1. Operations T1 and T2, and a tree belonging to the family T .

2. If v ∈ SB(T ) (v ∈ SC(T ), respectively), then |NT (v) ∩ SC(T )| = 1 (|NT (v) ∩
SB(T )| = 1, respectively), and NT (v) \ (SB(T ) ∪ SC(T )) ⊆ SA(T );

3. L(T ) ⊆ SC(T ) and S(T ) ⊆ SB(T );

4. {v ∈ V (T ) : max{dT (v, SB(T )), dT (v, SC(T ))} = 2} = SA(T );

5. |SB(T )| = |SC(T )|.

Haynes, Henning and Hopkins [6] gave the following characterization of trees
in Class 3.

Theorem 1.2 [6]. A tree is in Class 3 if and only if it is the underlying tree of
a labeled tree that belongs to the family T .

2. Two New Characterizations

We are interested in structural properties of trees belonging to Class 3. We first
present another constructive characterization of labeled trees belonging to the
family T that is a modification of the characterization given in [6].

Definition 2. Let O be the family of labeled trees that

(1) contains a path P6 in which the two central vertices have status A, and all
other vertices have status B; and

(2) is closed under the two operations O1 and O2, which extend the labeled tree
T belonging to O by adding a labeled P6, and then

• Operation O1. Identifying one B-B-A-path of T with one B-B-A-path of
P6;

• Operation O2. Identifying one B-B-edge of T with one B-B-edge of P6.
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The two operations O1 and O2, and an example of a labeled tree belonging
to the family O are given in Figure 2.
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Figure 2. Operations O1 and O2, and a tree belonging to the family O.

If T ∈ O, we let SA(T ) and SB(T ) be the sets of vertices of status A and B,
respectively, in T . The following observation follows immediately from the way
in which each tree in the family O is constructed.

Observation 2.1. If T ∈ O, then the following two properties hold.

1. |NT (v) ∩ SB(T )| = 1 for each v ∈ V (T );

2. L(T ) ∪ S(T ) ⊆ SB(T ).

We are now in a position to prove the following characterization of trees that
belong to Class 3.

Theorem 2.2. If T is a tree of order at least 6, then the following statements
are equivalent.

(1) T is in Class 3;

(2) T ∈ T ;

(3) T ∈ O.

(4) There is a uniquely determined subset F of E(T ) such that

(a) each pendant edge of T belongs to F ;

(b) dT (e, F \ {e}) = 3 for each e ∈ F ;

(c) if e and f are distinct elements of F , then there is a unique sequence
(e0, e1, . . . , ek) of elements of F such that e0 = e, ek = f , and dT (ei−1, ei)
= 3 for i ∈ [k].
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For example, if T is the tree illustrated in Figure 3, then the subset F of
broad edges of T indicated in Figure 3 satisfies property (4) in the statement of
Theorem 2.2. Moreover if e = e0 and f = e4, then the sequence (e0, e1, e2, e3, e4)
satisfies property (4c) in the statement of Theorem 2.2.

e0=e e1 e2

e3

e4=f

Figure 3. An example to the statement (d) of Theorem 2.2.

Proof. The equivalence of the statements (1) and (2) has been proved in [6],
see Theorem 1.2. The proof of the equivalence of the statements (2) and (3) is
straightforward by Observations 1.1 and 2.1, and we omit the details. We shall
prove the equivalence of the statements (3) and (4).

Assume first that T ∈ O. Thus the tree T can be obtained from a sequence
T1, . . . , Tp of trees, where T1 = P6 and T = Tp, and, if p ≥ 2, Ti+1 can be
obtained from Ti by operation O1 or O2 for i ∈ [p − 1]. Let F be the set of all
B-B edges in T . By induction on the number p we shall prove that F has the
desired properties.

If p = 1, then T = P6, and the set F (consisting of the two pendant edges
of P6) has the desired properties. This establishes the base case. Assume, then,
that the result holds for all trees that can be constructed from a sequence of fewer
than p trees, where p ≥ 2. Let T ∈ O be obtained from a sequence T1, T2, . . . , Tp

of p trees. By our inductive hypothesis, the set F ′ of the B-B edges of Tp−1 has
the desired properties in Tp−1. We now consider two possibilities depending on
whether T is obtained from Tp−1 by operation O1 or O2.

Assume first that T is obtained from Tp−1 by operation O1. Suppose, without
loss of generality, that T is obtained from Tp−1 by identifying a B-B-A path xyz
in Tp−1 with a B-B-A path in the labeled P6, say with xyz in P6 : xyzabc, where
z and a have status A, while x, y, b, c have status B. Now from the properties of
F ′ in Tp−1, we infer that the set F ′ ∪ {bc} (of all B-B edges in T ) has properties
(4a)–(4c) in T . Similarly, if T is obtained from Tp−1 by operation O2, then again
the set of all B-B edges of T has properties (4a)–(4c) in T .

Assume now that T is a tree of order at least 6 in which there is a unique
nonempty subset F of E(T ) having properties (4a)–(4c). By induction on the
order n ≥ 6 of T , we shall prove that T ∈ O. The only tree of order 6 having the
desired properties is the path P6, and so in this case T ∈ O. This establishes the
base step. Let n > 6, and assume that if T ′ is a tree of order n′ with 6 ≤ n′ < n
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that has a unique subset of edges having properties (4a)–(4c), then T ′ ∈ O. Let
T be a tree of order n with a unique subset F of E(T ) having properties (4a)–
(4c). Let P : v0v1 . . . vk be a longest path in T . For convenience, we root T at
the leaf vk. From the properties (4a) and (4b) of edges belonging to F and by
the maximality of the path P , it follows that k ≥ 5 and dT (v1) = dT (v2) = 2.
We consider two cases depending on the degree of v3 in T .

Case 1. dT (v3) = 2. In this case, we let T ′ denote the subtree T −
{v0, v1, v2, v3} of T . Since v0v1 is a pendant edge in T , it follows from the prop-
erties (4a) and (4b) that there is exactly one vertex v′4 ∈ NT (v4) \ {v3} such
that v4v

′
4 ∈ F . Now, from the properties (4a)–(4c) of F in T it follows that

F ′ = F \ {v0v1} has the properties (4a)–(4c) in T ′. Applying the inductive hy-
pothesis we infer that T ′ ∈ O. Thus, T can be obtained from T ′ by operation
O2 (identifying the B-B edge v4v

′
4 of T ′ with the B-B edge v4v

′
4 of the labeled

P6 : v0v1v2v3v4v
′
4), and so, T ∈ O.

Case 2. dT (v3) ≥ 3. In this case, we let T ′ denote the subtree T −{v0, v1, v2}
of T . Since v0v1 is a pendant edge in T , it follows from the properties (4a) and
(4b) that there are vertices x ∈ NT (v3) \ {v2} and x′ ∈ NT (x) \ {v3} such that
xx′ ∈ F . As in Case 1, from the properties (4a)–(4c) of F in T it follows that
F ′ = F − {v0v1} has the properties (4a)–(4c) in T ′. Hence, an application of the
inductive hypothesis implies that T ′ ∈ O. In this case, T can be obtained from
T ′ by applying operation O1 (identifying the B-B-A path x′xv3 of T ′ with the
B-B-A path x′xv3 of the labeled P6 : v0v1v2v3xx

′). This proves that T ∈ O, and
completes the proof of the equivalence of the statements (3) and (4).

As an immediate consequence of Theorem 2.2, we characterize the paths that
are in Class 3.

Corollary 1. A path Pn is in Class 3 if and only if n ≡ 2 (mod 4).

Let v be a weak support vertex of degree at least 3 in a tree T . If sets A
and B form a partition of the set NT (v)\L(T ), then by TA (TB, respectively) we
denote the component of T −B (T −A, respectively) that contains the vertex v,
as illustrated in Figure 4.

T

vA B

TA

vA

TB

v B

Figure 4. A tree T and the components TA and TB .
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Lemma 2.3. Let v be a weak support vertex of degree at least 3 in a tree T , and
let sets A and B form a partition of the set NT (v) \ L(T ). Then the tree T is in
Class 3 if and only if both subtrees TA and TB are in Class 3.

Proof. The proof follows readily from the fact that a subset F of E(T ) has
properties (4a)–(4c) of Theorem 2.2 in T if and only if each of the sets F ∩
E(TA) and F ∩ E(TB) has properties (4a)–(4c) of Theorem 2.2 in TA and TB,
respectively.

A caterpillar is a tree of order at least 3 with the property that the removal
of its leaves results in a path, called the spine of the caterpillar. The code C
of a caterpillar T with spine v0v1 . . . vs is the sequence of nonnegative integers
(t0, t1, . . . , ts), where ti is the number of leaves adjacent to vi in T . We say
that two leaves of a caterpillar T are consecutive if no inner vertex of the path
joining their neighbors is a support vertex in T . Haynes et al. [4] characterized
caterpillars in Class 3.

Theorem 2.4 [4]. A caterpillar T with code C = (t0, . . . , ts) is in Class 3 if and
only if ti ∈ {0, 1} for i ∈ [s]0, and any two consecutive nonzero entries in C are
at distance 3 (mod 4).

Let T be a caterpillar with spine v0v1 . . . vs and with code C = (t0, . . . , ts)
that is in Class 3. If ti and tj are two consecutive nonzero entries in C, then
by Theorem 2.4 we have ti = tj = 1 and the vertices vi and vj on the spine are
at distance 3 (mod 4), that is, dT (vi, vj) ≡ 3 (mod 4). Let li and lj be the leaf
neighbors of the vertices vi and vj , respectively. Then, li and lj are consecutive
leaves in T and dT (li, lj) ≡ 1 (mod 4). Conversely, if T is a caterpillar with code
C = (t0, . . . , ts) where ti ∈ {0, 1} and where any two consecutive leaves of T are
at distance 1 (mod 4), then the neighbors of these leaves (that belong to the spine
of T ) are at distance 3 (mod 4), and so by Theorem 2.4, the caterpillar T is in
Class 3. This yields the following equivalent statement of Theorem 2.4.

Theorem 2.5 [4]. A caterpillar T of order at least 6 is in Class 3 if and only if
every two consecutive leaves of T are at distance 1 (mod 4).

We present next a short proof of Theorem 2.5.

Proof. Let T be a caterpillar of order n ≥ 6. We proceed by induction on the
number l ≥ 2 of leaves in T to show that T is in Class 3 if and only if every two
consecutive leaves of T are at distance 1 (mod 4). If l = 2, then T is a path Pn,
and so by Corollary 1, n ≡ 2 (mod 4), and so the two leaves of T are at distance
1 (mod 4). This establishes the base case. Let l ≥ 3 and assume that every
caterpillar T ′ of order at least 6 with l′ leaves is in Class 3 if and only if every
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two consecutive leaves of T ′ are at distance 1 (mod 4). Let T be a caterpillar of
order n ≥ 6 with l leaves.

If T has a strong support vertex v and if v1 and v2 are two leaf neighbors of v,
then subdividing two edges vv1 and vv2 increases the total domination number,
implying that T is in Class 1 or 2, a contradiction. Hence, every support vertex
of T is a weak support vertex. Since T has at least three leaves, the caterpillar
T has a leaf, say d, whose (unique) neighbor, say c, is of degree 3. Let a and
b be the two neighbors of c on the spine of T . Let Ta (Tb, respectively) be the
component of T − b (T − a, respectively) that contains a (b, respectively). We
note that both Ta and Tb are caterpillars. By Corollary 2.3, T is in Class 3 if
and only if both Ta and Tb are in Class 3. By the inductive hypothesis, Ta and
Tb are in Class 3 if and only if every two consecutive leaves in Ta are at distance
1 (mod 4) and every two consecutive leaves in Tb are at distance 1 (mod 4). From
these properties of the caterpillars Ta and Tb, we infer that every two consecutive
leaves of T are at distance 1 (mod 4). This proves Theorem 2.5.

3. Another Characterization

We show in this section that trees belonging to the family O are 2-subdivisions
of trees or can be obtained from 2-subdivisions of trees, where a 2-subdivision of
a graph is defined as follows. Recall that the corona H ◦K1 of a graph H is the
graph obtained from H by adding for each vertex v ∈ V (H) a new vertex v′ and
the edge vv′.

Definition 3. Let G be a connected graph of order at least 2, and let P =
{P(v) : v ∈ V (G)} be a family in which P(v) is a partition of the set NG(v) for
each v ∈ V (G). The 2-subdivision of G with respect to P is the graph G(P) with
vertex set

V (G(P)) = V (G) ∪ (V (G)× {1}) ∪
⋃

v∈V (G)

({v} × P(v))

and edge set E(G(P)) = E1 ∪ E2 ∪ E3 where

E1 = {v(v, 1) : v ∈ V (G)},

E2 =
⋃

v∈V (G)

{v(v,A) : A ∈ P(v)},

E3 =
⋃

uv∈E(G)

{(u,A)(v,B) : A ∈ P(u), B ∈ P(v), u ∈ B, v ∈ A}.

More intuitively, G(P) is the graph obtained from the corona G ◦ K1 by in-
serting two new vertices into each inner edge of G ◦ K1, and then identifying
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newly inserted vertices according to the partition P(v) of NG(v), that is, if
A = {w1, . . . , wk} ∈ P(v), then we contract all neighbors of v on the edges
vw1, . . . , vwk into a single vertex (v,A) and replace all multiple edges in the
resulting graph by single edges, for each v ∈ V (G) and A ∈ P(v).

Example 3.1. If G is the tree shown in Figure 5(a), and P = {P(a), . . . ,P(f)}
is a family of partitions of the sets NG(a), . . . , NG(f), respectively, where P(a) =
{{d, e}}, P(b) = {{e}}, P(c) = {{e, f}}, P(d) = {{a}}, P(e) = {{a, b}, {c}}, and
P(f) = {{c}}, then G(P) is the tree shown in Figure 5(b).

a

b

c

d

e

f

G
a

(a,1) (d,1)

b

(b,1) (e,1)

c

(c,1) (f,1)

d

e

f

G(P)
(a,{d,e}) (d,{a})

(b,{e})

(e,{a,b})

(e,{c})

(f,{c})(c,{e,f})
(a) (b)

Figure 5. The trees G and G(P).

Let O′ be the family of all trees T (P), where T is any tree of order at least
2, and P = {P(v) : v ∈ V (T )} is a family in which P(v) is a partition of the
set NT (v) for each v ∈ V (T ). If T (P) ∈ O′, then we observe that the set
F = {v(v, 1) : v ∈ V (T )} of all pendant edges of T (P) has properties (4a)–(4c)
of Theorem 2.2. Therefore, T (P) ∈ O, and so O′ ⊆ O. The path P10 proves that
O′ is a proper subfamily of the family O. We state these observations formally
as follows.

Observation 3.2. The family O′ is a proper subfamily of the family O.

In the next theorem we characterize trees belonging to the family O′ in terms
of 2-packings. A set S of vertices of a graph G is a 2-packing in G if the vertices
in S are pairwise at distance at least 3 in G, that is, NG[u]∩NG[v] = ∅ for every
pair of distinct vertices u, v ∈ S. The 2-packing number of G, denoted by ρ(G),
is the maximum cardinality of a 2-packing in G.

Theorem 3.3. If T is a tree of order at least 6, then T is in the family O′ if and
only if the set of weak support vertices of T is a maximum 2-packing in T .
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Proof. Assume first that T ∈ O′, say T = R(P) for some tree R and some family
P of partitions of the setsNR(v), v ∈ V (R). From the definition of R(P) it follows
that V (R) is the set of weak supports in R(P). In addition, the set V (R) is also a
2-packing in R(P) (as dR(P)(u, v) ≥ 3 for each pair of vertices u, v ∈ V (R)), and
therefore |V (R)| ≤ ρ(R(P)). On the other hand since {NR(P)[v] : v ∈ V (R)} is a
partition of the set V (R(P)) and every 2-packing has at most one vertex in NR[v]
for every v ∈ V (R) (as dR(P)(x, y) ≤ 2 for each pair of vertices x, y ∈ NR(P)[v]) it
follows that every 2-packing in R(P) has at most |V (R)| vertices, and therefore
ρ(R(P)) ≤ |V (R)|. This implies that V (R) is a maximum 2-packing in R(P).

Assume now that T is a tree of order at least 6 in which the set S′(T ) of
weak support vertices is a maximum 2-packing. We shall prove that T is in the
family O′. We first prove three claims.

Claim 1. The tree T has no strong support vertex.

Proof. Suppose, to the contrary, that v is a strong support vertex in T . Let
v′ be any leaf adjacent to v in T . Certainly, neither v nor v′ is in S′(T ). Since
S′(T ) is a maximum 2-packing in T , the set S′(T ) ∪ {v′} is not a 2-packing
in T and therefore there exists a vertex (in fact, exactly one vertex), say u, in
NT (v)∩S′(T ). Now, if u′ is the leaf adjacent to u, then S = (S′(T )\{u})∪{u′, v′}
is a 2-packing in T , and so ρ(T ) ≥ |S| > |S′(T )| = ρ(T ), a contradiction. 2

Claim 2. dT (x, S
′(T ) \ {x}) = 3 for each x ∈ S′(T ).

Proof. Since S′(T ) is a 2-packing in T , dT (x, y) ≥ 3 for each pair of vertices
x, y ∈ S′(T ), and therefore dT (x, S

′(T ) \ {x}) ≥ 3 for each x ∈ S′(T ). Suppose
that dT (v, S

′(T ) \ {v}) = k ≥ 4 for some vertex v ∈ S′(T ). Let u ∈ S′(T ) be
a vertex such that dT (u, v) = dT (v, S

′(T ) \ {v}) = k, and let v0v1 . . . vk be the
(v, u)-path in T where v = v0 and u = vk. If k ≥ 5 and if u′ and v′ are the leaves
adjacent to u and v, respectively, then the set S = (S′(T ) \ {u, v}) ∪ {v′, u′, v2}
is a 2-packing in T , and so ρ(T ) ≥ |S| > |S′(T )| = ρ(T ), a contradiction. Hence,
k = 4. In this case, let A = {w ∈ S′(T ) : dT (v, w) = 4}. Since u ∈ A, we note
that |A| ≥ 1. For each w ∈ A ∪ {v}, let w′ be the (unique) leaf neighbor of w in
T . Now, the set

S = (S′(T ) \ (A ∪ {v})) ∪ ({v′, v2} ∪ {w′ : w ∈ A})

is a 2-packing in T , and so ρ(T ) ≥ |S| > |S′(T )| = ρ(T ), a contradiction. 2

Claim 3. If x and y are distinct vertices in S′(T ), then there is exactly one
sequence of vertices, say (x0, x1, . . . , xk) where x = x0 and y = xk, of distinct
vertices in S′(T ) such that dT (xi−1, xi) = 3 for i ∈ [k].

Before we present a proof of Claim 3, as an illustration of the claim, if
T = G(P) is the tree shown in Figure 5(b), then the set S′(T ) = {a, b, c, d, e, f}.
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Moreover, if x = a and y = f , for example, then x and y are distinct vertices
in S′(T ) and there is exactly one sequence (x0, x1, x2, x3) where x0 = x, x1 = e,
x2 = c, and x3 = y of distinct vertices in S′(T ) such that dT (xi−1, xi) = 3 for
i ∈ [3].

As a further illustration of Claim 3, consider the tree T shown in Figure 6.
If S′(T ) is the set of weak support vertices in T and if x = a and y = x6, for
example, then x and y are distinct vertices in S′(T ) and there is exactly one
sequence (x0, x1, x2, x3, x4, x5, x6) where x0 = x and x6 = y of distinct vertices
in S′(T ) such that dT (xi−1, xi) = 3 for i ∈ [6].

x0=x x2 x4

x1 x3 x5

x6=y

Figure 6. A tree T illustrating Claim 3.

Proof of Claim 3. It follows from Claim 2 that dT (x, y) ≥ 3. To prove the
desired result, we proceed by induction on dT (x, y). If dT (x, y) = 3, then the se-
quence (x, y) has the desired property and this establishes the base case. Assume,
then, that the result holds for all pairs x′, y′ ∈ S′(T ) such that 3 ≤ dT (x

′, y′) < q,
where q ≥ 4. Assume that x, y ∈ S′(T ), dT (x, y) = q, and let y0y1 . . . yq be the
(x, y)-path in T where x = y0 and y = yq. Thus, y0 ∈ S′(T ), and y1, y2 /∈ S′(T )
(as S′(T ) is a 2-packing).

We now prove that a vertex (and then exactly one vertex) belonging to
NT (y2)\{y1} is in S′(T ). Suppose, to the contrary, that (NT (y2)\{y1})∩S′(T ) =
∅. Thus, NT [y2]∩S′(T ) = ∅. In this case, the set S = (NT (S

′(T ))∩L(T ))∪{y2} =
L(T )∪{y2} is a 2-packing in T , and so ρ(T ) ≥ |S| = |S′(T )|+1 > |S′(T )| = ρ(T ),
a contradiction. Therefore, (NT (y2) \ {y1}) ∩ S′(T ) ̸= ∅.

If y3 ∈ S′(T ), then 3 ≤ dT (y3, y) < q and, by our inductive hypothesis, there
is exactly one sequence (z0, z1, . . . , zk) of distinct vertices in S′(T ) where z0 = y3
and y = zk and such that dT (zi−1, zi) = 3 for i ∈ [k]. Thus, (x0, x1, . . . , xk+1)
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where x = x0, y = xk+1 and where xi = zi+1 for i ∈ [k], is the desired sequence.
Hence, we may assume that y3 /∈ S′(T ), for otherwise the desired result follows.

Let y′2 be the (unique) element of (NT (y2) \ {y1, y3}) ∩ S′(T ). Thus, 3 ≤
dT (y

′
2, y) < n and the inductive hypothesis guarantees that there is exactly one

sequence (z0, z1, . . . , zk) of distinct vertices in S′(T ) where z0 = y′2 and zk = y
and such that dT (zi−1, zi) = 3 for i ∈ [k]. Thus, (x0, x1, . . . , xk+1) where x = x0
and where xi+1 = zi for i ∈ [k], yielding the desired sequence. 2

We now return to the proof of Theorem 3.3, and are ready to prove that
T is in the family O′. We shall prove that T is isomorphic to R(P) for some
tree R and some family P of partitions of the sets NR(u) where u ∈ V (R).
Let R = (V (R), E(R)) be a graph with vertex set V (R) = S′(T ) and edge set
E(R) = {uv : u, v ∈ V (R) and dT (u, v) = 3}. It follows from Claim 3 that R is a
tree. Let P = {P(u) : u ∈ V (R)} be a family, where for a vertex u ∈ V (R), P(u)
is the family {Aux : x ∈ NT (u) \ L(T )} in which

Aux = {y ∈ S′(T ) : dT (x, y) = 2} = S′(T ) ∩N3
T (u) ∩N2

T (x)

for x ∈ NT (u) \ L(T ). We note that if u ∈ V (R), then⋃
x∈NT (u)\L(T )

Aux =
⋃

x∈NT (u)\L(T )

(S′(T ) ∩N3
T (u) ∩N2

T (x))

= S′(T ) ∩N3
T (u) ∩

 ⋃
x∈NT (u)\L(T )

N2
T (x)


= S′(T ) ∩N3

T (u)

= NR(u).

In addition, since

Aux ∩Auy = S′(T ) ∩N3
T (u) ∩N2

T (x) ∩N2
T (y)

and T is a tree, the sets Aux and Auy are disjoint if x, y ∈ NT (u) \ L(T ) and
x ̸= y. The above implies that P(u) = {Aux : x ∈ NT (u) \L(T )} is a partition of
the set NR(u) for u ∈ V (R), and so

{u} × P(u) =
{
(u,Aux) : x ∈ NT (u) \ L(T )

}
for every vertex u ∈ V (R). Let us consider the graph R(P) for the above defined
set R and the partition P. By construction, R(P) is a graph with vertex set

V (R(P)) = V (R) ∪ (V (R)× {1}) ∪

 ⋃
u∈V (R)

{(u,Aux) : x ∈ NT (u) \ L(T )}
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and edge set E(R(P)) = E1 ∪ E2 ∪ E3 where

E1 = {u(u, 1) : u ∈ V (R)},

E2 =
⋃

u∈V (R)

{u(u,A) : A ∈ P(u)},

E3 =
⋃

uv∈E(R)

{(u,A)(v,B) : A ∈ P(u), B ∈ P(v), u ∈ B, v ∈ A}.

Equivalently, the edge sets E2 and E3 are the sets

E2 =
⋃

u∈V (R)

{u(u,Aux) : x ∈ NT (u) \ L(T )}

and

E3 =
⋃

uv∈E(R)

{
(u,Aux)(v,Bvy) : x ∈ NT (u) \ L(T ), y ∈ NT (v) \ L(T ),

u ∈ Bvy, v ∈ Aux

}
.

We now let
φ : V (R(P)) → V (T )

be a function defined in such a way that φ(x) = x for all x ∈ V (R), φ((x, 1)) = lx
if (x, 1) ∈ V (R) × {1} and lx is the only leaf adjacent to x in T , and, finally,
φ((u,Aux)) = x if u ∈ V (R), x ∈ NT (u) \L(T ), and Aux ∈ P(u). It is immediate
from the definitions of R, P, and R(P) that the function φ is an isomorphism of
T and R(P). This completes the proof.

In this final subsection, we give a simple construction that makes it possible
to build trees belonging to the family O from smaller trees belonging to the family
O′. Let M be a matching in a graph G. By G∓M we denote the graph obtained
from G−M by adding exactly one new pendant edge to each vertex covered by
M . On the other hand, let N be a matching in the complement G of G, and
assume that every vertex covered by N is a weak support in G. Then by G±N
we denote the graph obtained from G∪N by removing the leaf neighbor of every
vertex in N . It follows from these definitions that if M is a matching in G, then
(G∓M)±M = G. Similarly, if N is a matching in G and every vertex covered by
N is a weak support in G, then (G±N)∓N = G, see Figure 7 for an illustration.

As a consequence of Theorem 3.3, we have the following corollary.

Corollary 4. Let u and v be weak support vertices in disjoint trees T1 and T2,
respectively, and let Tuv be the tree obtained from the union T1∪T2 by adding the
edge uv and removing the leaf neighbor adjacent to u and v, respectively. Then
the tree Tuv is in Class 3 if both T1 and T2 are in Class 3.
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G

M

G∓M

G

N

G±N

Figure 7. M and N are matchings in G and G, respectively.

Proof. Assume that T1 and T2 are in Class 3, and let F1 and F2 be the subsets
of E(T1) and E(T2) having properties (4a)–(4c) of Theorem 2.2 in T1 and T2,
respectively. Let uu′ and vv′ be pendant edges incident with u and v in T1 and
T2, respectively. Then the set (F1∪F2∪{uv})\{uu′, vv′} has properties (4a)–(4c)
of Theorem 2.2 in Tuv and, therefore, Tuv is in Class 3.

We remark that the example of a path P10 illustrates that the converse impli-
cation of Corollary 4 does not hold without additional assumptions on the edge
uv and vertices u and v in Tuv.

Theorem 3.4. If T is a tree of order at least 6, then T ∈ O if and only if T ∈ O′

or every component of T ∓M belongs to O′ for some matching M in T .

Proof. Assume that T ∈ O. Then in T there is a uniquely determined subset
F of E(T ) that has properties (4a)–(4c) of Theorem 2.2. If every edge in F is a
pendant edge in T , then it follows from (4b) that the set S′(T ) (of weak supports
of T ) is a 2-packing in T .

We claim that S′(T ) is a maximum 2-packing in T . Suppose, to the contrary,
that there is a 2-packing S in T such that |S| > |S′(T )|. Since |NT [x]∩S| ≤ 1 for
each x ∈ S′(T ), the inequality |S| > |S′(T )| implies that the set S \NT [S

′(T )] is
nonempty, say x0 ∈ S \ NT [S

′(T )]. Thus, dT (x0, S
′(T )) ≥ 2 and, therefore, if e

and f are pendant edges in T belonging to distinct components of T − x0, then
no e –f sequence has property (4c), a contradiction. This proves that S′(T ) is a
maximum 2-packing in T and T ∈ O′, by Theorem 3.3.

We may therefore assume that not every edge belonging to F is a pendant
edge in T . Let M be the set of non-pendant edges in T belonging to F . Now
the graph T ∓M is disconnected, it has k = |M |+1 components, say T1, . . . , Tk,
and S′(T ) ∪ V (M) is the set of weak support vertices in T ∓M (where V (M) is
the set of vertices covered by M). From the fact that F has properties (4a)–(4c)
of Theorem 2.2 it follows that the set of pendant edges in Ti where i ∈ [k] has
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properties (4a)–(4c) of Theorem 2.2. Then, as in the beginning of this proof,
the set S′(Ti) of weak support vertices of Ti is a maximum 2-packing in Ti, and,
consequently, Ti ∈ O′, by Theorem 3.3 for i ∈ [k].

Assume now that M is a matching in T such that every component, say
T1, . . . , Tk, of T ∓M belongs to O′. Then the set of weak support vertices of Ti

is a maximum 2-packing in Ti for i ∈ [k] (and the set of weak support vertices of
T ∓M is a maximum 2-packing in T ∓M). Consequently, the set Fi of pendant
edges of Ti has properties (4a)–(4c) of Theorem 2.2 in Ti. This implies that the
set of edges M ∪

⋃k
i=1(Fi ∩E(T )) has properties (4a)–(4c) of Theorem 2.2 in T .

From these observations and from Theorem 2.2 we infer that T ∈ O.
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