DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2024): 0.8

5-year Journal Impact Factor (2024): 0.7

CiteScore (2024): 2.1

SNIP (2024): 1.162

Discussiones Mathematicae Graph Theory

Article in press


Authors:

Y.-X. Zheng

Yexin Zheng

Hebei University of Technology

email: yexin_zheng@163.com

C.-Q. Xu

Chang-Qing Xu

HeBei university of technology

email: chqxu@hebut.edu.cn

Y.-X. Lan

Yongxin Lan

Hebei University of Technology

email: yxlan0@126.com

Title:

The planar Turán number of ${\left \{ C_{6}, C_{7} \right \}}$

PDF

Source:

Discussiones Mathematicae Graph Theory

Received: 2024-06-15 , Revised: 2025-04-15 , Accepted: 2025-04-16 , Available online: 2025-05-21 , https://doi.org/10.7151/dmgt.2585

Abstract:

Let $\mathcal{H}$ be a set of graphs. A graph is $\mathcal{H}$-free if it does not contain any copy of $H$ as a subgraph where $H\in \mathcal{H}$. The planar Turán number of $\mathcal{H}$, denoted by $ex_{p} (n,\mathcal{H})$, is the maximum number of edges in an $\mathcal{H}$-free planar graph on $n$ vertices. The upper bounds of $ex_{p}(n,\{C_{k},C_{k+1}\})$ are known when $3\le k\le 5$, and these bounds are tight. In this paper, we give the upper bound of $ex_{p}(n,\left \{ C_{6},C_{7} \right \})$ for all integers $n\ge 76$, and this bound is sharp.

Keywords:

Turán number, planar graph, cycle

References:

  1. J.A. Bondy and U.S.R. Murty, Graph Theory, Grad. Texts in Math. 244 (Springer-Verlag, London, 2008).
  2. D.W. Cranston, B. Lidický, X.N. Liu and A. Shantanam, Planar Turán numbers of cycles: A Counterexample, Electron. J. Combin. 29 (2022) #P3.31.
    https://doi.org/10.37236/10774
  3. C. Dowden, Extremal $C_{4}$-free/$C_{5}$-free planar graphs, J. Graph Theory 83 (2016) 213–230.
    https://doi.org/10.1002/jgt.21991
  4. L.L. Du, B. Wang and M.Q. Zhai, Planar Turán numbers on short cycles of consecutive lengths, Bull. Iranian Math. Soc. 48 (2022) 2395–2405.
    https://doi.org/10.1007/s41980-021-00644-1
  5. L.L. Du and B. Wang, Planar Turán number of $\left \{ C_{5},C_{6} \right \} $, Oper. Res. Trans. (2023) in press.
  6. D. Ghosh, E. Győri, R.R. Martin, A. Paulos and C.Q. Xiao, Planar Turán number of the $6$-cycle, SIAM J. Discrete Math. 36 (2022) 2028–2050.
    https://doi.org/10.1137/21M140657X
  7. E. Győri, A. Li and R. Zhou, The planar Turán number of the seven-cycle (2023).
    arXiv: 2307.06909
  8. E. Győri, K. Varga and X.T. Zhu, A new construction for planar Turán number of cycles, Graphs Combin. 40 (2024) 124.
    https://doi.org/10.1007/s00373-024-02822-4
  9. E. Győri, X.Z. Wang and Z.Y. Zheng, Extremal planar graphs with no cycles of particular lengths (2022).
    arXiv: 2208.13477
  10. P. Keevash, Surveys in Combinatorics (London Math. Soc. Lecture Note Ser., Cambridge University, 2011).
  11. Y.X. Lan, Y.T. Shi and Z-X. Song, Extremal theta-free planar graphs, Discrete Math. 342 (2019) 111610.
    https://doi.org/10.1016/j.disc.2019.111610
  12. Y.X. Lan and Z-X. Song, An improved lower bound for the planar Turán number of cycles (2022).
    arXiv: 2209.01312
  13. D.R. Lick and A.T. White, $k$-degenerate graphs, Canad. J. Math. 22 (1970) 1082–1096.
    https://doi.org/10.4153/CJM-1970-125-1
  14. D. Offner, Some Turán type results on the hypercube, Discrete Math. 309 (2009) 2905–2912.
    https://doi.org/10.1016/j.disc.2008.07.025
  15. V. Rödl and M. Schacht, Extremal results in random graphs, Bolyai Soc. Math. Stud. 25 (2013) 535–583.
    https://doi.org/10.1007/978-3-642-39286-3_20
  16. R.L. Shi, Z. Walsh and X.X. Yu, Planar Turán number of the $7$-cycle, Eur. J. Combin. 126 (2025) 104134.
    https://doi.org/10.1016/j.ejc.2025.104134
  17. R.L. Shi, Z. Walsh and X.X. Yu, Dense circuit graphs and the planar Turán number of a cycle, J. Graph Theory 108 (2025) 27–38.
    https://doi.org/10.1002/jgt.23165
  18. P. Turán, Eine Extremalautgabe aus der Graphentheorie, Mat. Fiz. Lapok 48 (1941) 436–452.
  19. W.F. Wang and K.W. Lih, On the sizes of graphs embeddable in surfaces of nonnegative Euler characteristic and their applications to edge choosability, Eur. J. Combin. 28 (2007) 111–120.
    https://doi.org/10.1016/j.ejc.2005.09.002
  20. D.B. West, Introduction to Graph Theory (Prentice Hall, 2001).

Close