DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2023): 0.5

5-year Journal Impact Factor (2023): 0.6

CiteScore (2023): 2.2

SNIP (2023): 0.681

Discussiones Mathematicae Graph Theory

Article in press


Authors:

W. Goddard

Wayne Goddard

Department of Computer ScienceClemson UniversityClemson, SC 29634-0974USA

email: goddard@clemson.edu

T. Herrman

Tyler Herrman

Clemson University

email: herrman@clemson.edu

S.J. Hughes

Simon J. Hughes

Clemson University

email: sjhughe@clemson.edu

Title:

Bounds on coloring trees without rainbow paths

PDF

Source:

Discussiones Mathematicae Graph Theory

Received: 2024-12-21 , Revised: 2025-03-10 , Accepted: 2025-03-11 , Available online: 2025-04-02 , https://doi.org/10.7151/dmgt.2582

Abstract:

For a graph with colored vertices, a rainbow subgraph is one where all vertices have different colors. For graph $G$, let $\mathit{c}_k(G)$ denote the maximum number of different colors in a coloring without a rainbow path on $k$ vertices, and ${\mathit{cp}}_k(G)$ the maximum number of colors if the coloring is required to be proper. The parameter ${\mathit{c}}_3$ has been studied by multiple authors. We investigate these parameters for trees and $k \ge 4$. We first calculate them when $G$ is a path, and determine when the optimal coloring is unique. Then for trees $T$ of order $n$, we show that the minimum value of $\mathit{c}_4(T)$ and ${\mathit{cp}}_4(T)$ is $(n+2)/2$, and the trees with the minimum value of ${\mathit{cp}}_{4}T)$ are the coronas. Further, the minimum value of $\mathit{c}_5(T)$ and ${\mathit{cp}}_{5}(T)$ is $(n+3)/2$, and the trees with the minimum value of either parameter are octopuses.

Keywords:

no-rainbow, path, tree, corona

References:

  1. M. Axenovich and R. Martin, Avoiding rainbow induced subgraphs in vertex-colorings, Electron. J. Combin. 15(1) (2008) #R12.
  2. Cs. Bujtás and Zs. Tuza, Maximum number of colors: $C$-coloring and related problems, J. Geom. 101 (2011) 83–97.
    https://doi.org/10.1007/s00022-011-0082-2
  3. Cs. Bujtás, E. Sampathkumar, Zs. Tuza, C. Dominic and L. Pushpalatha, Vertex coloring without large polychromatic stars, Discrete Math. 312 (2012) 2102–2108.
    https://doi.org/10.1016/j.disc.2011.04.013
  4. Cs. Bujtás, E. Sampathkumar, Zs. Tuza, M.S. Subramanya and C. Dominic, $3$-consecutive $C$-colorings of graphs, Discuss. Math. Graph Theory 30 (2010) 393–405.
    https://doi.org/10.7151/dmgt.1502
  5. E. Bulgaru and V.I. Voloshin, Mixed interval hypergraphs, Discrete Appl. Math. 77 (1997) 29–41.
    https://doi.org/10.1016/S0166-218X(97)89209-8
  6. J.D. Chandler, W.J. Desormeaux, T.W. Haynes and S.T. Hedetniemi, Neighborhood-restricted $[\le 2]$-achromatic colorings, Discrete Appl. Math. 207 (2016) 39–44.
    https://doi.org/10.1016/j.dam.2016.02.023
  7. W. Goddard and H. Xu, Vertex colorings without rainbow subgraphs, Discuss. Math. Graph Theory 36 (2016) 989–1005.
    https://doi.org/10.7151/dmgt.1896
  8. W. Goddard and H. Xu, Vertex colorings without rainbow or monochromatic subgraphs, J. Combin. Math. Combin. Comput. 102 (2017) 109–122.
  9. W. Goddard, K. Wash and H. Xu, WORM colorings, Discuss. Math. Graph Theory 35 (2015) 571–584.
    https://doi.org/10.7151/dmgt.1814
  10. V. Voloshin, On the upper chromatic number of a hypergraph, Australas. J. Combin. 11 (1995) 25–45.

Close