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Abstract

For a graph with colored vertices, a rainbow subgraph is one where all
vertices have different colors. For graph G, let ck(G) denote the maximum
number of different colors in a coloring without a rainbow path on k vertices,
and cpk(G) the maximum number of colors if the coloring is required to
be proper. The parameter c3 has been studied by multiple authors. We
investigate these parameters for trees and k ≥ 4. We first calculate them
when G is a path, and determine when the optimal coloring is unique. Then
for trees T of order n, we show that the minimum value of c4(T ) and cp4(T )
is (n+2)/2, and the trees with the minimum value of cp4T ) are the coronas.
Further, the minimum value of c5(T ) and cp5(T ) is (n+3)/2, and the trees
with the minimum value of either parameter are octopuses.
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1. Introduction

We consider undirected graphs where the vertices receive colors. We define a
subgraph as rainbow if all its vertices receive different colors, and we study col-
orings where for some fixed graph H there is no rainbow subgraph isomorphic to
H. This question was first studied for the path on three vertices by Bujtás et al.
[4] and for stars in general by Bujtás et al. [3], and then studied in [6, 7, 8] inter
alia. There has also been work on the case where H must be induced [1]. The
problem is also a special case of more general questions introduced and studied
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earlier by Voloshin [10]. (The edge-coloring version is much more studied, where
it is called anti-Ramsey theory.)

Our focus here is on the case that H is a path. And specifically on the
maximum number of colors one can use on a graph and there not be a rainbow
path. For graph G, let ck(G) denote the maximum number of different colors
one can use without there being a rainbow Pk (meaning a path with k vertices),
where the coloring is not required to be proper. Let cpk(G) denote the maximum
number of colors with the additional constraint that adjacent vertices receive
different colors; that is, it is a proper coloring. Note that cpk(G) might not exist;
for example, it does not exist for the complete graph Kn where n ≥ k.

As noted above, the function c3(G) has already been studied. See for example
[4, 6, 7] and the references therein. The equivalent cp3(G) is uninteresting: the
only way a P3 can be properly colored without being rainbow is that the first
and third vertex have the same color; so such a coloring of G exists only when G
is bipartite. The parameter c4(G) is also briefly studied in [8].

We proceed as follows. In Section 2 we consider the colorings of paths and
determine when the extremal colorings are unique. In Section 3 we show that the
minimum value of c4(T ) and cp4(T ) for trees of order n is (n+2)/2, and the trees
with the minimum value of cp4(T ) are precisely the coronas. In Section 4 we show
that the minimum value of c5(T ) and cp5(T ) for trees of order n is (n+3)/2, and
the trees with the minimum value of either parameter are octopuses. In Section 5
we conclude with brief thoughts for future research.

2. Colorings Paths Without Rainbow Paths

We begin with the calculation of the parameters for paths and determining when
the optimal coloring is unique. There has been previous work. Observation 19
of [9] considered the problem of coloring the path such that there is no specified
rainbow subpath and no three consecutive vertices receive the same color; since
the optimal coloring without a rainbow path clearly does not have three consec-
utive vertices of the same color, the formula given there applies to ck(Pn). The
same formula can also be read out of the results on mixed interval hypergraphs
in [5]. For proper colorings, the special case of cp4(Pn) was resolved in [8]. Never-
theless, we include proofs of all formulas, since this proof enables us to determine
when the extremal coloring is unique.

For a graph G and vertex w, we define the operation of attaching a Pm as
adding a copy of Pm and joining one end of the Pm to w. See Figure 1 for an
example. We will need the following lemma, which is possibly interesting in its
own right.
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Figure 1. Attaching a P3.

Lemma 1. (a) Assume k ≥ 2. For any graph G and vertex w, if graph G1 is
obtained from G by attaching Pk−1 to w, then ck(G1) = ck(G) + k − 2.

(b) Assume k ≥ 3. For any graph G and end-vertex w (that is, a vertex of degree
1), if graph G2 is obtained from G by attaching Pk−2 to w, then cpk(G2) =
cpk(G) + k − 3.

Proof. (a) Let X denote the attached Pk−1. It cannot happen that every vertex
in X gets its own unique color, since that creates a rainbow Pk with w. On the
other hand, any coloring of G is extendable to G1 by giving the first vertex of X
the same color as w and giving the remaining k− 2 vertices of X each their own
unique color. This proves the formula.

(b) Let Y denote the attached Pk−2. It cannot happen that every vertex
in Y gets its own unique color, since that creates a rainbow Pk with w and w’s
neighbor in G (which necessarily have different colors). On the other hand, any
coloring of G is extendable to G2 by giving the first vertex of Y the same color
as w’s neighbor in G, and giving the remaining k−3 vertices of Y each their own
unique color. This proves the formula.

Note that part (b) of Lemma 1 does not generalize to all w: for example,
if G = K3 then cp4(G) = 3 but cp4(G2) = 3 too. (It is of course true that
cpk(G2) ≤ cpk(G) + k− 3 for all w.) Lemma 1 enables us to prove the following.

Theorem 2. Let k ≥ 2.

(a) For n ≥ 1 it holds that ck(Pn) = ⌊(k − 2)n/(k − 1)⌋+ 1.

(b) For n ≥ k − 1 the optimal coloring is unique exactly when n is a multiple of
k − 1.

Proof. (a) For fixed k we prove the bound by induction on n. For the base case,
note that the formula gives n for n ≤ k−1, which is correct. For n ≥ k, the above
lemma implies that ck(Pn) = ck(Pn−k+1)+k−2, and so the formula follows from
the inductive hypothesis. For example, for P11 without rainbow P5, an optimal
coloring uses nine colors such as

12344567789.

(b) Uniqueness also follows by induction. The base case is the range k− 1 ≤
n ≤ 2k−3. For n = k−1 the optimal coloring is rainbow. Otherwise the optimal
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coloring has all vertices but two having their own color. Such a coloring is valid
if and only if the two vertices with the same color are contained in positions
n− k + 1 through k, and thus the coloring is not unique. So assume n ≥ 2k − 2.

To have equality in the bound, by the recurrence it follows that the coloring of
Pn−k+1 must be optimal. On the other hand, any coloring of Pn−k+1 is extendable
to Pn by duplicating the color of the last vertex of Pn−k+1 and then giving the
remaining k−2 vertices of X each their own color. Hence for the optimal coloring
of Pn to be unique, so must the optimal coloring of Pn−k+1 and thus by the
induction hypothesis the divisibility condition is necessary. To show that the
condition is also sufficient, note that when the coloring of Pn−k+1 is unique, its
last k− 1 vertices have different colors. So the only way to get k− 2 colors on X
is as described before: the first vertex of X must have the same color as the last
vertex of the Pn−k+1. It follows that the optimal coloring of Pn is unique.

Theorem 3. Let k ≥ 3.

(a) For n ≥ 2 it holds that cpk(Pn) = ⌊((k − 3)n+ 1)/(k − 2)⌋+ 1.

(b) For n ≥ k − 1 the optimal coloring is unique exactly when n is 1 more than
a multiple of k − 2.

Proof. (a) For fixed k we prove the bound by induction on n. For the base case,
note that the formula gives n for n ≤ k − 1, which is correct. For n ≥ k, the
above lemma implies that cpk(Pn) = cpk(Pn−k+2) + k − 3, and so the formula
follows from the induction hypothesis. For example, for P11 without rainbow P5,
the optimal proper coloring uses eight colors such as

12343565787.

(b) Uniqueness also follows by induction. The base case is the range k− 1 ≤
n ≤ 2k−4. For n = k−1 the optimal coloring is rainbow. Otherwise the optimal
coloring has all vertices but two having their own color. Such a coloring is valid
if and only if the two vertices with the same color are contained in positions
n− k + 1 through k, and thus the coloring is not unique. So assume n ≥ 2k − 3.

To have equality in the bound, by the recurrence it follows that the coloring of
Pn−k+2 must be optimal. On the other hand, any coloring of Pn−k+2 is extendable
to Pn by duplicating the color of the penultimate vertex and then giving the
remaining k−3 vertices of Y each their own color. Hence for the coloring of Pn to
be unique, so must the coloring of Pn−k+2, and so by the induction hypothesis the
divisibility condition is necessary. To show that the condition is also sufficient,
note that when the coloring of Pn−k+2 is unique, its last k − 1 vertices have
different colors. So the only way to get k − 3 colors on Y is as described before:
the first vertex of Y must have the same color as the penultimate vertex of the
Pn−k+2. It follows that the optimal coloring of Pn is unique.
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One can also derive the formula for ck(Pn) using the fact that, in trees,
the parameter is intimately related to the minimum number of edges one must
remove to destroy all copies of Pk. ForH a fixed graph, define a set F of edges in a
graph G as H-thwarting if removing all of F from the graph G destroys all copies
of H. The H-thwarting number, θH(G), is the minimum number of edges whose
removal destroys all copies of H. In a coloring, we call an edge monochromatic
if its two ends have the same color. Note that if the monochromatic edges form
a H-thwarting set, then every H contains a monochromatic edge and hence the
coloring is valid, that is, has no rainbow H. Hence in general graphs G there is
the inequality cH(G) ≥ n− θH(G), where cH(G) denotes the maximum number
of colors in a coloring of G without a rainbow copy of H. Theorem 16 in the
paper [7] showed that in trees there is equality.

Theorem 4 [7]. In any tree T of order n, it holds that cH(T ) = n− θH(T ).

3. Coloring Trees without a Rainbow P4

A general lower bound for bipartite graphs in the P4 case was obtained in [8].
Namely, it was observed that in a bipartite graph with bipartition (X,Y ), if one
gives each vertex in X its own unique color and gives all the vertices in Y the
same color, the result is a valid proper coloring: every copy of P4 has two vertices
from Y . Since the bigger partite set has at least half the vertices, it follows that.

Theorem 5 [8]. For any connected bipartite graph G on n ≥ 2 vertices it holds
that

c4(G) ≥ cp4(G) ≥ ⌈n/2⌉+ 1.

It was also noted in [8] that, if a graph G has a perfect matching, then
cp4(G) ≤ n/2 + 1. The value for paths given in Theorem 3 is thus recovered.

3.1. Trees with extremal c4

Perhaps surprisingly, the paths do not have the minimum value of c4(T ) for a
given order. Indeed we show that the trees T with the minimum value of c4(T )
are precisely the coronas. The corona of a graph is defined by taking the graph,
and for each vertex w adding one new vertex, called a foot, adjacent only to w.
(This doubles the number of vertices.) The original graph is called the core.
Figure 2 gives an example where the core is a tree (and the notched edges form
a minimum P4-thwarting set).

We will need the following lemma.

Lemma 6. If T is a tree with end-vertex y′, then there exists a minimum P4-
thwarting set that does not contain the edge incident with y′.
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Figure 2. A corona and a minimum P4-thwarting set.

Proof. Let F be a minimum thwarting set. Say y′ has neighbor y. Assume the
edge yy′ is in F . The minimality of F means that if we add yy′ to T − F , there
will be a P4, say y′yab, where only edge y′y is in F . It follows that every other
edge incident with y must be in F , else we have a P4 starting bay. So one can
change F by replacing y′y by ya and still have a minimum thwarting set of T .

Theorem 7. For a corona H derived from core tree B, it holds that c4(H) =
n/2 + 1, where n is the order of H.

Proof. It suffices to show that θP4(H) = n/2−1. Such a thwarting set is achieved
by taking all the edges in the core. It remains to show that there is no smaller
thwarting set.

We prove that θP4 ≥ n/2 − 1 by induction on the number of vertices of
the core graph. The base case of the induction is that B has one vertex. That
corresponds to H being K2; this has θP4 = 0. So assume B has at least two
vertices.

Consider a vertex x that is an end-vertex in B. Say its neighbor in B is y.
By Lemma 6, there is a minimum thwarting set F of H that does not contain
the edge joining y to its foot, say y′. It follows that some edge incident with x is
in F . Let H ′ be obtained from H by removing x and its foot neighbor. Then the
portion of F restricted to H ′ is a thwarting set of H ′, and hence by the induction
hypothesis, has size at least (n− 2)/2− 1. But F also contains an edge incident
with x, and so has size at least n/2− 1, as required.

We show next that coronas are the only examples of trees where c4 = n/2+1.
We will need the following lemma.

Lemma 8. If T is a corona, then there is a minimum P4-thwarting set that
contains any one designated leaf edge.

Proof. Assume the designated edge joins end-vertex y′ with neighbor y. Then
a thwarting set can be constructed by taking yy′ together with all edges of the
core, except for one incident with y. (See Figure 2 earlier.)
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Theorem 9. If T is a tree on n ≥ 2 vertices that is not a corona, then c4(T ) >
n/2 + 1.

Proof. By Theorem 5, we already know this for trees of odd order. So assume
that n is even. It suffices to show that θP4(T ) < n/2−1. The proof is by induction
on the diameter of T . If the diameter is 1 then n = 2 but the tree is a corona. If
the diameter is 2, then the tree is a star and θ4 = 0; so the result is true.

So assume the diameter of the non-corona tree T is at least 3. Then since
P4 is a corona, we know T is not P4 and hence n ≥ 6. Consider a longest
(diametrical) path Q in the tree. Say the path starts with vertices abcd.

Case 1. Vertex b has degree 2. Then T ′ = T − {a, b} is a tree. If T ′ is not
a corona, then θP4(T

′) < (n− 2)/2− 1 by the induction hypothesis, and we can
extend to a thwarting set of T by adding the edge bc.

So assume T ′ is a corona. Then since T is not a corona, it must be that
c is an end-vertex of T ′. At the same time, by Lemma 8, there is a minimum
thwarting set of T ′ (that is, of size (n− 2)/2− 1) that uses edge cd. This is also
a thwarting set of T .

Case 2. Vertex b has degree r > 2. Then by the maximality of the path Q,
every neighbor of b except c is an end-vertex. Let T ′ be the graph obtained
from T by deleting b and all its end-vertex neighbors. Note that T ′ is a tree. By
Theorem 5, it has a thwarting set of size at most (n− r)/2− 1. One can extend
that set to a thwarting set of T of size n/2− r/2 < n/2−1 by adding edge bc.

At the other extreme, the question of the maximum value of c4 is trivial,
since the value is n if and only of the graph does not contain a copy of P4. One
can also readily determine the trees where the value is n− 1. We define a multi-
corona as a graph that results from adding one or more feet to every vertex of a
base graph.

Theorem 10. For a tree T of order n containing P4, it holds that c4(T ) = n− 1
if and only if T is a subgraph of a multi-corona of P4.

Proof. Let U be a multi-corona of P4. It is immediate that the central edge of
U forms a thwarting set of U and of any subgraph of U that contains a P4.

On the other hand, consider a tree T with a thwarting set consisting of only
the edge ab. Then all copies of P4 in T contain the edge ab. Thus vertex a cannot
have two neighbors of degree more than 1, and if it does have a neighbor a′ of
degree more than 1, that vertex can only have end-vertex neighbors. Similarly b
has at most one neighbor b′ of degree more than 1. Thus T is a subgraph of a
multi-corona of a′abb′.
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3.2. Trees with minimum cp4

In contrast to the case for c4, it seems that there is no simple description of the
trees where cp4 = n/2+1. We have seen that this is true of paths. It is also true
for the double star Db, defined by taking two stars each with b end-vertices and
adding one edge joining the two centers c1 and c2. See Figure 3 for an example.

1

c1

2

c2

3

4

1

1

Figure 3. The double star D2 with cp4 = 4.

Lemma 11. For a double star Db it holds that cp4(Db) = b+ 2.

Proof. The lower bound follows from Theorem 5. Consider a valid coloring
of Db. Then the central vertices, say c1 and c2, receive different colors. Consider
some vertex with a third color; say vertex v adjacent to c1. Then by the vc1c2w
path, every vertex w adjacent to c2 must have either the color of v or the color
of c1; that is, not a new color. So the number of colors other than that of c1 and
c2 is at most the number of leaf-neighbors of c1, which is b. Hence the double-star
has cp4 = b+ 2.

We next show that, if T is a tree with cp4(T ) = |T |/2+1, then so is one with
K2 attached. We observed earlier that part (b) of Lemma 1 does not extend to
general attachers w. However, it turns out that it does extend if the underlying
graph is a tree, at least in the case k = 4.

We will need the following idea. For a coloring, define a vertex x as boring if
either (i) all neighbors of x have the same color, or (ii) all vertices at distance 2
from x have the same color as x, or both. For example, in the coloring of D2 in
Figure 3 every vertex is boring. We claim that in a tree T , one can choose an
optimal cp4-coloring such that every vertex is boring.

Lemma 12. If T is a tree, then there exists an optimal cp4-coloring such that
every vertex is boring.

Proof. Consider the optimal coloring of T with the most boring vertices, and
suppose there is a vertex x3 that is not boring. Then there is a vertex x1 at
distance 2 from x3 with a different color. Let x2 be their common neighbor. Say
x1 has color 1, x2 has color 2, and x3 has color 3. Further, there must be a
neighbor of x3, say x4, that has a color different from x2. Since x1x2x3x4 is not
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rainbow, vertex x4 must have color 1. Indeed, all neighbors of x3 must have color
1 or 2. Furthermore, all vertices at distance two must have color 1, 2, or 3. See
Figure 4 for an example.

1

x1

2

x2

3

x3

1

x4

3

y′

2

y

Sx1

Sy

Sy′

Figure 4. A possible coloring.

Now, we re-color the tree T . For each vertex y at distance 2 from x3, let Sy

be the subtree consisting of y and all vertices whose path to x3 goes via y. If
y has color 1, then in Sy change every vertex with color 1 to color 3, and vice
versa. If y has color 2, then in Sy change every vertex with color 2 to color 3, and
vice versa. One does not lose any color in the process, as x2x3x4 still contains all
three colors.

We claim that the new coloring is still a valid coloring. Every copy of P4

intersects at least one of the Sy subtrees. Within Sy only names of colors have
been changed and so there cannot now be a rainbow P4 contained within Sy.
Also, if w is the common neighbor of y and x3, then vertices with the same color
as w inside Sy did not change color, and so there cannot now be a rainbow P4

contained within Sy∪{w}. Further, since x3 and all vertices at distance two from
it now have color 3, any P4 containing both y and x3, or containing both y and
another vertex at distance two from x3, has two vertices of color 3, and so is not
now rainbow.

Finally, we note that x3 is now boring (since all vertices at distance 2 have
the same color), as are all its neighbors. Further, every other vertex that was
boring remains so. This re-coloring increases the number of boring vertices, and
so contradicts the choice of coloring. That is, the supposition that the coloring
had a vertex that is not boring is false.

Using Lemma 12 we can prove a result about attachments.

Lemma 13. For any nontrivial tree T and vertex w, let tree T2 be obtained from
T by attaching P2. Then cp4(T2) = cp4(T ) + 1.

Proof. We noted earlier that cp4(T2) ≤ cp4(T ) + 1, since the two new vertices
cannot both get a unique color. So it remains to find a suitable coloring.

By Lemma 12 there exists an optimal coloring of T where w is boring. We
color the P2 as follows. If all neighbors of w have the same color, say red, then
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color the first vertex of P2 red and give the other vertex a new color. If all vertices
at distance 2 from w have the same color as w, say blue, then give the first vertex
of P2 a new color and color the other vertex blue. In either case the result is a
valid coloring.

But there are many other trees T with cp4(T ) = |T |/2 + 1. Figure 5 shows
an example.

Figure 5. A tree with cp4(T ) = 6.

At the other extreme, the question of the maximum value of cp4 can also be
considered. Using Theorem 10 one can show.

Theorem 14. For a tree T of order n containing P4, it holds that cp4(T ) = n−1
if and only if T is a subgraph of a multi-corona of P3 whose middle vertex has
degree 2.

4. Coloring Trees Without a Rainbow P5

In this section we determine the trees with the minimum value of the parameters
for colorings without a rainbow P5.

Theorem 15. For a tree T of order n ≥ 3, it holds that c5(T ) ≥ cp5(T ) ≥
(n+ 3)/2, and this is best possible.

Proof. Since a coloring without a rainbow P4 also does not have a rainbow P5,
we know from Theorem 5 that cp5(T ) ≥ (n+ 2)/2. Thus it suffices to show that
achieving (n+ 2)/2 is not possible.

As noted in the lead-in to Theorem 5, one obtains a proper no-rainbow-P4

coloring in T by choosing one partite set X and giving every vertex in X its own
unique color while giving all vertices in the other partite set Y the same color.
So cp5(T ) ≥ cp4(T ) > n/2 + 1 unless both partite sets have size n/2. So assume
that is the case.

Choose some end-vertex y; say it is in Y . Then use the same coloring as
above, except that y also gets its own unique color. Then the total number of
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colors is n/2 + 2. Every P5 that contains y contains two other vertices of Y , and
hence remains not rainbow. That is, cp5(T ) > (n+ 2)/2.

The value in Theorem 15 is achieved by the octopus Ob produced by taking
the star with b edges and subdividing every edge. Figure 6 shows O5.

Figure 6. The octopus O5.

Lemma 16. For the octopus Ob with b ≥ 2, it holds that c5(Ob) = cp5(Ob) = b+2.

Proof. It is immediate that a minimum P5-thwarting set is obtained by taking
one edge from b − 1 of the arms; thus c5(Ob) = (2b + 1) − (b − 1) = b + 2. The
value of cp5(Ob) then follows by Theorem 15.

We conclude this section by showing that the octopus is the unique extremal
graph for both parameters.

Theorem 17. For odd n ≥ 5, the octopus is the unique tree T of order n with
cp5(T ) = (n+ 3)/2 (and hence unique for c5 too).

Proof. It is immediate that the only tree of order 5 with cp5(T ) < n is P5

itself (which is the same as O2). So assume the tree T has odd order n ≥ 7 with
bipartition (X,Y ) where |X| > |Y |. It is immediate that T is not a star. As noted
in the proof of Theorem 15, if there is an end-vertex in Y then cp5(T ) ≥ |X|+2.
It follows that all end-vertices of T must be in X. In particular, the diameter is
at least four.

Consider a longest path in T , say starting abcde. Let A1 denote the neighbors
of c other than d, and let A2 denote the vertices at distance two from c whose
path to d goes via c. Since all end-vertices of T are in X, no vertex of A1 is
an end-vertex, and so |A2| ≥ |A1|. Let T ′ = T − (A1 ∪ A2). Note that c is an
end-vertex in tree T ′. Any valid coloring of T ′ can be extended to one of T by
giving each vertex of A1 the color of vertex d, and giving each vertex of A2 its
own unique color. Hence cp5(T ) ≥ cp5(T

′) + |A2|.
It follows that cp5(T ) > (n+ 3)/2, unless cp5(T

′) = (|T ′|+ 3)/2 and |A1| =
|A2|. Suppose that T ′ has at least five vertices. Then, by the inductive hypothesis,
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the subtree T ′ is an octopus with center e while vertex c is an end-vertex thereof.
But such a graph has cp5 ≥ (n+5)/2: give every vertex of X its own unique color
except that c and e share colors, give d its own unique color, all other neighbors
of c share one color, and all other neighbors of e share another color. The number
of colors used is (|X|−1)+3, a contradiction. Hence in fact T ′ has order 3. Since
c is an end-vertex of T ′, it follows that T is an octopus.

5. Conclusion

For future work, one open question is to determine all trees with the minimum
value of cp4. It would also be of interest to consider bounds for other graph fam-
ilies, such as planar graphs or regular graphs; for example, in [8] it is conjectured
that cp4(G) ≤ n/2 + 1 for every connected cubic graph G of order n. And, of
course, it would also be worthwhile to establish analogous bounds for ck and cpk
for larger k.
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