DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2023): 0.5

5-year Journal Impact Factor (2023): 0.6

CiteScore (2023): 2.2

SNIP (2023): 0.681

Discussiones Mathematicae Graph Theory

Article in press


Authors:

S. Koizumi

Shohei Koizumi

Graduate School of Science and Technology

Niigata University

8050 Ikarashi 2-no-cho, Nishi-ku, Niigata, 950-2181, Japan}

email: s-koizumi@m.sc.niigata-u.ac.jp

Y. Suzuki

Yusuke Suzuki

Tsuruoka National College of Technology, Tsuruoka, Yamagat

email: y-suzuki@math.sc.niigata-u.ac.jp

Title:

The matching extendability of optimal $1$-embedded graphs on the projective plane

PDF

Source:

Discussiones Mathematicae Graph Theory

Received: 2024-05-20 , Revised: 2025-01-15 , Accepted: 2025-01-15 , Available online: 2025-02-25 , https://doi.org/10.7151/dmgt.2581

Abstract:

In this paper, we discuss matching extendability of optimal $1$-projective plane graphs (abbreviated as O1PPG), which are drawn on the projective plane $P^2$ so that every edge crosses another edge at most once, and have $n$ vertices and exactly $4n- 4$ edges. We first show that every O1PPG of even order is $1$-extendable. Next, we characterize $2$-extendable O1PPG's in terms of a separating cycle consisting of only non-crossing edges. Moreover, we characterize O1PPG's having connectivity exactly $5$. Using the characterization, we further identify three independent edges in those graphs that are not extendable.

Keywords:

$1$-embeddable graph, projective plane, perfect matching

References:

  1. R.E.L. Aldred, K.-i. Kawarabayashi and M.D. Plummer, On the matching extendability of graphs in surfaces, J. Combin. Theory Ser. B 98 (2008) 105–115.
    https://doi.org/10.1016/j.jctb.2007.06.001
  2. R.E.L. Aldred and M.D. Plummer, Proximity thresholds for matching extension in planar and projective planar triangulations, J. Graph Theory 67 (2011) 38–46.
    https://doi.org/10.1002/jgt.20511
  3. J. Fujisawa, K. Segawa and Y. Suzuki, The matching extendability of optimal $1$-planar graphs, Graphs Combin. 34 (2018) 1089–1099.
    https://doi.org/10.1007/s00373-018-1932-6
  4. K.-i. Kawarabayashi, S. Negami, M.D. Plummer and Y. Suzuki, The $2$-extendability of $5$-connected graphs on surfaces with large representativity, J. Combin. Theory Ser. B 101 (2011) 206–213.
    https://doi.org/10.1016/j.jctb.2011.02.001
  5. K.-i. Kawarabayashi and K. Ozeki, $4$-connected projective-planar graphs are Hamiltonian-connected, J. Combin. Theory Ser. B 112 (2015) 36–69.
    https://doi.org/10.1016/j.jctb.2014.11.006
  6. S.G. Kobourov, G. Liotta and F. Montecchiani, An annotated bibliography on $1$-planarity, Comput. Sci. Rev. 25 (2017) 49–67.
    https://doi.org/10.1016/j.cosrev.2017.06.002
  7. T. Nagasawa, K. Noguchi and Y. Suzuki, Optimal $1$-embedded graphs on the projective plane which triangulate other surfaces, J. Nonlinear Convex Anal. 19 (2018) 1759–1770.
  8. A. Nakamoto, Triangulations and Quadrangulations of Surfaces (Ph.D Thesis, Keio University, 1996).
  9. C.St.J.A. Nash-Williams, Unexplored and semi-explored territories in graph theory, in: New Directions in Graph Theory, F. Harary (Ed(s)), (Academic Press, New York 1973) 149–186.
  10. K. Noguchi and Y. Suzuki, Relationship among triangulations, quadrangulations and optimal $1$-planar graphs, Graphs Combin. 31 (2015) 1965–1972.
    https://doi.org/10.1007/s00373-015-1568-8
  11. M.D. Plummer, A theorem on matchings in the plane, Ann. Discrete Math. 41 (1988) 347–354.
    https://doi.org/10.1016/S0167-5060(08)70473-4
  12. M.D. Plummer, Extending matchings in planar graphs IV, Discrete Math. 109 (1992) 207–219.
    https://doi.org/10.1016/0012-365X(92)90292-N
  13. M.D. Plummer, Recent progress in matching extension, in: Building Bridges, Bolyai Soc. Math. Stud. 19, M.Grőtschel, G.O.H. Katona and G. Sági (Ed(s)), (Springer, Berlin, Heidelberg 2008) 427–454.
    https://doi.org/10.1007/978-3-540-85221-6\_14
  14. G. Ringel, Ein Sechsfarbenproblem auf der Kugel, Abh. Math. Semin. Univ. Hambg. 29 (1965) 107–117.
    https://doi.org/10.1007/BF02996313
  15. Y. Suzuki, Generating polyhedral quadrangulations of the projective plane, Ars Math. Contemp. 19 (2019) 153–183.
    https://doi.org/10.26493/1855-3974.1195.c71
  16. Y. Suzuki, $1$-planar graphs, in: Beyond Planar Graphs, S.H. Hong and T. Tokuyama (Ed(s)), (Springer, Singapore 2020) 47–68.
    https://doi.org/10.1007/978-981-15-6533-5\_4

Close