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Abstract

In this paper, we discuss matching extendability of optimal 1-projective
plane graphs (abbreviated as O1PPG), which are drawn on the projective
plane P 2 so that every edge crosses another edge at most once, and have
n vertices and exactly 4n − 4 edges. We first show that every O1PPG of
even order is 1-extendable. Next, we characterize 2-extendable O1PPG’s in
terms of a separating cycle consisting of only non-crossing edges. Moreover,
we characterize O1PPG’s having connectivity exactly 5. Using the charac-
terization, we further identify three independent edges in those graphs that
are not extendable.

Keywords: 1-embeddable graph, projective plane, perfect matching.

2020 Mathematics Subject Classification: 05C10.

1. Introduction

Our graphs dealt in this paper are all finite, simple and connected. We denote
the vertex set and the edge set of a graph G by V (G) and E(G), respectively.
The order of G means the number of vetices of G. A cycle of length k is a k-cycle.
For a cycle C, an edge e ∈ E(G) such that V (e) ⊂ V (C) and e /∈ E(C) is called
a chord of C. A cycle C in G is separating if G− V (C) is a disconnected graph.
We denote the induced subgraph of a graph G by S ⊂ V (G) by G[S]. A set M
of edges of a graph G is a matching if no two edges of M share a vertex. Let M
be a matching of a graph G. Each vertex incident with an edge of M is covered
by M . The set of vertices covered by M is denoted by V (M). In particular, M
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is perfect if M covers all vertices of G; that is, V (G) = V (M). A matching M of
G is extendable if G has a perfect matching containing M . Moreover, a graph G
with at least 2k+2 vertices is k-extendable if any matching M in G with |M | = k
is extendable. Matching extendability has been widely studied in literature (e.g.,
see [13]). In particular, matching extendability of graphs on closed surfaces was
investigated in [1, 2, 4, 11]; for example, it was proven as a basic result that no
planar graph is 3-extendable.

A graph G is 1-embeddable on a closed surface F 2 if it can be drawn on F 2 so
that every edge of G crosses another edge at most once. The drawn image of G on
F 2 is a 1-embedded graph on F 2. (We implicitly consider good drawings, that is,
(i) vertices are on different points on the surface, (ii) no adjacent edges cross, (iii)
no three edges cross at the same point, and (iv) any non-adjacent edges do not
touch tangently.) The study of 1-planar graphs, which are 1-embeddable graphs
on the plane or the sphere, was first introduced by Ringel [14], and recently
developed in various points of view (see e.g., [6, 16]); the drawn image is called a
1-plane graph. It is known that if G is a 1-embedded graph on F 2 with at least
three vertices, then |E(G)| ≤ 4|V (G)| − 4χ(F 2) holds, where χ(F 2) stands for
the Euler characteristic of F 2 (see [7] for example). In particular, a 1-embedded
graph G on F 2 that satisfies the equality, that is |E(G)| = 4|V (G)| − 4χ(F 2), is
optimal . An edge in a 1-embedded graph G is crossing if it crosses another edge,
and non-crossing otherwise. Let G be an optimal 1-embedded graph on F 2, and
let W be a closed walk consisting of only non-crossing edges that bounds a 2-cell
D; where a 2-cell is homeomorphic to an open disc. If D contains an odd number
of vertices, then we call D an odd weighted region. In particular, if W is a cycle,
then W is a barrier cycle. A barrier cycle of length k is called a barrier k-cycle.

The matching extendability of 1-embedded graphs on F 2 was first addressed
in [3], and the authors proved that every optimal 1-plane graph (abbreviated as
O1PG) of even order is 1-extendable. Further in the same paper, they discussed
2-extendability of O1PG’s, and established the following theorem.

Theorem 1 (Fujisawa et al. [3]). An O1PG G of even order is 2-extendable
unless G contains a barrier 4-cycle.

Furthermore, they discussed extendable three edges in O1PG’s and obtained
the following result.

Theorem 2 (Fujisawa et al. [3]). Let G be a 5-connected O1PG of even order,

and M be a matching of G with |M | = 3. Then M is extendable unless G contains

a barrier 6-cycle C such that V (M) = V (C).

We extend the topic to graphs on non-spherical closed surfaces. In this paper,
we especially discuss matching extendability of optimal 1-embedded graphs on
the projective plane; we denote the projective plane by P 2 briefly. An optimal
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1-embedded graph on P 2 is also called an optimal 1-projective plane graph, and is
abbreviated as O1PPG. Note that every O1PPG has exactly 4|V (G)|−4 edges by
the equality above with χ(P 2) = 1. First, we discuss 1-extendability of O1PPG’s,
and show the following theorem, using Hamiltonian paths contained in those
graphs.

Theorem 3. Every O1PPG of even order is 1-extendable.

Next, we discuss 2-extendability, and prove the following theorem. The state-
ment looks similar to the spherical case, but we need to establish some lemmas
specific to the case of the projective plane.

Theorem 4. An O1PPG G of even order is 2-extendable if and only if G contains

a barrier 4-cycle.

The following corollary easily follows from Theorem 4.

Corollary 5. Any 5-connected O1PPG of even order is 2-extendable.

Every O1PPG G has a vertex with degree 6, since the average degree of G
is less than 8. (And since the minimum degree of G is at least 6, and every
optimal 1-embedded graph on a closed surface is Eulerian. We mention these
facts in Section 2.) Therefore, no O1PPG is 3-extendable; take three edges on
the 6-cycle induced by neighbors of a vertex of degree 6. The following theorem
characterizes three mutually independent edges that are not extendable in those
graphs.

Theorem 6. Let G be a 5-connected O1PPG of even order, and M be a matching

of G with |M | = 3. Then M is not extendable if and only if G has either

(i) an odd weighted region bounded by a closed walk W of length 6 such that

V (W ) \ V (M) = ∅, or (ii) a subgraph of Q(G) shown as (a), . . . , (f) or (g) in

Figure 1, each of whose face is an odd weighted region, where big gray vertices

are covered by M .

Note that each of (a), (b), . . . , (f) and (g) represents a graph on P 2. To obtain
the projective plane P 2, identify each antipodal pair of points of the hexagon or
the octagon in the figure. (Similarly, carry out the same identification for regular
polygons or dashed-circles in other figures in the paper to obtain P 2.) For example
(a) is a graph on P 2 that has seven vertices and nine edges.

This paper is organized as follows. In the next section, we first define termi-
nology used in the paper, and discuss the fundamental results hold for optimal
1-embedded graphs on general closed surfaces. Next, we discuss connectivity of
O1PPG’s and separating short cycles in underlying quadrangulation consisting of
non-crossing edges in Section 3. Furthermore, we characterize O1PPG’s having
connectivity exactly 5 in the section; note that there is no O1PG (on the sphere)
having connectivity exactly 5. In Section 4, we discuss extendability of O1PPG’s,
and prove our main theorems.
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(a) (b) (c)

(d) (e) (f) (g)

Figure 1. Specified subgraphs in Q(G) in Theorem 6.

2. Preliminaries and Basic Results

A vertex set S of a connected graph G is a cut if G−S has at least two connected
components. A cut S of G is minimal if any proper subset of S is not a cut of
G. For a cut S of G, if |S| = k, then we call S a k-cut of G. We denote
the number of connected components of G − S for S ⊂ V (G) by C(G − S).
In particular, the number of odd components (respectively, even components),
i.e., connected components having odd (respectively, even) number of vertices, is
denoted by Co(G − S) (respectively, Ce(G − S)). That is, we have C(G − S) =
Co(G− S) + Ce(G− S).

Let G be a graph embedded on a closed surface F 2. Then a connected
component of F 2 − G, which is as a topological space, is a face of G, and we
denote the face set of G by F (G); that is, “a face” in this paper is not necessarily
homeomorphic to an (open) 2-cell. A boundary closed walk W of a face f is
a closed walk bounding f in G. (Actually, under our definition, the boundary
of a face might be a union of closed walks.) A k-gonal face or simply a k-face
means a face with boundary closed walk of length exactly k. If every face of G is
homeomorphic to a 2-cell, then G is a 2-cell embedding or 2-cell embedded graph

on F 2. Furthermore, a region bounded by a closed walk might contains some
vertices and edges in its interior in our latter argument; that is, a face is always
a region, but the converse does not hold in general.

A simple closed curve γ on a closed surface F 2 is trivial if γ bounds a 2-cell
on F 2, and essential otherwise. We apply these definition to cycles of graphs
embedded on F 2, regarding them as simple closed curves. A simple closed curve
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γ on a closed surface F 2 is surface separating if F 2−γ is disconnected as a topo-
logical space. We also apply the definition to cycles of graphs on F 2. Note that
every trivial closed curve on a closed surface is surface separating. In addition, it
is well-known that every surface separating simple closed curve on the sphere or
the projective plane is trivial. The following proposition is known in topological
graph theory, and is commonly used.

Proposition 7 (Nakamoto [8]). Let G be a graph embedded on a closed surface

F 2 so that each face is bounded by a closed walk of even length. Then the length

of two cycles in G have the same parity if they are homotopic to each other on

F 2. Furthermore, there is no surface separating odd cycle in G.

The representativity r(G) of a graph G embedded on a non-spherical closed
surface F 2 is the minimum number of crossing points of G and γ, where γ ranges
over all essential simple closed curves on F 2. A graph G embedded on F 2 is
k-representative if r(G) ≥ k. A graph G embedded on a non-spherical closed
surface F 2 is polyhedral if G is 3-connected and 3-representative. In particular,
a graph G embedded on the sphere is polyhedral if G is just 3-connected.

A quadrangulation (respectively, triangulation) is a simple 2-cell embedded
graph on a closed surface such that every face is a 4-face (respectively, 3-face). It
was shown in [7] that every simple optimal 1-embedded graph G on F 2 is obtained
from a polyhedral quadrangulation H by adding a pair of crossing edges in each
face of H. We call the quadrangulation H, which consists of all the non-crossing
edges of G, the quadrangular subgraph of G, and denote it by Q(G)(= H). By the
property above, degG(v) = 2 degH(v) for any v ∈ V (G), that is, G is Eulerian.
For a vertex v of an optimal 1-embedded graph G on F 2, the union of all the faces
(with boundaries) of Q(G) incident to v forms a disc D containing the unique
vertex v. We call the boundary cycle of D the link of v and denote it by LG(v);
observe that the boundary corresponds to a cycle since Q(G) is polyhedral.

Let F 2 be a closed surface. An arc in F 2 is the image of a continuous map
α : [0, 1] → F 2; we denote the image α([0, 1]) by α for brevity, if there is no
misunderstanding. The arc α joins its endpoints α(0) and α(1). Let G be an
optimal 1-embedded graph on F 2 and let H1 and H2 be connected subgraphs of
G. Then a subgraph K of Q(G) separates H1 and H2 on F 2 if V (K)∩V (Hi) = ∅
for each i ∈ {1, 2}, and any arc α on F 2 that joins x1 ∈ V (H1) and x2 ∈ V (H2)
has an intersection with K; i.e., α ∩K 6= ∅. Note that F 2 \K is disconnected as
a topological space.

Let G be an optimal 1-embedded graph on F 2 and let C(G) be the set of all
the crossing points of G. We obtain the associated graph G×, which is embedded
on F 2, from G by regarding every crossing point as a vertex of degree 4. (That
is, G× has V (G×) = V (G)∪C(G) and E(G×) = E(Q(G))∪{xz, yz |xy ∈ E(G) \
E(Q(G)), z ∈ C(G) ∩ xy}.) We call new vertices, which correspond to crossing
points of G, false vertices of G×. Note that G× is a triangulation of F 2.
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In the argument below, we often consider the induced subgraph of Q(G) by a
cut S of G, which is Q(G)[S] under our definition. However, when the underlying
graph G is clear, we use Q[S] in place of Q(G)[S], to simplify notation. In the
following four lemmas, we assume that G is an optimal 1-embedded graph on F 2,
and S ⊂ V (G) is a cut of G.

Lemma 8. Let D1, . . . , Dm (m ≥ 2) denote connected components of G − S.
Then any two connected components Di and Dj (i 6= j) are separated by Q[S].
That is, each face of Q[S] contains at most one connected component of G− S.

Proof. Suppose to the contrary that Q[S] does not separate connected compo-
nents Di and Dj (i 6= j) of G − S. Then there exists an arc α on F 2 such
that α ∩ Q[S] = ∅ and α joins x ∈ V (Di) and y ∈ V (Dj). Since the associated
graph G× of G is a triangulation of F 2 and α ∩ Q[S] = ∅, we can fix α so that
α∩G× ⊂ V (G×)\S. We may assume that α∩Dk = ∅ for any k 6= i, j; otherwise,
retake the closest Di and Dj . Since G× is a triangulation of F 2, there exists a
path P× in G× between x and y along α. Now assume that P× passes through
a false vertex z corresponding to a crossing point created by a pair of crossing
edges v0v2 and v1v3. If a 2-path vizvi+2 is contained in P×, then we replace it by
vivi+2, which is a crossing edge of G, where the indices are taken modulo 4. On
the other hand, if a 2-path vizvi+1 is contained in P×, then we replace it by a
non-crossing edge vivi+1 of G. We do the replacement above for all false vertices
contained in P×, and obtain a path P in G between x and y not containing any
vertex in S, a contradiction.

Now, we show the following lemma that mentions the minimum degree of
Q[S] for a minimal cut S of optimal 1-embedded graphs on closed surfaces.

Lemma 9. If S is minimal, then the minimum degree of Q[S] is at least 2.

Proof. Let v ∈ S, and let D1 and D2 be connected components of G− S. Since
S is minimal, G has edges vx1 and vx2 where xi ∈ V (Di) for each i ∈ {1, 2}.
Note that both x1 and x2 are on the link LG(v). Since LG(v) is a cycle, there
must be two vertices s1, s2 ∈ S ∩ V (LG(v)) which separate x1 and x2 in LG(v).
Since {s1, s2} separates x1 and x2 in G as well, we have {s1, s2} ⊆ NQ[S](v), and
we got our desired conclusion.

Lemma 10. If Q[S] has p faces such that the sum of the lengths of its boundary

walks is at least 2q ≥ 6, then the following inequalities hold.

(i) |E(Q[S])| ≥ 2|F (Q[S])|+ (q − 2)p,

(ii) |S| − χ(F 2) + (2− q)p ≥ |F (Q[S])|.
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Proof. Note that a face of Q[S] is not necessarily a 2-cell, and does not nec-
essarily have the unique boundary component. By Proposition 7, which actu-
ally holds for general boundaries of faces (that is, not restricted to cycles), the
sum of lengths of boundary walks of Q[S] is even. Thus, we have 2|E(Q[S])| ≥
4(|F (Q[S])| − p) + 2pq, and hence (i) in the theorem holds. Furthermore, by
combining Euler’s formula |S| − |E(Q[S])| + |F (Q[S])| ≥ χ(F 2), we can easily
obtain (ii) in the statement.

Lemma 11. If |S| ≤ Co(G− S) + 2k holds for some integer k, then we have the

following

2|F (Q[S])|+ 2k − χ(F 2) ≥ |E(Q[S])|.

Proof. By Lemma 8, |F (Q[S])| ≥ Co(G − S) ≥ |S| − 2k holds. Then by |S| −
|E(Q[S])|+ |F (Q[S])| ≥ χ(F 2), we obtain the inequality in the statement.

3. Minimal Cuts and Subgraphs in Q(G)

In this section, we describe properties of induced subgraphs by minimal cuts in
O1PPG’s. First of all, we show 4-connectedness of O1PPG’s as follows.

Theorem 12. Every O1PPG G is 4-connected. Furthermore, if G has a 4-cut
S, then Q[S] contains a separating trivial 4-cycle of G.

Proof. In [10], it was proven that every quadrangulation G on a closed surface
with |V (G)| ≥ 6 can be extended to a 4-connected triangulation by adding a
diagonal edge in every face of G. Furthermore, it was shown in [15] that every
O1PPG has at least nine vertices. Combining the results above, we obtain the
former half of the statement of the theorem.

Next, we discuss the latter half of the statement. Let S be a 4-cut of G,
and first assume that Q[S] is not a 2-cell embedding; note that Q[S] is bipartite.
Since Q[S] has at least two faces by Lemma 8, Q[S] contains a cycle C. Then
|C| = 4 and C does not have any chord; otherwise Q[S] would have a trivial cycle
of length 3, a contradiction to that Q[S] is bipartite. In this case, Q[S] is just a
4-cycle, and has exactly two faces, one of which is a 2-cell and the other of which
contains a cross cap. Each face contains exactly one connected component by
Lemma 8, and we have our desired trivial 4-cycle in Q[S].

Secondly, we assume that Q[S] is a 2-cell embedding. By Euler’s formula
4 − |E(Q(S))| + |F (Q[S])| = 1, |E(Q[S])| is either 5 or 6 since |F (Q[S])| ≥ 2
by Lemma 8. In the case when |E(Q[S])| = 6, Q[S] ∼= K4, and it is known
that K4 is uniquely embedded on P 2 such that each face is bounded by a closed
walk of even length, which is actually a cycle of length 4. On the other hand,
if |E(Q[S])| = 5, then Q[S] has exactly two faces, one of which is bounded by a
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4-cycle and the other of which is bounded by a closed walk of length 6; note that
the sum of the lengths of boundary walks must be 2|E(Q[S])| = 10. Observe that
in the embedding of Q[S] above, any 3-cycle must be essential. (Therefore, the
embedding of Q[S] is uniquely determined.) In either case, we have our desired
trivial 4-cycle in Q[S] by Lemma 8.

Next, we present some facts holding for 5-connected O1PPG’s.

Lemma 13. Let G be a 5-connected O1PPG, and let S be a minimal cut with

|S| ∈ {5, 6}. Then the followings hold.

(i) |E(Q[S])| ≥ 2|F (Q[S])|+ 2.

(ii) If Q[S] is not a 2-cell embedding, then |S| = 6. Furthermore, Q[S] is a

trivial 6-cycle.

(iii) If |S| = 6, then Q[S] has a 2-cell face bounded by a 6-cycle.

Proof. The inequality (i) easily follows from (i) of Lemma 10 with p ≥ 2 and
q ≥ 3 since C(G − S) ≥ 2, and since G is 5-connected. Next, assume that Q[S]
is not a 2-cell embedding. Then Q[S] is a bipartite graph. If |S| = 5, then
Q[S] ∼= K2,3 by Lemma 9. This Q[S] is embedded on P 2 having three 4-faces;
observe that exactly one of them is not a 2-cell face. By Lemma 8, at least two
faces above contain vertices of G, and G would have a 4-cut, a contradiction.
Thus assume that |S| = 6. In this case, either Q[S] ∼= K2,4 or Q[S] contains
a 6-cycle. In the former case, there exists a 4-face containing a vertex of G, a
contradiction; similar to the case when |S| = 5. Hence Q[S] contains a 6-cycle
C. Under the condition, C has at most two chords since Q[S] is a planar graph.
However, in any case, Q[S] has at most one k-face with k ≥ 6, contradicting
Lemma 8. Thus (ii) in the statement holds.

Finally, we discuss (iii), and assume that |S| = 6. We may assume that Q[S]
is a 2-cell embedding by the result (ii) above. Suppose that G has no k-face
with k = 6. Then Q[S] has at least two faces bounded by closed walks of length
at least 8 by Lemma 8. By (ii) of Lemma 10 with p ≥ 2 and q ≥ 4, we have
1 ≥ |F (Q[S])|, contradicting |F (Q[S])| ≥ 2. Thus Q[S] has a 6-face f bounded
by a closed walk W . Since Q[S] has no chord inside f , f contains a vertex of
G. If W is not a cycle, then it is contrary to S being a minimal cut. Thus (iii)
holds.

Next, see Figure 2. We call the graph embedded on P 2 as shown in the figure
a projective-bowtie. Note that the projective-bowtie has five vertices, six edges
and two faces bounded by closed walks of length 6. Actually, in [3], it was proven
that every 5-connected O1PG G is 6-connected. That is, there is no O1PG having
connectivity exactly 5. The next lemma (and the theorem) illustrates a distinct
property for O1PPG’s, in contrast to the aforementioned fact for O1PG’s.
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p1

p1

p2 p3

p2p3

p4

p5
f1

Figure 2. Projective-bowtie.

Lemma 14. Let G be a 5-connected O1PPG, and let S be a 5-cut of G. Then

Q[S] is a projective-bowtie.

Proof. Let S = {p1, . . . , p5} be a 5-cut of G; clearly, S is minimal. By (ii) of
Lemma 13, we may assume that Q[S] is a 2-cell embedding. It easily follows
from (i) of Lemma 13 that |E(Q[S])| ≥ 6 by |F (Q[S])| ≥ 2. By substituting the
term of the number of faces in Euler’s formula 5 − |E(Q[S])| + |F (Q[S])| = 1
for (i) in Lemma 13, we have |E(Q[S])| ≤ 6. Consequently, |E(Q[S])| = 6, and
further |F (Q[S])| = 2 holds. This implies that Q[S] has exactly two 6-gonal
faces denoted by f1 and f2 by Lemma 8. Note that fi is not bounded by a cycle
for each i ∈ {1, 2}. That is, there exists a vertex of S, say p1 without loss of
generality, which appears on the boundary closed walk of f1, denoted by W1, at
least twice. If the distance between two p1’s on W1 is at most 2, then either Q[S]
is not simple or Q[S] has a vertex of degree 1, contradicting Lemma 9.

Thus we may assume that f1 is bounded by a closed walk W = p1xyp1zwp1
where {x, y, z, w} ⊆ {p2, . . . , p5} without loss of generality. Observe that the 3-
cycle p1xyp1 is essential on P 2 by Proposition 7. Under the condition, if x = z,
then there exists a 2-cell region bounded by a 4-cycle p1wxyp1. Since |V (Q[S])| =
5 and |E(Q[S])| = 6, one of the two regions contains the unique inner vertex and
the unique inner edge of Q[S], contradicting Lemma 9. Therefore, x, y, z and w
are distinct vertices, and hence we may assume that W = p1p2p3p1p4p5p1. Now,
all the edges of Q[S] appeared, and the outside region actually corresponds to
the second face f2 of Q[S]. That is, Q[S] is the projective-bowtie.

Theorem 15. Let G be a 5-connected O1PPG. Then G is 6-connected if and

only if Q(G) does not contain a projective-bowtie as a subgraph.

Proof. First, we prove the necessity. Assume that Q(G) contains a projective-
bowtie H with V (H) = {p1, p2, p3, p4, p5} as shown in Figure 2, where one face of
H, say f1, is bounded by a closed walk W = p1p2p3p1p4p5p1. Suppose that the
region R1, which corresponds to f1, does not contain any vertex of G. Then there
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exists a non-crossing edge p2p4 or p3p5 of G in R1; now say p2p4, up to symmetry.
Then there exists a crossing edge p1p2, which crosses p3p4 in R1, contrary to G
being simple. Hence each face of H contains a vertex of G. Then V (H) is a 5-cut
of G, that is, G is not 6-connected. The sufficiency immediately follows from
Lemma 14.

The following lemma describes the shape of Q[S] for a minimal 6-cut S of a
5-connected O1PPG. Note that in Figure 3, antipodal points of each dashed disk
are identified to obtain P 2, as we mentioned in the introduction.

Lemma 16. Let G be a 5-connected O1PPG and S be a minimal 6-cut of G.

Then Q[S] is one of (I), (II), (III) and (IV) as shown in Figure 3.

(I) (II) (III) (IV)

Figure 3. Q[S] obtained by a minimal 6-cut S.

Proof. By (iii) in Lemma 13, Q[S] has a 2-cell face f bounded by a cycle C
of length 6. By categorizing based on the number of cords of C outside f , we
obtain (I), (II), (III) and (IV) in Figure 3. Note that by Lemma 8, Q[S] has at
least two faces bounded by closed walks with length at least 6. Further, consider
Proposition 7.

4. Proof of the Main Theorems

The following famous result plays an important role in the proof of Theorem 3.

Theorem 17 (Kawarabayashi and Ozeki [5]). Every 4-connected graph embedded

on P 2 is Hamilton-connected.

Now, we prove our first main result in the paper.

Proof of Theorem 3. Let G be an O1PPG, and let e = uv be an edge of
G. By the result in [10] as mentioned in the proof of Theorem 12, G has a
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4-connected triangulation T as a spanning subgraph. Then T has a Hamilto-
nian path P = x1x2 · · ·x|V (G)|, where u = x1 and v = x|V (G)| by Theorem 17.
In G, {x2x3, x4x5, . . . , x|V (G)|−2x|V (G)|−1, x|V (G)|x1} is a perfect matching that
contains e.

Actually, the following lemma is a generalization of Lemma 2.3 in [12] that
is often used in matching theory; in particular, if k = 1, then S in the lemma is
called an {e1, e2}-blocker .

Lemma 18 (Fujisawa et al. [3]). Let G be a k-extendable graph and {e1, . . . , ek+1}
be a matching of G which is not extendable. Then there exists S ⊆ V (G) such

that

(i) S ⊃
⋃k+1

i=1 V (ei) and

(ii) |S| = Co(G− S) + 2k.

In the remaining part of the section, we prove the following two main results
using tools proven in the previous section.

Proof of Theorem 4. The necessity is trivial and hence we prove the suffi-
ciency of the statement. Let G be an O1PPG that is not 2-extendable, and
assume that e1 and e2 are independent edges of G that are not extendable. By
Theorem 3, G is 1-extendable, and hence there exists S ⊂ V (G) that satisfies (i)
and (ii) of Lemma 18 for k = 1; for e1 and e2. Now we consider Q[S] on P 2.
By (i) of Lemma 10 with p = 0, we have |E(Q[S])| ≥ 2|F (Q[S])|. On the other
hand, by Lemma 11 with k = 1, we have 2|F (Q[S])| + 1 ≥ |E(Q[S])|. Thus,
either |E(Q[S])| = 2|F (Q[S])| or |E(Q[S])| = 2|F (Q[S])|+ 1 holds.

In the former case, every face of Q[S] is bounded by a 4-cycle, and at most
one of them contains a cross cap. That is, the other faces are all 2-cell, and by
Lemma 8, we can find an odd weighted face since G − S has at least two odd
components. In the latter case, the equality of Euler’s formula (in Lemma 11)
holds, and hence Q[S] is a 2-cell embedding. Furthermore, by the argument
above, Q[S] has the unique 6-gonal face and all the others are 4-gonal. Similarly,
we find our desired barrier cycle.

Proof of Theorem 6. First, we show the necessity. If a 5-connected O1PPG
G has (i) in the statement, then G− V (M) has an odd component, where M is
the set of specified three independent edges. On the other hand, if G has (ii) in
the statement, then G − V (M) has a cut vertex v such that G − (V (M) ∪ {v})
has exactly three odd components. In either case, G − V (M) does not have a
perfect matching.

Next, we discuss the sufficiency. Assume that M is a matching of a 5-
connected O1PPG G with |M | = 3 that is not extendable. By Corollary 5,



12 S. Koizumi and Y. Suzuki

G is 2-extendable. Hence there exists S ⊂ V (G) which satisfies (i) and (ii) of
Lemma 18 for k = 2. Note that (i) of Lemma 18 implies |S| ≥ 6.

First, we show that |S| ≤ 7. Suppose to the contrary that |S| ≥ 8. Then
Co(G − S) ≥ 4 by (ii) of Lemma 18, and hence Q[S] has at least four faces
bounded by a closed walk with length at least 6 by Lemma 8. Hence we obtain
|E(Q[S])| ≥ 2|F (Q[S])| + 4 by (i) of Lemma 10 with p ≥ 4 and q ≥ 3. On
the other hand, we have 2|F (Q[S])| + 3 ≥ |E(Q[S])| by Lemma 11 and (ii) of
Lemma 18, a contradiction. Therefore, we have |S| ∈ {6, 7}. We will now divide
the proof into the following two cases.

Case (α). There exists a connected component D of G − S having exactly
five neighbors in S. Let S′ ⊂ S denote the set of five neighbors of D. Then Q[S′]
is the projective-bowtie by Lemma 14. If S′ ⊂ V (M), then G contains a region
that satisfies (i) in the statement. Thus we assume that S′ \ V (M) 6= ∅. Under
the situation, note that we have |S| = 7; we have Co(G− S) = 3 by Lemma 18.
Then, by (ii) of Lemma 10 with q = 3 and p = 3, we have |F (Q[S])| ≤ 3, and
hence |F (Q[S])| = 3. This means that the equality of (ii) of Lemma 10 holds,
and hence Q[S] has exactly three 6-gonal faces. Note that |E(Q[S])| = 9 by (i)
of Lemma 10 and Lemma 11, and that Ce(G− S) = 0 by Lemma 8.

Now we put S\S′ = {x, y}. Observe that Q[S′], which is a projective-bowtie,
has exactly six edges. By Lemma 9, and since |E(Q[S]) \E(Q[S′])| = 3, we have
degQ[S](x) = degQ[S](y) = 2, and this implies that s1xys2 is a path of length 3,
where s1, s2 ∈ S′. Since Q[S] has exactly three 6-gonal faces by the argument
above, Q[S] is a graph shown as (1) or (2) in Figure 4, up to homeomorphism.
Finally, we consider one vertex z ∈ S \ V (M). If degQ[S](z) = 2, then Q[S] has
a region that satisfies (i) in the statement. Thus degQ[S](z) ≥ 3, and hence Q[S]
with big gray vertices of V (M) is (a), (b) or (c) in Figure 1.

(1) (2) (3) (4)

Figure 4. Q[S] in the case of |S| = 7.

Case (β). There exists no connected component of G − S having exactly
five neighbors in S. First, assume that |S| = 6, that is, S = V (M). Then by
Lemma 18, Co(G− S) = 2. By the hypothesis of Case (β), S is a minimal 6-cut
of G. By Lemma 16, Q[S] is one of (I), (II), (III) and (IV) shown in Figure 3.
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Then Q[S] contains a region that satisfies (i) in the statement.

Next, assume that |S| = 7. By Lemma 18, Co(G−S) = 3. Then by the same
argument as in Case (α), we have |F (Q[S])| = 3 and |E(Q[S])| = 9; observe that
the equality in (ii) of Lemma 10 holds, and hence Q[S] is a 2-cell embedding.
Let f1, f2 and f3 denote the three faces of Q[S], each of which is a 6-gonal face.
Then, fi contains exactly one odd component of G − S for each i ∈ {1, 2, 3} by
Lemma 8. Note that fi is bounded by a 6-cycle for each i ∈ {1, 2, 3}; otherwise,
there would be an odd component satisfying the condition of Case (α).

Let C denote the boundary 6-cycle of f1, and put S′ = V (C). Then Q[S′]
is (I), (II), (III) or (IV) in Figure 3 by Lemma 16, up to homeomorphism. Here,
denote the unique vertex in S \ S′ by v. If Q[S′] is (I) of Figure 3, then v is
adjacent to exactly three vertices of S′ since |E(Q[S]) \E(Q[S′])| = 3. Although
degQ[S](v) = 3, only f2 and f3 can be incident to v. That is, v appears twice
on the boundary closed walk of either f2 or f3, contradicting that every face of
Q[S] is bounded by a cycle. Moreover, (IV) of Figure 3 is not the case, since v is
adjacent to exactly one vertex of V (C), contradicting Lemma 9.

Therefore Q[S′] is either (II) or (III) of Figure 3. Observe that (II) is bipartite
and (III) is non-bipartite. By Proposition 7, if Q[S′] is (II) (respectively, (III)),
then f2 and f3 also have configurations (II) (respectively, (III)). See Figure 5. The
center configuration illustrates (II) in an alternative form. There are exactly two
ways, up to symmetry, to add v inside the unique 8-gonal face such that deg(v) =
2 and the 8-gonal face is divided into two 6-gonal faces; see the left-hand side
one and the right-hand side one in the figure. However, the configuration on the
right-hand side has multiple edges incident to v, a contradiction. Therefore, Q[S]
corresponds to the configuration on the left-hand side, which is (3) in Figure 4.
Similarly, (4) is derived from (III); the cases that do not lead to (4) contradict
our assumptions. Finally, we specify a small black vertex, which is not in V (M)
as well as Case (α), and obtain (d), (e), (f) and (g) in Figure 1.

(II)

f1

(3)

v vf1 f1

Figure 5. Adding v of degree 2 inside the 8-gonal region.
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5. Remarks

In this paper, we have discussed matching extendability of O1PPG’s. Then, how
about for optimal 1-embedded graphs on the torus (or the Klein bottle)? We
are aware that the situation changes significantly, particularly in contrast to the
discussion on the sphere and the projective plane. At least, there exist optimal
1-embedded graphs on the torus that are not 1-extendable. (Consider an optimal
1-embedded graph G on the torus such that Q(G) has a subgraph H that is also
a quadrangulation of the torus, and that every face of H is an odd weighted
region of G. Then every non-crossing edge of H is not extendable; observe that
|V (H)| = Co(G− V (H)).)

Moreover, every O1PG and every O1PPG is not 3-extendable since the graph
has a vertex of degree exactly 6. However, the property does not hold for optimal
1-embedded graphs on the torus (or the Klein bottle); there exists infinitely many
8-regular graphs whose quadrangular subgraphs are 4-regular. At the end of the
paper, we establish the following conjectures for those graphs:

Conjecture 19. Let G be an optimal 1-embedded graph on the torus or the

Klein bottle. If Q(G) has no quadrangulation as a subgraph each of whose face

corresponds to an odd weighted region of G, then G is 1-extendable.

Conjecture 20. Every 8-regular optimal 1-embedded graph on the torus or the

Klein bottle is 3-extendable.

Note that for 2-extendability, the statement for optimal 1-embedded graphs
on the torus and that for optimal 1-embedded graphs on the Klein bottle might
be substantially different; since the Klein bottle admits a separating simple closed
curve that is not trivial, which is known as an equator of the surface.
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