DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2023): 0.5

5-year Journal Impact Factor (2023): 0.6

CiteScore (2023): 2.2

SNIP (2023): 0.681

Discussiones Mathematicae Graph Theory

Article in press


Authors:

A.G. Luiz

Atílio Gomes Luiz

Universidade Federal do Ceará

email: gomes.atilio@gmail.com

0000-0002-6177-403X

F.A.S. Vieira

Francisco Anderson Silva Vieira

Universidade Federal do Ceará

email: andersonsilva@alu.ufc.br

Title:

Independent [$k$]-Roman domination on graphs

PDF

Source:

Discussiones Mathematicae Graph Theory

Received: 2024-06-28 , Revised: 2025-02-04 , Accepted: 2025-02-11 , Available online: 2025-02-22 , https://doi.org/10.7151/dmgt.2580

Abstract:

Given a function $f\colon V(G) \to \mathbb{Z}_{\geq 0}$ on a graph $G$, $AN(v)$ denotes the set of neighbors of $v \in V(G)$ that have positive labels under $f$. In 2021, Abdollahzadeh Ahangar et al. introduced the notion of $[k]$-Roman dominating function ([$k$]-RDF) of a graph $G$, which is a function $f\colon V(G) \to \{0,1,\ldots,k+1\}$ such that $\sum_{u \in N[v]}f(u) \geq k + |AN(v)|$ for all $v \in V(G)$ with $f(v)<k$. The weight of $f$ is $\sum_{v \in V(G)}f(v)$. The $[k]$-Roman domination number, denoted by $\gamma_{[kR]}(G)$, is the minimum weight of a $[k]$-RDF of $G$. The notion of [$k$]-RDF for $k=1$ has been extensively investigated in the scientific literature since 2004, when introduced by Cockayne et al. as Roman domination. An independent [$k$]-Roman dominating function ([$k$]-IRDF) $f\colon V(G) \to \{0,1,\ldots,k+1\}$ of a graph $G$ is a [$k$]-RDF of $G$ such that the set of vertices with positive labels is an independent set. The independent [$k$]-Roman domination number of $G$ is the minimum weight of a [$k$]-IRDF of $G$ and is denoted by $i_{[kR]}(G)$. In this paper, we propose the study of independent [$k$]-Roman domination on graphs for arbitrary $k \geq 1$. We prove that, for all $k\geq 3$, the decision problems associated with $i_{[kR]}(G)$ and $\gamma_{[kR]}(G)$ are $\mathcal{NP}$-complete for planar bipartite graphs with maximum degree 3. We also present lower and upper bounds for $i_{[kR]}(G)$. Moreover, we present lower and upper bounds for the parameter $i_{[kR]}(G)$ for a family of 3-regular graphs called generalized Blanuša snarks.

Keywords:

Roman domination, dominating set, independent set

References:

  1. H. Abdollahzadeh Ahangar, M.P. Álvarez, M. Chellali, S.M. Sheikholeslami and J.C. Valenzuela-Tripodoro, Triple Roman domination in graphs, Appl. Math. Comput. 391 (2021) 125444.
    https://doi.org/10.1016/j.amc.2020.125444
  2. M. Adabi, E. Ebrahimi Targhi, N. Jafari Rad and M. {Saied} Moradi, Properties of independent Roman domination in graphs, Australas. J. Combin. 52 (2012) 11–18.
  3. J. Amjadi and N. Khalili, Quadruple Roman domination in graphs, Discrete Math. Algorithms Appl. 14(3) (2022) 2150130.
    https://doi.org/10.1142/S1793830921501305
  4. R.A. Beeler, T.W. Haynes and S.T. Hedetniemi, Double Roman domination, Discrete Appl. Math. 211 (2016) 23–29.
    https://doi.org/10.1016/j.dam.2016.03.017
  5. D. Blanuša, Problem cetiriju boja, Glasnik Mat. Fiz. Astr. Ser. II 1 (1946) 31–42, in Croatian.
  6. M. Chellali, N. Jafari Rad, S. Sheikholeslami and L. Volkmann, A survey on Roman domination parameters in directed graphs, J. Combin. Math. Combin. Comput. 115 (2020) 141–171.
  7. M. Chellali, N. Jafari Rad, S.M. Sheikholeslami and L. Volkmann, Varieties of Roman domination II, AKCE Int. J. Graphs Comb. 17 (2020) 966–984.
    https://doi.org/10.1016/j.akcej.2019.12.001
  8. M. Chellali, N. Jafari Rad, S.M. Sheikholeslami and L. Volkmann, Roman domination in graphs, in: Topics in Domination in Graphs, T.W. Haynes, S.T. Hedetniemi and M.A. Henning (Ed(s)), Dev. Math. 64, (Springer, Cham, 2020) 365–409.
    https://doi.org/10.1007/978-3-030-51117-3_11
  9. M. Chellali, N. Jafari Rad, S.M. Sheikholeslami and L. Volkmann, Varieties of Roman domination, in: Structures of Domination in Graphs, T.W. Haynes, S.T. Hedetniemi and M.A. Henning (Ed(s)), Dev. Math. 66, (Springer, Cham, 2012) 273–307.
    https://doi.org/10.1007/978-3-030-58892-2_10
  10. M. Chellali, N. Jafari Rad, S.M. Sheikholeslami and L. Volkmann, The Roman domatic problem in graphs and digraphs: a survey, Discuss. Math. Graph Theory 42 (2022) 861–891.
    https://doi.org/10.7151/dmgt.2313
  11. E.J. Cockayne, P.A. Dreyer Jr, S.M. Hedetniemi and S.T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004) 11–22.
    https://doi.org/10.1016/j.disc.2003.06.004
  12. T.W. Haynes, S.T. Hedetniemi and M.A. Henning, Domination in Graphs: Core Concepts, Springer Monogr. Math. (Springer, Cham, 2023).
    https://doi.org/10.1007/978-3-031-09496-5
  13. M.C.N. Khalili, J. Amjadi, M. Chellali and S.M. Sheikholeslami, On $[k]$-Roman domination in graphs, AKCE Int. J. Graphs Comb. 20 (2023) 291–299.
    https://doi.org/10.1080/09728600.2023.2241531
  14. A.G. Luiz, Roman domination and independent Roman domination on graphs with maximum degree three, Discrete Appl. Math. 348 (2024) 260–278.
    https://doi.org/10.1016/j.dam.2024.02.006
  15. H. Maimani, M. Momeni, S.N. Moghaddam, F.R. Mahid amd S.M. Sheikholeslami, Independent double Roman domination in graphs, Bull. Iranian Math. Soc. 46 (2020) 543–555.
    https://doi.org/10.1007/s41980-019-00274-8
  16. B. Mohar, Face covers and the genus problem for apex graphs, J. Combin. Theory Ser. B 82 (2001) 102–117.
    https://doi.org/10.1006/jctb.2000.2026
  17. A.A. Pereira, Dominating Sets in Cubic Graphs, Master Thesis (University of Campinas, Institute of Computing, Campinas, Sao Paulo, Brazil, 2020), , in Portuguese..
  18. J. Petersen, Sur le théoreme de Tait, Interméd. Math. 5 (1898) 225–227.
  19. C.S. ReVelle and K.E. Rosing, Defendens imperium Romanum: a classical problem in military strategy, Amer. Math. Monthly 107 (2000) 585–594.
    https://doi.org/10.1080/00029890.2000.12005243
  20. Z. Shao, P. Wu, H. Jiang, Z. Li, J. Žerovnik and X. Zhang, Discharging approach for double Roman domination in graphs, IEEE Access 6 (2018) 63345–63351.
    https://doi.org/10.1109/ACCESS.2018.2876460
  21. I. Stewart, Defend the Roman empire!, Sci. Am. 281 (1999) 136–139.
    https://doi.org/10.1038/scientificamerican1299-136
  22. P.G. Tait, On the colouring of maps, Proc. Roy. Soc. Edinburgh Sect. A 10 (1880) 501–503.
    https://doi.org/10.1017/S0370164600044229
  23. J.C. Valenzuela-Tripodoro, M.A. Mateos-Camacho, M. Cera Lopez, M.P. Alvarez-Ruiz, Further results on the $[k]$-Roman domination in graphs, Bull. Iranian Math. Soc. 50 (2024) 27.
    https://doi.org/10.1007/s41980-024-00872-1
  24. J.J. Watkins, On the construction of snarks, Ars Combin. 16 (1983) 111–123.

Close