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Abstract

Given a function f : V (G) → Z≥0 on a graph G, AN(v) denotes the
set of neighbors of v ∈ V (G) that have positive labels under f . In 2021,
Abdollahzadeh Ahangar et al. introduced the notion of [k]-Roman domi-
nating function ([k]-RDF) of a graph G, which is a function f : V (G) →
{0, 1, . . . , k + 1} such that

∑
u∈N [v] f(u) ≥ k + |AN(v)| for all v ∈ V (G)

with f(v) < k. The weight of f is
∑

v∈V (G) f(v). The [k]-Roman domina-

tion number, denoted by γ[kR](G), is the minimum weight of a [k]-RDF of
G. The notion of [k]-RDF for k = 1 has been extensively investigated in
the scientific literature since 2004, when introduced by Cockayne et al. as
Roman domination. An independent [k]-Roman dominating function ([k]-
IRDF) f : V (G) → {0, 1, . . . , k + 1} of a graph G is a [k]-RDF of G such
that the set of vertices with positive labels is an independent set. The in-
dependent [k]-Roman domination number of G is the minimum weight of a
[k]-IRDF of G and is denoted by i[kR](G). In this paper, we propose the
study of independent [k]-Roman domination on graphs for arbitrary k ≥ 1.
We prove that, for all k ≥ 3, the decision problems associated with i[kR](G)
and γ[kR](G) are NP-complete for planar bipartite graphs with maximum
degree 3. We also present lower and upper bounds for i[kR](G). Moreover,
we present lower and upper bounds for the parameter i[kR](G) for a family
of 3-regular graphs called generalized Blanuša snarks.
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1. Introduction

Let G = (V (G), E(G)) be a graph with vertex set V (G) and edge set E(G). Two
vertices u, v ∈ V (G) are adjacent or neighbors if uv ∈ E(G). We say that G is
trivial if |V (G)| = 1. For every vertex v ∈ V (G), the open neighborhood of v is
the set N(v) = {u ∈ V (G) : uv ∈ E(G)}, and the closed neighborhood of v is
the set N [v] = {v} ∪ N(v). The degree of a vertex v ∈ V (G) is the number of
neighbors of v and is denoted dG(v). A leaf vertex of G is a vertex v ∈ V (G) with
dG(v) = 1. Graph G is r-regular if dG(v) = r for all v ∈ V (G). The maximum
degree of G is denoted by ∆(G). For any subset S ⊆ V (G), the induced subgraph
G[S] is the graph whose vertex set is S and whose edge set consists of all edges
in E(G) that have both endpoints in S. As usual, Pn denotes a path on n ≥ 1
vertices and Cn denotes a cycle on n ≥ 3 vertices.

A set S ⊆ V (G) is called a dominating set of G if every vertex v ∈ V (G)\S
is adjacent to a vertex in S. The domination number of G, denoted γ(G), is the
minimum cardinality of a dominating set of G. A set of vertices S ⊆ V (G) is
called independent if no two vertices in S are adjacent. An independent domi-
nating set of G is an independent set S ⊆ V (G) that is also dominating. The
independent domination number of G, denoted i(G), is the minimum cardinality
of an independent dominating set of G. The domination on graphs has been
extensively studied in the scientific literature, giving rise to many variations [12],
a well-known of them being the Roman domination [11].

Let G be a graph. For any function f : V (G) → Z≥0 and S ⊆ V (G), define
f(S) =

∑
v∈S f(v). A Roman dominating function (RDF) on G is a function

f : V (G) → {0, 1, 2} such that every vertex u ∈ V (G) with label f(u) = 0 is
adjacent to at least one vertex v ∈ V (G) with label f(v) = 2. The weight of an
RDF f is defined as ω(f) = f(V (G)) =

∑
v∈V (G) f(v). The Roman domination

number of G is the minimum weight over all RDFs on G and is denoted by γR(G).

The conception of Roman domination on graphs was motivated by defense
strategies devised by the Roman Empire during the reign of Emperor Constan-
tine, 272–337 AD [21, 19]. The idea behind Roman domination is that labels
1 or 2 represent either one or two Roman legions stationed at a given Roman
province (vertex v). A neighboring province (an adjacent vertex u) is considered
to be unsecured if no legions are stationed there (i.e., f(u) = 0). An unsecured
province u can be secured by sending a legion to u from an adjacent province v,
by respecting the condition that a legion cannot be sent from a province v if doing
so leaves that province without a legion. Thus, two legions must be stationed
at a province (f(v) = 2) before one of the legions can be sent to an adjacent
province.

Results on Roman domination and its variants have been collected in [6, 7,
8, 9, 10], summing up to more than two hundred papers. Many of these variants
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aim to increase the effectiveness of the defensive strategy modeled by Roman
domination. In 2021, Abdollahzadeh Ahangar et al. [1] introduced the notion
of [k]-Roman domination, a generalization of Roman domination, which groups
many of these Roman domination’s variants under the same definition. The idea
behind [k]-Roman domination is that any unsecured province could be defended
by at least k legions without leaving any secure neighboring province without
military forces.

Let G be a graph and f : V (G) → Z≥0 be a function. We say that a vertex
v of G is active under f if f(v) ≥ 1. For any vertex v ∈ V (G), the active
neighborhood of v under f , denoted by AN(v), is the set of vertices w ∈ N(v)
such that f(w) ≥ 1. For any integer k ≥ 1, a [k]-Roman dominating function
on G, also called [k]-RDF, is a function f : V (G) → {0, 1, . . . , k + 1} such that
f(N [v]) ≥ k + |AN(v)| for every vertex v ∈ V (G) with f(v) < k. The weight
of a [k]-RDF f on G is defined as ω(f) = f(V (G)) =

∑
v∈V (G) f(v). The [k]-

Roman domination number of G is the minimum weight that a [k]-RDF of G
can have, and is denoted by γ[kR](G). A [k]-RDF of G with weight γ[kR](G) is
called a γ[kR]-function of G or γ[kR](G)-function. Given a [k]-RDF f : V (G) →
{0, 1, . . . , k+1} of a graph G, define Vi = {u ∈ V (G) : f(u) = i} for 0 ≤ i ≤ k+1.
We call (V0, V1, . . . , Vk+1) the ordered partition of V (G) under f . Since there
exists a 1-1 correspondence between the functions f : V (G) → {0, 1, . . . , k + 1}
and the ordered partitions (V0, V1, . . . , Vk+1) of V (G), it is common to use the
notation f = (V0, V1, . . . , Vk+1) to refer to a [k]-RDF of G. By the definition
of ordered partition, we can alternatively define the weight of a [k]-RDF f as
ω(f) =

∑k+1
p=0 p|Vp|. Figure 1 shows some graphs endowed with [k]-RDFs.

1 k

(a) Path with a [k]-RDF with
weight k + 1.

0

0

0

k + 1 k + 1

0

0

0

(b) Tree with a [k]-RDF with weight
2k + 2.

Figure 1. Two graphs endowed with [k]-Roman dominating functions.

For every k ≥ 1, the [k]-Roman Domination Problem is to determine γ[kR](G)
for an arbitrary graph G. Khalili et al. [13] proved that the decision version of
the [k]-Roman Domination Problem is NP-complete even when restricted to
bipartite and chordal graphs. Moreover, Valenzuela-Tripodoro et al. [23] proved
that the decision version of [k]-RDP is NP-complete even when restricted to star
convex and comb convex bipartite graphs.
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Note that [1]-Roman domination is equivalent to the original Roman domi-
nation definition. In addition, [2]-Roman domination has been previously studied
[4] under the name of Double Roman domination, as well as [3]-Roman domina-
tion has been investigated [1] under the name of Triple Roman domination, and
[4]-Roman domination has been recently studied under the name of Quadruple
Roman domination [3]. Recently, Khalili et al. [13] and Valenzuela-Tripodoro et
al. [23] presented sharp upper and lower bounds for the [k]-Roman domination
number for all k ≥ 1.

Given a [k]-Roman dominating function f = (V0, V1, . . . , Vk+1) on a graph
G, we observe that the set of vertices S = V1 ∪ V2 ∪ · · · ∪ Vk+1 is a dominating
set of G since V (G)\S = V0 and every vertex in V0 is adjacent to a vertex in
S. This connection between dominating sets and the set of active vertices of a
graph G under a [k]-Roman dominating function makes it possible to relate the
parameters γ(G) and γ[kR](G) as well as to extend some restrictions traditionally
imposed on dominating sets to [k]-Roman dominating functions. An example is
the concept of independent dominating set: one may require the dominating set
of active vertices of G to be also independent. Indeed, in their seminal paper,
Cockayne et al. [11] introduced the notion of Roman dominating functions f =
(V0, V1, V2) whose set of active vertices V1 ∪ V2 is an independent set, which are
called independent Roman dominating functions. In 2019, Maimani et al. [15]
introduced the notion of independent double Roman dominating function, which
is a [2]-Roman dominating function f = (V0, V1, V2, V3) of a graph G such that
the set of active vertices V1 ∪ V2 ∪ V3 is an independent set. When studying
independent Roman domination and independent double Roman domination, one
can observe some differences but many similarities. Thus, based on the previous
observations, we propose a generalization of independent Roman domination and
independent double Roman domination, defined as follows.

A [k]-Roman dominating function f = (V0, V1, . . . , Vk+1) on a graph G is
called an independent [k]-Roman dominating function, or [k]-IRDF for short, if
the set of active vertices V1∪V2∪· · ·∪Vk+1 is an independent set. The independent
[k]-Roman domination number i[kR](G) is the minimum weight of a [k]-IRDF on
G, and a [k]-IRDF of G with weight i[kR](G) is called an i[kR]-function of G or
i[kR](G)-function. The Independent [k]-Roman Domination Problem consists in
determining i[kR](G) for an arbitrary graph G. Since every [k]-IRDF is a [k]-RDF,
we trivially obtain that γ[kR](G) ≤ i[kR](G) for every graph G. As an example,
Figure 2 shows some graphs with i[kR]-functions.

From the definition of independent [k]-Roman domination, we know that the
active vertices v ∈ V (G) with f(v) < k must have at least one active neighbor
since the condition f(N [v]) ≥ k + |AN(v)| must be satisfied. In addition to the
previous condition, an independent [k]-Roman domination function also imposes
that the set of active vertices must be independent. However, these two condi-
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[k]-IRDF.
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(b) Tree with a [k]-IRDF.
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(c) Cycle with a [k]-IRDF.

Figure 2. Graphs endowed with independent [k]-Roman dominating functions.

tions considered simultaneously imply that an independent [k]-Roman dominat-
ing function does not assign labels from the set {1, 2, . . . , k− 1} to the vertices of
a graph G. These initial observations concerning [k]-IRDFs are explicitly stated
in the following propositions.

Proposition 1. If G is a graph, then γ[kR](G) ≤ i[kR](G).

Proposition 2. If f = (V0, V1, . . . , Vk+1) is a [k]-IRDF of a graph G, then Vi = ∅
for all i ∈ {1, 2, . . . , k − 1}.

By Proposition 2, we can represent a [k]-IRDF f = (V0, V1, . . . , Vk+1) sim-
ply as f = (V0, Vk, Vk+1). Moreover, note that the weight of a [k]-IRDF f =
(V0, Vk, Vk+1) is also given by ω(f) = k|Vk|+ (k + 1)|Vk+1|.

In this paper, we propose the study of independent [k]-Roman domination
on graphs for arbitrary k ≥ 1. The next sections of this paper are organized as
follows. In Section 2, we prove that, for all k ≥ 3, the decision versions of the In-
dependent [k]-Roman Domination Problem and [k]-Roman Domination Problem
are NP-complete, even when restricted to planar bipartite graphs with maximum
degree 3. In Section 3, we present some sharp lower and upper bounds for the
independent [k]-Roman domination number of arbitrary graphs. In Section 4, we
present lower and upper bounds for the independent [k]-Roman domination num-
ber for an infinite family of 3-regular graphs called Generalized Blanuša Snarks.
Section 5 presents our concluding remarks.

2. Complexity Results

In this section, we show that, for every integer k ≥ 3, the decision versions of
the [k]-Roman Domination Problem ([k]-ROM-DOM) and the Independent [k]-
Roman Domination Problem ([k]-IROM-DOM) areNP-complete when restricted
to graphs with maximum degree 3. We remark that the NP-completeness of [1]-
ROM-DOM and [1]-IROM-DOM, when restricted to the same class of graphs,
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has already been established [14]. In the remaining of this section, we deal with
k ≥ 3. Consider the following decision problems.

[k]-ROM-DOM
Instance: A graph G and a positive integer ℓ.
Question: Does G have a [k]-RDF with weight at most ℓ?

[k]-IROM-DOM
Instance: A graph G and a positive integer ℓ.
Question: Does G have a [k]-IRDF with weight at most ℓ?

For k ≥ 3, we show that [k]-ROM-DOM and [k]-IROM-DOM are NP-
complete when restricted to graphs with maximum degree 3 through a reduction
from the vertex cover problem. A vertex cover of a graph G is a set of vertices
S ⊆ V (G) such that each edge of G is incident to some vertex in S. The vertex
covering number of G, denoted τ(G), is the cardinality of a smallest vertex cover
of G. Given a graph G and a positive integer ℓ, the Vertex Cover Problem (VCP)
consists in deciding whether G has a vertex cover S with cardinality at most ℓ.
The Vertex Cover Problem is NP-complete even when restricted to 2-connected
planar 3-regular graphs [16] and we use this result to construct a polynomial time
reduction from the Vertex Cover Problem to [k]-ROM-DOM ([k]-IROM-DOM)
as follows.

Construction: given a 2-connected planar 3-regular graph G, construct a new
graph F from G by replacing each edge e = uv ∈ E(G) by a gadget Ge illustrated
in Figure 3. Note that F is a planar bipartite graph with maximum degree 3.

u xe1 xe2 xe3 xe4 xe5
v

xe6 xe7 xe8 xe9 xe10

Figure 3. Gadget Ge used in the reduction.

In order to prove the NP-completeness result, given in Theorem 9, we need
the following auxiliary results.

Lemma 3 (Khalili et al. [13]). If k ≥ 2, then in a γ[kR](G)-function of a graph
G, no vertex needs to be assigned the label 1.

Proposition 4. Let k ≥ 1 be an integer. If G is a connected graph with at least
3 vertices, then in a [k]-Roman dominating function of G with weight γ[kR](G),
no leaf vertex of G needs to be assigned the label k + 1.
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Proof. Let G be a connected graph on at least 3 vertices and f a γ[kR]-function
of G. Let v ∈ V (G) be a leaf vertex and let w ∈ V (G) be the neighbor of v. For
the purpose of contradiction, suppose that f needed to assign k+1 to v, that is,
f(v) = k + 1. Since f is a γ[kR]-function, f(w) ≤ k (otherwise, by assigning 0 to
v we obtain a [k]-RDF with weight smaller then ω(f)). We modify the labeling
f by exchange the labels of the vertices v and w and maintaining the labels of
all the other vertices the same. Note that f continues to be a [k]-RDF with the
same weight as before and the vertex v does not have weight k + 1 anymore.

Proposition 5. Let k ≥ 1 be an integer and G be a connected graph with at least
3 vertices. In any γ[kR]-function f of G, no leaf vertex needs to be assigned a
label different from 0 or k.

Proof. Let G and f be as in the hypothesis and let v ∈ V (G) be a leaf vertex
with neighbor w ∈ V (G). By Lemma 3 and Proposition 4, f(v) ̸∈ {1, k + 1}. If
f(v) ∈ {0, k}, then f is the desired function. Thus, suppose that f needs to assign
a label in the set {2, 3, . . . , k− 1} to vertex v, that is, f(v) ∈ {2, 3, . . . , k− 1}. In
this case, the neighbor w of v has f(w) ̸= 0 and is, thus, an active neighbor of v.
By the definition of [k]-RDF, f(N [v]) = f(v)+f(w) ≥ k+|AN(v)| = k+1. Thus,
f(v) + f(w) ≥ k + 1. We modify the labeling f by assigning label f(v) + f(w)
to vertex w, by assigning label 0 to vertex v, and maintaining the labels of all
the remaining vertices of G the same. Note that f continues to be a [k]-RDF
with the same weight as before and the new label of v does not belong to the set
{2, 3, . . . , k − 1}, which is a contradiction.

Lemma 6. Let k ≥ 2 be an integer. Given a 2-connected planar 3-regular graph
G, let F be the graph constructed from G by replacing each edge e = uv in G
by a gadget Ge shown in Figure 3. Then, any γ[kR]-function f of F satisfies
(f(xe6), f(x

e
7)) ∈ {(0, k + 1), (k, 0)} and (f(xe9), f(x

e
10)) ∈ {(k + 1, 0), (0, k)}.

Proof. Let f be a γ[kR]-function of F . We only analyze the values f(xe6) and
f(xe7) since the analysis for f(xe9) and f(xe10) is analogous and follows from the
symmetry of Ge along the vertical axis.

Note that xe6 is a leaf vertex and N(xe6) = {xe7}. By Proposition 5, either
f(xe6) = 0 or f(xe6) = k. If f(xe6) = 0, then f(xe7) = k + 1 by the definition of
[k]-RDF, and the result follows. Thus, suppose that f(xe6) = k. By Lemma 3,
f(xe7) ̸= 1. If f(xe7) ≥ 2, then f(xe6) + f(xe7) ≥ k+ 2. Hence, it would be possible
to obtain a [k]-RDF with smaller weight by assigning label f(xe6) + f(xe7) − 1
to xe7 and 0 to v, thus contradicting the choice of f . Therefore, we obtain that
f(xe7) = 0, and the result follows.

Lemma 7. Let k ≥ 3 be an integer. Given a 2-connected planar 3-regular graph
G, let F be a graph constructed from G by replacing each edge e = uv in G by
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a gadget Ge illustrated in Figure 3. Let Ue = {xe2, xe3, xe4, xe6, xe7, xe8, xe9, xe10} ⊂
V (Ge). Then, in any γ[kR]-function f of the graph F , we have that the function
f restricted to Ue is a [k]-RDF of F [Ue] with weight f(Ue) = 3k + 2. Moreover,
(f(xe2), f(x

e
4)) ∈ {(0, 0), (k + 1, 0), (0, k + 1)}.

Proof. Let k ≥ 3 be an integer. Let G and F be as in the hypothesis. Let
f : V (F ) → {0, 1, . . . , k+1} be a γ[kR]-function of F . For each gadget Ge ⊂ F , de-
fine Ue =

{
xe2, x

e
3, x

e
4, x

e
6, x

e
7, x

e
8, x

e
9, x

e
10

}
⊂ V (Ge). By Lemma 6, (f(xe6), f(x

e
7)) ∈

{(0, k + 1), (k, 0)} and (f(xe9), f(x
e
10)) ∈ {(k + 1, 0), (0, k)}. Thus, there are four

cases to analyze, depending on the values of the labels f(xe6), f(x
e
7), f(x

e
9) and

f(xe10).

Case 1. (f(xe6), f(x
e
7)) = (k, 0) and (f(xe9), f(x

e
10)) = (0, k). We claim that

this case cannot occur. For the purpose of contradiction, suppose it occurs. Since
f is a γ[kR]-function and xe8 has no active neighbor, we have that f(xe8) = k. Note

that
∑10

i=6 f(x
e
i ) = 3k. Thus, we can redefine the labels of some vertices of F

so as to obtain another [k]-RDF f ′ of F with smaller weight than f such that∑10
i=6 f

′(xei ) = 2k + 2 < 3k, as follows: let (f ′(xe6), f
′(xe7), f

′(xe8), f
′(xe9), f

′(xe10))
= (0, k+ 1, 0, k+ 1, 0) and make f ′(x) = f(x) for every remaining vertex x of F .
This contradicts the choice of f as a γ[kR]-function.

Case 2. (f(xe6), f(x
e
7)) = (0, k + 1) and (f(xe9), f(x

e
10)) = (k + 1, 0). Since

f is a γ[kR]-function, we have that f(xe8) = 0. By the definition of [k]-RDF, we
have that f(N [xe3]) = f(xe2) + f(xe3) + f(xe4) ≥ k + |AN(xe3)| ≥ k. All these facts
imply that f(Ue) =

∑
w∈Ue

f(w) ≥ 3k + 2. Moreover, a [k]-RDF of F [Ue] with
weight 3k+2 is obtained by assigning labels f(xe2) = 0, f(xe3) = k and f(xe4) = 0.
Therefore, f(Ue) = 3k + 2, (f(xe2), f(x

e
4)) = (0, 0), and the result follows.

Case 3. (f(xe6), f(x
e
7)) = (0, k + 1) and (f(xe9), f(x

e
10)) = (0, k). Since f

is a γ[kR]-function, we have that f(xe8) = 0. Moreover, since f(xe9) = 0 and
f(xe8)+f(xe10) < k+1 we obtain that f(xe4) ̸= 0. By the definition of [k]-RDF and
since f(xe4) ̸= 0, we have that f(N [xe3]) = f(xe2)+f(xe3)+f(xe4) ≥ k+ |AN(xe3)| ≥
k+1. All these facts imply that f(Ue) =

∑
w∈Ue

f(w) ≥ 3k+2. From the previous
facts, we have that f(Ue) = 3k+2 only if f(N [xe3]) = k+ |AN(xe3)| = k+1, which
implies that f(xe2) = 0. Thus, f(xe2)+ f(xe3)+ f(xe4) = 0+ f(xe3)+ f(xe4) = k+1,
i.e., f(xe3) + f(xe4) = k + 1. Since f is a γ[kR]-function, we obtain that f(xe3) = 0
and f(xe4) = k + 1. Therefore, (f(xe2), f(x

e
4)) = (0, k + 1) and the result follows.

Case 4. (f(xe6), f(x
e
7)) = (k, 0) and (f(xe9), f(x

e
10)) = (k + 1, 0). The proof

for this case is analogous to the proof of the previous case and follows from the
symmetry of Ge along the vertical axis.

Therefore, in any γ[kR]-function f of the graph F , we have that the function
f restricted to Ue is a [k]-RDF of F [Ue] with weight f(Ue) = 3k + 2. Moreover,
(f(xe2), f(x

e
4)) ∈ {(0, 0), (k + 1, 0), (0, k + 1)}.
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Theorem 8. Let k ≥ 3 be an integer. Given a 2-connected planar 3-regular
graph G, let F be a planar bipartite graph with ∆(F ) = 3 constructed from G by
replacing each edge e = uv in G by a gadget Ge illustrated in Figure 3. Then,

γ[kR](F ) = i[kR](F ) = τ(G) + k|V (G)|+ (3k + 2)|E(G)|.

Proof. Let G and F be as in the statement of the theorem. Let C be a vertex
cover of G with |C| = τ(G).

We initially prove that i[kR](F ) ≤ τ(G)+ k|V (G)|+(3k+2)|E(G)|. In order
to do this, we construct an appropriate [k]-IRDF f = (V0, Vk, Vk+1) of F as
follows. First, define two empty sets Dk and Dk+1. For each gadget Ge ⊂ F ,
associated with an edge e = uv ∈ E(G), do the following. If v ∈ C, then,
add the vertex xe6 to Dk and add the vertices xe2 and xe9 to Dk+1; otherwise,
add the vertex xe10 to Dk and add the vertices xe4 and xe7 to Dk+1. Note that
|Dk| = |E(G)| and |Dk+1| = 2|E(G)|. Define the function f = (V0, Vk, Vk+1)
such that V0 = V (F )\(V (G) ∪ Dk ∪ Dk+1), Vk = Dk ∪ V (G)\C and Vk+1 =
Dk+1 ∪ C. From the definition of f , we have that f is a [k]-IRDF of F with
weight ω(f) = k|Dk ∪ V (G)\C| + (k + 1)|Dk+1 ∪ C| = k(|E(G)| + |V (G)| −
τ(G)) + (k+ 1)(2|E(G)|+ τ(G)) = τ(G) + k|V (G)|+ (3k+ 2)|E(G)|. Therefore,
i[kR](F ) ≤ ω(f) = τ(G) + k|V (G)|+ (3k + 2)|E(G)|.

Next, we show that γ[kR](F ) ≥ τ(G) + k|V (G)| + (3k + 2)|E(G)|. Let f =
(V0, ∅, V2, . . . , Vk+1) be a γ[kR]-function of F . Let Ge be a gadget of F , for any
edge e = uv ∈ E(G). Define the set Ue = {xe2, xe3, xe4, xe6, xe7, xe8, xe9, x

e
10} ⊂

V (Ge) ⊂ V (F ). By Lemma 7, the function f restricted to Ue has weight 3k + 2
and is a [k]-RDF of the subgraph induced by Ue. Moreover, (f(xe2), f(x

e
4)) ∈

{(0, k + 1), (k + 1, 0), (0, 0)}. Let S = {x ∈ Ue : f(x) ̸= 0, e ∈ E(G)}. Let
V ′ ⊂ V (F ) be the set of vertices that are not adjacent to some vertex in S and
are not in S, that is, V ′ = V (F )\N [S]. Let F ′ be the induced subgraph F [V ′]. For
each e ∈ E(G), all the vertices in Ue and at most one of the vertices xe1 and xe5 are
not in V ′. This implies that F ′ is a forest of trees with |V (G)| components such
that each component is a star whose central vertex is a vertex z ∈ V (G). Let T
be a component of F ′. If T is a single vertex (i.e. V (T ) = {z}), then f(z) = k. On
the other hand, if T is not a single vertex, then z is the central vertex of the star T
and f(z) = k+1. Let D = V (G)∩Vk+1. From the above discussion, we conclude
that D is a vertex cover of G. Since each subset Ue contributes with 3k+2 to the
weight of f and there are |E(G)| of these subsets, then they contribute to a total
of (3k + 2)|E(G)| to the weight of f . From these facts we obtain that ω(f) =
(k+1)|D|+ k(|V (G)| − |D|) + (3k+2)|E(G)| = |D|+ k|V (G)|+ (3k+2)|E(G)|.
Thus, τ(G) ≤ |D| = ω(f) − k|V (G)| − (3k + 2)|E(G)| = γ[kR](G) − k|V (G)| −
(3k + 2)|E(G)|. Therefore, γ[kR](G) ≥ τ(G) + k|V (G)|+ (3k + 2)|E(G)|.

Since γ[kR](G) ≤ i[kR](G) (see Proposition 1), we have that τ(G)+k|V (G)|+
(3k + 2)|E(G)| ≤ γ[kR](G) ≤ i[kR](G) ≤ τ(G) + k|V (G)| + (3k + 2)|E(G)|, and
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the result follows.

Theorem 9. Let k ≥ 3 be an integer. Then, [k]-ROM-DOM (respectively, [k]-
IROM-DOM) is NP-complete even when restricted to planar bipartite graphs G
with ∆(G) = 3.

Proof. We first show that [k]-ROM-DOM (respectively, [k]-IROM-DOM) is a
member of NP. Given any instance (G, ℓ) of [k]-ROM-DOM (respectively, [k]-
IROM-DOM) and a certificate function f : V (G) → {0, 1, . . . , k+1}, we can verify
(in polynomial time) if

∑
v∈V (G) f(v) ≤ ℓ and if

∑
u∈N [v] f(u) ≥ |AN(v)|+ k for

every v ∈ V (G) (respectively, in the case of [k]-IROM-DOM, it is also necessary
to check if Vk ∪ Vk+1 is an independent set). Next, we show that [k]-ROM-
DOM (respectively, [k]-IROM-DOM) is NP-hard. Recall that we showed how to
construct a planar bipartite graph F with ∆(F ) = 3 from a given 2-connected
planar 3-regular graph G in polynomial time on |E(G)|. From Theorem 8, we
deduce that there exists a polynomial time algorithm that calculates τ(G) if and
only if there exists a polynomial time algorithm that calculates γ[kR](F ) (re-
spectively, i[kR](F )). However, since VCP is NP-complete even when restricted
to 2-connected planar 3-regular graphs, we obtain, from this reduction, that [k]-
ROM-DOM (respectively, [k]-IROM-DOM) is NP-complete even when restricted
to planar bipartite graphs with maximum degree 3.

3. Bounds for the Independent [k]-Roman Domination Number

In this section, we present some lower and upper bounds for the independent
[k]-Roman domination number of arbitrary graphs. Since the set Vk ∪ Vk+1 is
an independent dominating set in every [k]-IRDF f = (V0, Vk, Vk+1) of a graph
G, it seems reasonable that i[kR](G) and i(G) are related, such as shown in the
following proposition.

Proposition 10. Let k ≥ 1 be an integer. If G is a graph, then k · i(G) ≤
i[kR](G) ≤ (k + 1) · i(G).

Proof. Given a minimum independent dominating set S of a graph G, we define
a [k]-IRDF f = (V0, Vk, Vk+1) of G with weight (k+1)i(G) by making Vk+1 = S,
Vk = ∅ and V0 = V (G)\S. Hence, i[kR](G) ≤ ω(f) = (k + 1)i(G).

Now, let f = (V0, Vk, Vk+1) be an i[kR]-function of a graph G. Since i(G) ≤
|Vk| + |Vk+1|, we have that k · i(G) ≤ k(|Vk| + |Vk+1|) ≤ k|Vk| + (k + 1)|Vk+1| =
i[kR](G), and the result follows.

The lower bound presented in Proposition 10 is tight since it is attained
by empty graphs. Moreover, graphs whose independent [k]-Roman domination
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number equals the upper bound given in Proposition 10 receive a specific name.
We say that a graph G is independent [k]-Roman when i[kR](G) = (k + 1)i(G).
The next lemma is a generalization of a result of Shao et al. [20] and presents a
characterization of independent [k]-Roman graphs.

Lemma 11. Let G be a graph. Then G is independent [k]-Roman if and only if
G has an i[kR]-function f = (V0, Vk, Vk+1) such that Vk = ∅.

Proof. Let G be a graph. First, suppose that G has an i[kR](G)-function f =
(V0, Vk, Vk+1) such that Vk = ∅. This implies that i(G) ≤ |Vk| + |Vk+1| = |Vk+1|
and that i[kR](G) = (k + 1)|Vk+1|. Thus, (k + 1)i(G) ≤ (k + 1)|Vk+1| = i[kR](G).
By Proposition 10, i[kR](G) ≤ (k+1)i(G). Therefore, i[kR](G) = (k+1)i(G) and
G is independent [k]-Roman.

Now, consider G independent [k]-Roman. For the purpose of contradiction,
suppose that every i[kR](G)-function f = (V0, Vk, Vk+1) has Vk ̸= ∅. Let f =
(V0, Vk, Vk+1) be an i[kR]-function of G with |Vk| as minimum as possible. From
the definition of [k]-IRDF, we know that i(G) ≤ |Vk ∪ Vk+1| = |Vk|+ |Vk+1|.

In fact, we claim that i(G) = |Vk| + |Vk+1|. In order to prove this claim,
suppose that there exists a minimum independent dominating set S of G such
that |S| < |Vk| + |Vk+1|. Let g = (V g

0 , V
g
k , V

g
k+1) be a function with V g

k = ∅,
V g
k+1 = S and V g

0 = V (G)\S. Thus, g is a [k]-IRDF of G with |V g
k+1| = i(G).

SinceG is independent [k]-Roman, we have that (k+1)i(G) = i[kR](G). Moreover,
by the definition of [k]-IRDF, we know that i[kR](G) = k|Vk| + (k + 1)|Vk+1|.
Then, we have that ω(g) = (k+1)|V g

k+1| = (k+1)i(G) = i[kR](G) = k|Vk|+ (k+
1)|Vk+1| = ω(f). Thus, we have ω(g) = ω(f) = i[kR](G), but V g

k = ∅. In other
words, we found an i[kR](G)-function g = (V g

0 , V
g
k , V

g
k+1) with V g

k = ∅, which is a
contradiction. Therefore, i(G) = |Vk|+ |Vk+1| as claimed.

Since G is independent [k]-Roman, we have that (k+ 1)i(G) = i[kR](G) and,
thus, (k + 1)(|Vk| + |Vk+1|) = (k + 1)i(G) = i[kR](G) = k|Vk| + (k + 1)|Vk+1|,
implying that |Vk| = 0, which is a contradiction.

Therefore, we conclude that G has an i[kR](G)-function f = (V0, Vk, Vk+1)
such that Vk = ∅.

Another useful kind of lower bound connects the parameter with the max-
imum degree and number of vertices of the graph. As an example, in what
concerns the [k]-Roman domination number, Valenzuela-Tripodoro et al. [23]
presented the following lower bound for the [k]-Roman domination number of
nontrivial connected graphs.

Theorem 12 (Valenzuela-Tripodoro et al. [23]). Let k ≥ 1 be an integer. Let G
be a nontrivial connected graph with maximum degree ∆(G) ≥ k. Then γ[kR](G) ≥
|V (G)|(k+1)
∆(G)+1 .
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Since i[kR](G) ≥ γ[kR](G), we immediatelly obtain the following corollary
from Theorem 12.

Corollary 13. Let k ≥ 1 be an integer. Let G be a nontrivial connected graph
with maximum degree ∆(G) ≥ k. Then i[kR](G) ≥ |V (G)|(k+1)

∆(G)+1 .

We remark that Corollary 13 only applies for the cases where k ≤ ∆(G). In
the next theorem we present a new lower bound for the independent [k]-Roman
domination number of connected graphs G for all k ≥ 4.

Theorem 14. Let k ≥ 4 be an integer. If G is a nontrivial connected graph with
∆(G) ≥ 1, then

i[kR](G) ≥ |V (G)|(k + 1)

∆(G) + 1
.

Moreover, if i[kR](G) = |V (G)|(k+1)
∆(G)+1 , then G is independent [k]-Roman.

Proof. Let k ≥ 4 be an integer and G be a nontrivial connected graph with
maximum degree ∆ ≥ 1. Let f : V (G) → {0, k, k + 1} be an i[kR](G)-function.
Recall that Vi = {w ∈ V (G) : f(w) = i} for i ∈ {0, k, k + 1}. In this proof, we
use a discharging procedure similar to the approach used by Shao et al. [20]. Our
discharging procedure is described as follows. Firstly, each vertex v ∈ V (G) is
assigned the initial charge s(v) = f(v). Next, we apply the discharging procedure
defined by means of the following two rules.

Rule 1. Every vertex v ∈ V (G) with s(v) = k+1 sends a charge of k+1
∆+1 to each

vertex in N(v) ∩ V0.

Rule 2. Every vertex v ∈ V (G) with s(v) = k sends a charge of (k−2)(k+1)
k(∆+1) to

each vertex in N(v) ∩ V0.

Denote by s′(v) the final charge of vertex v after applying the discharging
procedure. Note the following.

I. For each vertex v ∈ V (G) with f(v) = k + 1, since it sends charge to at
most dG(v) vertices, by Rule 1 we obtain that the final charge of v is s′(v) ≥
s(v)− dG(v)

k+1
∆+1 ≥ (k + 1)− ∆(k+1)

∆+1 = k+1
∆+1 , that is, s

′(v) ≥ k+1
∆+1 .

II. For each vertex v ∈ V (G) with f(v) = k, since it sends charge to at most
dG(v) vertices, by Rule 2 we obtain that the final charge of v is s′(v) ≥ s(v)−
dG(v)

(k−2)(k+1)
k(∆+1) ≥ k− ∆(k−2)(k+1)

k(∆+1) = k2+∆k+2∆
k(∆+1) > k2+∆k

k(∆+1) =
k+∆
∆+1 ≥ k+1

∆+1 , that

is, s′(v) > k+1
∆+1 .

From the previous analysis, we obtain that s′(v) ≥ k+1
∆+1 for all v ∈ V (G) with

f(v) > 0. Now, let us analyze an arbitrary vertex v ∈ V (G) with f(v) = 0. Since
f is a [k]-IRDF, we have that f(N [v]) = f(N(v)) ≥ |AN(v)|+k. So, either v has



Independent [k]-Roman Domination on Graphs 13

at least one neighbor w ∈ Vk+1 or v has at least two neighbors u1, u2 ∈ Vk. If v
has at least one neighbor w ∈ Vk+1, then s′(v) ≥ k+1

∆+1 since w sent a charge of k+1
∆+1

to v. On the other hand, if v has at least two neighbors u1, u2 ∈ Vk, each of these
neighbors sent a charge of (k−2)(k+1)

k(∆+1) to v and, thus, s′(v) ≥ 2 · (k−2)(k+1)
k(∆+1) ≥ k+1

∆+1

for k ≥ 4. Hence, we obtain that s′(v) ≥ k+1
∆+1 for all v ∈ V (G). Moreover, since

the discharging procedure does not change the total value of charge in G, we
obtain that i[kR](G) = ω(f) =

∑
v∈V (G) f(v) =

∑
v∈V (G) s(v) =

∑
v∈V (G) s

′(v) ≥∑
v∈V (G)

k+1
∆+1 = |V (G)|(k+1)

∆+1 . Therefore, i[kR](G) = ω(f) ≥ |V (G)|(k+1)
∆+1 .

From now on, suppose that ω(f) = |V (G)|(k+1)
∆+1 . In this case, by the previous

inequality chain, we have that s′(v) = k+1
∆+1 for all v ∈ V (G). This implies that

no vertex of G was assigned label k since s′(w) > k+1
∆+1 for every vertex w ∈ V (G)

with f(w) = k. Hence, by Lemma 11, G is independent [k]-Roman.

Since a nontrivial connected graph G with ∆(G) = 1 has exactly two vertices,
an i[kR](G)-function is obtained by assigning k + 1 to a vertex of G and 0 to
the other. The next two results present lower bounds for i[kR](G) when G has
∆(G) ≥ 2.

Theorem 15. Let k ≥ 1 be an integer. If G is a nontrivial connected graph with
∆(G) = 2, then i[kR](G) ≥ |V (G)|(k+1)

∆(G)+1 .

Proof. The case when 1 ≤ k ≤ 2 follows from Corollary 13 and the case when
k ≥ 4 follows from Theorem 14. The case when k = 3 follows from the [3]-Roman
domination number of cycles and paths obtained by Abdollahzadeh Ahangar et
al. [1]. Note that, since G is connected and ∆(G) = 2, then G is a path or a
cycle. Abdollahzadeh Ahangar et al. proved that every cycle or path G on n
vertices has γ[3R](G) ≥ 4n

3 . Therefore, i[3R](G) ≥ γ[3R](G) ≥ 4n
3 .

Theorem 16. Let k ≥ 1 be an integer. If G is a nontrivial connected graph with
∆(G) ≥ 3, then i[kR](G) ≥ |V (G)|(k+1)

∆(G)+1 .

Proof. The case when 1 ≤ k ≤ 3 follows from Corollary 13 and the case when
k ≥ 4 follows from Theorem 14.

The lower bound presented in Theorem 16 is tight, which can be seen by
analyzing Cartesian products of some paths and cycles. Given arbitrary graphs
G and H, the Cartesian product of G and H is the graph G□H with vertex set
V (G□H) = {(u, v) : u ∈ V (G), v ∈ V (H)}. Two vertices (u1, v1) and (u2, v2) of
G□H are adjacent if and only if either u1 = u2 and v1v2 ∈ E(H); or v1 = v2
and u1u2 ∈ E(G). Let P2 = (w1, w2) be a path with two vertices and C4p =
(v1, v2, . . . , v4p) be a cycle with 4p vertices, p ≥ 1. As an example, Figure 4 shows
the graph P2□C8. By Theorem 16, i[kR](P2□C4p) ≥ 2p(k+1). In addition, a [k]-
IRDF of P2□C4p with weight 2p(k+1) is easily obtained by assigning label k+1
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to the set of vertices {(w1vi) : i = 2t, t ≡ 1 (mod 2)} ∪ {(w2vj) : j = 4t, t ≥ 1}.
Therefore, i[kR](P2□C4p) = 2p(k+1) and, by Theorem 14, P2□C4p is independent
[k]-Roman for all k ≥ 4.

0(w1, v1)

0(w2, v1)

k+1

(w1, v2)

0

(w2, v2)

0

(w1, v3)

0

(w2, v3)

0

(w1, v4)

k+1

(w2, v4)

0

(w1, v5)

0

(w2, v5)

k + 1

(w1, v6)

0

(w2, v6)

0
(w1, v7)

0

(w2, v7)

0 (w1, v8)

k+1 (w2, v8)

Figure 4. Cartesian product P2□C8 with an i[kR]-function.

4. The Infinite Family of Generalized Blanuša Snarks

A cut-edge of a graph G is an edge whose deletion increases the number of con-
nected components of G. A snark is a connected 3-regular graph G without
cut-edges that does not admit a proper edge coloring with three colors. The
origin of snarks is connected with the Four-Color Problem [22] and their study
began in 1898 when the first snark was constructed by Petersen [18]. In 1946,
Blanuša constructed two snarks, called Blanuša snarks [5]. From Blanuša snarks,
Watkins constructed two infinite families of snarks, called Generalized Blanuša
Snarks [24], which are considered in this section.

Luiz [14] determined the exact value of the parameter i[1R](G) for every
generalized Blanuša snark G. Therefore, in this section, we only analyze values
of i[kR] for the generalized Blanuša snarks for values of k ≥ 2.

The members of the family of generalized Blanuša snarks are graphs formed
from subgraphs called construction blocks, denoted B1

0 , B
2
0 and L (see Figure 5).

A generalized Blanuša snark contains as subgraphs one of the graphs B1
0 , B

2
0 and

i copies of the graph L, called L1, L2, . . . , Li. Vertices a, b, c and d, belonging to
both B1

0 and B2
0 , and the vertices xj , yj , wj and zj , belonging to L, are called

border vertices.
In the next paragraphs, we define these families of graphs based on a recursive

construction. Let B1 = {B1
1 , B

1
2 , B

1
3 , . . .} and B2 = {B2

1 , B
2
2 , B

2
3 , . . .} be the first

and the second families of generalized Blanuša snarks, respectively. The first
member of B1, the snark B1

1 , has vertex set V (B1
1) = V (B1

0) ∪ V (L1) and edge
set E(B1

1) = E(B1
0) ∪ E(L1) ∪ {cy1, dx1, az1, bw1} (see Figure 6(a)). The second

snark in B1, snark B1
2 , has vertex set V (B1

2) = V (B1
0) ∪ V (L1) ∪ V (L2) and

edge set E(B1
2) = E(B1

0) ∪ E(L1) ∪ E(L2) ∪ {cy1, dx1, w1y2, z1x2, az2, bw2} (see
Figure 6(b)). The smallest snark of family B2, graph B2

1 , has vertex set V (B2
1) =



Independent [k]-Roman Domination on Graphs 15

a

b

c

d

(a) Block B1
0 .

a

b

c

d

(b) Block B2
0 .

xj

yj

wj

zj

(c) Block L.

Figure 5. Construction blocks B1
0 , B

2
0 and L of the generalized Blanuša snarks.

V (B2
0) ∪ V (L1) and edge set E(B2

1) = E(B2
0) ∪ E(L1) ∪ {bw1, az1, cy1, dx1} (see

Figure 7(a)). The second snark in B2, B2
2 , has vertex set V (B2

2) = V (B2
0) ∪

V (L1)∪V (L2) and edge set E(B2
2) = E(B2

0)∪E(L1)∪E(L2)∪{bw2, az2, cy1, dx1,
z1x2, w1y2} (see Figure 7(b)).

a

b

c

d y1

x1

z1

w1

(a) Generalized Blanuša snark B1
1 .

a

b

c

d

x1

y1

w1

z1

x2

y2

w2

z2

(b) Generalized Blanuša snark B1
2 .

Figure 6. The first two smallest members of the family B1.

a

b

c

d y1

x1

z1

w1

(a) Generalized Blanuša snark B2
1 .

a

b

c

d y1

x1

z1

w1

y2

x2

z2

w2

(b) Generalized Blanuša snark B2
2 .

Figure 7. The first two smallest members of the family B2.

In order to construct larger generalized Blanuša snarks, we use a subgraph
LGi, called link graph, with vertex set V (LGi) = V (Li−1) ∪ V (Li) and edge set
E(LGi) = E(Li−1) ∪ E(Li) ∪ {wi−1yi, zi−1xi} (see Figure 8). Let t ∈ {1, 2}. For
each integer i, with i ≥ 3, the snark Bt

i is obtained recursively from the snark
Bt

i−2 and the link graph LGi according to the following rules:

(i) V (Bt
i) = V (Bt

i−2) ∪ V (LGi);

(ii) E(Bt
i) = (E(Bt

i−2)\Eout
i−2) ∪ E(LGi) ∪ Ein

i , where Eout
i−2 = {azi−2, bwi−2} and
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Ein
i = {wi−2yi−1, zi−2xi−1, azi, bwi}.

xi−1

yi−1

wi−1

zi−1

xi

yi

wi

zi

Figure 8. The link graph LGi.

By using the previous recursive construction, Theorem 17 establishes an up-
per bound for i[kR](B

t
i).

Theorem 17. Let k ≥ 2 be an integer. If Bt
i is a generalized Blanuša snark,

with t ∈ {1, 2} and i ≥ 1, then

i[kR](B
t
i) ≤

{
(k + 1)(2i+ 2) + 2k if t = 1 and i ≥ 3 with i odd,

(k + 1)(2i+ 3) otherwise.

Proof. Initially, we separately show that the snark Bt
i , with i = 1 and t ∈ {1, 2}

has a [k]-IRDF with weight equal to 5(k+1) = (k+1)(2i+3). This special case
is shown in Figure 9, with B1

1 and B2
1 endowed with their respective [k]-IRDFs.

0

a

k + 1

0

b

k + 1

0

0

0

0

0

c

k + 1

d
0

y1

0

0

x1

k + 1

0

0

z1

k + 1

0

w1

(a) Snark B1
1 with a [k]-IRDF.

k + 1

a

0

0

b

0

0

0

c

0

k + 1

d

k + 1

0

k + 1

y1

0

0

x1

0

0

0

z1

0

k + 1

w1

(b) Snark B2
1 with a [k]-IRDF.

Figure 9. Independent [k]-Roman domination functions of snarks B1
1 and B2

1 with
weight 5(k + 1).

Next, we prove by strong induction on i that every snark Bt
i , with t ∈ {1, 2}

and i ≥ 2, has a [k]-IRDF fi with the following properties: (i) fi(a) = k + 1,
fi(b) = 0, fi(wi) = k+ 1 and fi(zi) = 0; (ii) ω(fi) = (k+ 1)(2i+ 2) + 2k if t = 1,
i ≥ 3 and i odd; or ω(fi) = (k+ 1)(2i+ 3) otherwise. We call special a [k]-IRDF
fi of B

t
i that satisfies the previous two properties. The induction is based on the

recursive construction of the families B1 and B2.
For the base case, consider the snarks Bt

i with i ∈ {2, 3} and t ∈ {1, 2}. For
i = 2, Figures 10(a) and 11(a) exhibit the snarks B1

2 and B2
2 , respectively, with
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their special [k]-IRDFs with weight 7(k + 1) = (k + 1)(2i + 3). For i = 3, the
snark B1

3 is illustrated in Figure 10(b) with a special [k]-IRDF f3 with weight
8(k + 1) + 2k; and the snark B2

3 is illustrated in Figure 11(b) with a special
[k]-IRDF f3 with weight 9(k + 1).

k + 1

a

0

0

b

0

0

0

0

k + 1

k + 1

c

0

d

k + 1

x1

0

0

y1

0

0

0

w1

0

k + 1

z1

0

x2

0

k + 1

y2

0

0

k + 1

w2

0

0

z2

(a) Snark B1
2 with a special [k]-IRDF with weight 7(k + 1).

k + 1

a

0

0

b

0

0

k

0

k + 1

0

c

0

d

k

x1

0

k + 1

y1

0

0

k + 1

w1

0

0

z1

k + 1

x2

0

0

y2

0

0

0

w2

0

k + 1

z2

0

x3

0

k + 1

y3

0

0

k + 1

w3

0

0

z3

(b) Snark B1
3 with a special [k]-IRDF with weight 8(k + 1) + 2k.

Figure 10. Special [k]-IRDFs for the snarks B1
2 and B1

3 .

For the inductive step, consider a snark Bt
i with i ≥ 4 and t ∈ {1, 2}. By

the recursive construction of generalized Blanuša snarks, we know that Bt
i can

be constructed from the link graph LGi and the snark Bt
i−2. Figure 12 shows

the link graph LGi with a vertex labeling φ : V (LGi) → {0, k + 1} with weight
4(k + 1). Also, by induction hypothesis, the snark Bt

i−2 has a special [k]-IRDF
fi−2 with weight ω(fi−2) = (k+1)(2(i−2)+2)+2k when t = 1 and i ≥ 3, i odd;
or with weight ω(fi−2) = (k+1)(2(i− 2)+3) otherwise. Since fi−2 is special, we
also have that fi−2(a) = k+1, fi−2(b) = 0, fi−2(wi−2) = k+1, fi−2(zi−2) = 0, for
a, b, wi−2, zi−2 ∈ V (Bt

i−2). Thus, we define a vertex labeling fi for B
t
i as follows.

For every vertex v ∈ V (Bt
i),

fi(v) =

{
fi−2(v) if v ∈ V (Bt

i−2) ∩ V (Bt
i),

φ(v) if v ∈ V (LGi) ∩ V (Bt
i).

Next, we prove that fi is an [k]-IRDF of Bt
i . By induction hypothesis, the

[k]-IRDF fi−2 of Bt
i−2 is such that fi−2(a) = k + 1, fi−2(b) = 0, fi−2(wi−2) =

k + 1, fi−2(zi−2) = 0. This implies that the labeling fi restricted to subgraph
Bt

i−2 − Eout
i−2 ⊂ Bt

i is almost a [k]-IRDF of Bt
i−2 − Eout

i−2 since zi−2 and b are the
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(a) Snark B2
2 with a special [k]-IRDF with weight 7(k+1).
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(b) Snark B2
3 with a special [k]-IRDF with weight 9(k + 1).

Figure 11. Special [k]-IRDFs for the snarks B2
2 and B2

3 .
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Figure 12. Link graph LGi with a vertex labeling φ. Note that the vertices yi−1, zi and
its neighbors have label 0.

only vertices with label 0 in Bt
i−2 − Eout

i−2 such that f(N [zi−2]) < |AN(zi−2)|+ k
and f(N [b]) < |AN(b)| + k. Also, by construction, the labeling fi restricted to
subgraph LGi ⊂ Bt

i assigns label 0 to vertices yi−1 and zi, and these are the
only vertices with label 0 in LGi that have f(N [yi−1]) < |AN(yi−1)| + k and
f(N [zi]) < |AN(zi)|+k. Additionally, no two vertices with label k+1 in LGi are
adjacent. Thus, fi restricted to LGi is almost a [k]-IRDF of LGi since yi−1 and
zi are the only vertices of LGi that have label 0 and f(N [yi−1]) = f(N [zi]) = 0.
Therefore, in order to prove that fi is a [k]-IRDF of Bt

i , it suffices to show
that the vertices yi−1, zi−2, zi, b have a neighbor in Bt

i with label k + 1. This
comes down to analyzing the labels of the endpoints of the edges in the set Ein

i =
{wi−2yi−1, zi−2xi−1, azi, bwi} and verify if the vertices wi−2, xi−1, a, wi have label



Independent [k]-Roman Domination on Graphs 19

k + 1. From the definition of fi, we have that fi(wi−2) = fi−2(wi−2) = k + 1,
fi(xi−1) = φ(xi−1) = k + 1, fi(a) = fi−2(a) = k + 1 and fi(wi) = φ(wi) = k + 1.
Thus, the vertices yi−1, zi−2, zi, b (that have label 0) are adjacent to vertices with
label k + 1 in Bt

i , that is, the function fi is a [k]-IRDF of Bt
i .

Now, we prove that fi is special. The weight of fi is given by the sum of
the weights of the functions fi−2 and φ. Thus, if t = 1, i ≥ 5 and i odd, then
ω(fi) = ω(fi−2)+ω(φ) = (k+1)(2(i−2)+2)+2k+4(k+1) = (k+1)(2i+2)+2k;
otherwise, we have that ω(fi) = ω(fi−2)+ω(φ) = (k+1)(2(i−2)+3)+4(k+1) =
(k + 1)(2i+ 3). Note that fi(a) = k + 1, fi(b) = 0, fi(wi) = k + 1 and fi(zi) = 0
since these are the labels of each of these vertices in the subgraphs Bt

i−2 and LGi.
Therefore, fi is a special [k]-IRDF of Bt

i , and the result follows.

By Theorem 14, i[kR](B
t
i) ≥ (k+1)(2i+2.5) for k ≥ 4. However, for increas-

ingly larger values of k, this lower bound moves away from the upper bounds
given in Theorem 17. Therefore, better lower bounds are needed. Theorems 21
and 22 establish better lower bounds for the parameter i[kR](B

t
i). In order to

prove these results, we first present some additional definitions and auxiliary
lemmas and theorems.

Given a graph G and two disjoint sets S1 ⊂ V (G) and S2 ⊂ V (G), we denote
by E(S1, S2) the set of edges uv ∈ E(G) such that u ∈ S1 and v ∈ S2. Also, given
S ⊆ V (G), we denote by N(S) the set of vertices {w ∈ V (G)\S : uw ∈ E(G) and
u ∈ S}. We also define N [S] = S ∪N(S).

Lemma 18. Let k ≥ 2 be an integer. If G is a 3-regular graph with n vertices

and f = (V0, Vk, Vk+1) is an i[kR]-function of G, then |Vk| ≤
8i[kR](G)−2(k+1)n

3k−5 and

|Vk+1| ≥
2kn−5i[kR](G)

3k−5 .

Proof. Let G be a 3-regular graph with n vertices and f = (V0, Vk, Vk+1) be an
i[kR]-function of G. Thus, i[kR](G) = ω(f) = k|Vk| + (k + 1)|Vk+1|. This fact
implies that

(1) |Vk+1| =
i[kR](G)− k|Vk|

k + 1
and |Vk| =

i[kR](G)− (k + 1)|Vk+1|
k

.

Since k ≥ 2, each vertex v ∈ V (G) with f(v) = 0 has at least one neighbor
with label k + 1 or at least two neighbors with label k. Let S = V0 ∩ N(Vk+1)
and T = V0\S. Since G is 3-regular, each vertex in Vk+1 is adjacent to at most 3
vertices in S. Thus, |S| ≤ 3|Vk+1|. Similarly, since each vertex in Vk is adjacent
to at most 3 vertices in T and since each vertex in T has at least two neighbors
in Vk, we obtain that 2|T | ≤ |E(Vk, T )| ≤ 3|Vk|, which implies that |T | ≤ 3|Vk|

2 .

Therefore, |V0| = |S|+ |T | ≤ 3|Vk+1|+ 3|Vk|
2 .

From the definition of [k]-IRDF, it follows that n = |V0| + |Vk| + |Vk+1|.
Hence, n = |V0|+ |Vk|+ |Vk+1| ≤ 3|Vk+1|+ 3|Vk|

2 + |Vk|+ |Vk+1| = 4|Vk+1|+ 5|Vk|
2 ,
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that is,

(2) n ≤ 4|Vk+1|+
5|Vk|
2

.

From Equation (1) and Inequality (2), we have that n ≤ 4 · i[kR](G)−k|Vk|
k+1 +

5|Vk|
2 =

8i[kR](G)−(3k−5)|Vk|
2(k+1) . From the last inequality, we conclude that |Vk| ≤

8i[kR](G)−2(k+1)n

3k−5 . Also, from Equation (1) and Inequality (2), we have that n ≤
4|Vk+1|+

5i[kR](G)−5(k+1)|Vk+1|
2k =

8k|Vk+1|+5i[kR](G)−5(k+1)|Vk+1|
2k =

5i[kR](G)+(3k−5)|Vk+1|
2k .

From the last inequality, we conclude that |Vk+1| ≥
2kn−5i[kR](G)

3k−5 .

Lemma 19. Let G be a graph and k ≥ 1 be an integer. For any i[kR]-function
f = (V0, Vk, Vk+1) of G, we have that |Vk+1| ≤ i[kR](G) − k · i(G) and |Vk| ≥
(k + 1)i(G)− i[kR](G).

Proof. LetG be a graph with an i[kR]-function f = (V0, Vk, Vk+1). Since Vk∪Vk+1

is an independent dominating set of G, we have i(G) ≤ |Vk| + |Vk+1|. Hence,
k · i(G) ≤ k|Vk|+k|Vk+1| = k|Vk|+(k+1)|Vk+1|−|Vk+1| = i[kR](G)−|Vk+1|. This
implies that |Vk+1| ≤ i[kR](G)− k · i(G). In addition, (k+1)i(G) ≤ (k+1)|Vk|+
(k + 1)|Vk+1| = i[kR](G) + |Vk|. This implies that |Vk| ≥ (k + 1)i(G) − i[kR](G),
and the result follows.

The next result is used in our proofs and determines the domination number
and independent domination number for generalized Blanuša snarks.

Theorem 20 (Pereira [17]). Let Bt
i be a generalized Blanuša snark with t ∈ {1, 2}

and i ≥ 1. Then

i(Bt
i) = γ(Bt

i) =

{
2i+ 4 if t = 1 and i ≥ 3 with i odd,

2i+ 3 otherwise.

Theorem 21. Let k ≥ 2 be an integer. Let Bt
i be a generalized Blanuša snark

such that t = 1 and i ≥ 3 with i odd. Then i[kR](B
t
i) ≥ (k + 1)(2i+ 2) + 2k − 2.

Proof. By the definition ofBt
i , we have that |V (Bt

i)| = 8i+10. Define n = 8i+10.
Let f = (V0, Vk, Vk+1) be an i[kR]-function of Bt

i . For the purpose of contradiction,
suppose that i[kR](B

t
i) ≤ (k+1)(2i+2)+2k−3. Next, we find a lower bound for

|Vk|. By Theorem 20 and Theorem 19, |Vk| ≥ (k+1)i(G)−i[kR](G) ≥ (k+1)(2i+
4)−[(k+1)(2i+2)+2k−3] = 5. Thus, |Vk| ≥ 5. Next, we find an upper bound for

|Vk|. By Lemma 18, |Vk| ≤
8i[kR](B

t
i )−2(k+1)n

3k−5 ≤ 8((k+1)(2i+2)+2k−3)−2(k+1)(8i+10)
3k−5 =

12k−28
3k−5 < 4 for all k ≥ 2. That is, |Vk| < 4. However, these facts imply that
5 ≤ |Vk| < 4, which is a contradiction.
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Theorem 22. Let k ≥ 4 be an integer. Let Bt
i be a generalized Blanuša snark

such that t = 2, or t = 1 with i = 1, or t = 1 with i even. Then

i[kR](B
t
i) = (k + 1)(2i+ 3).

Proof. Let k ≥ 4 be an integer. By Theorem 17, i[kR](B
t
i) ≤ (k+1)(2i+3). So,

in order to conclude the proof, it suffices to prove that i[kR](B
t
i) ≥ (k+1)(2i+3).

By the definition of Bt
i , we have that |V (Bt

i)| = 8i+ 10. Define n = 8i+ 10. Let
f = (V0, Vk, Vk+1) be an i[kR]-function of Bt

i . For the purpose of contradiction,
suppose that i[kR](B

t
i) ≤ (k + 1)(2i+ 3)− 1.

By Lemma 18, |Vk| ≤ 8i[kR](B
k
i )−2(k+1)n

3k−5 ≤ 8((k+1)(2i+3)−1)−2(k+1)(8i+10)
3k−5 =

(k+1)[8(2i+3)−2(8i+10)]−8
3k−5 = 4k−4

3k−5 . That is, |Vk| ≤ 4k−4
3k−5 . For k ≥ 4, we have that

4k−4
3k−5 < 2. This implies that |Vk| < 2 for all k ≥ 4. On the other hand, by
Lemma 19 and Theorem 20, |Vk| ≥ (k + 1)i(Bt

i) − i[kR](B
t
i) ≥ (k + 1)(2i + 3) −

(k + 1)(2i+ 3) + 1 = 1. These facts imply that |Vk| = 1.
By the definition of [k]-RDF, i[kR](B

t
i) = k|Vk| + (k + 1)|Vk+1| = k + (k +

1)|Vk+1|. Moreover, since i(Bt
i) = 2i + 3, we have that 2i + 3 = i(Bt

i) ≤ |Vk| +
|Vk+1| = 1 + |Vk+1|, which implies that |Vk+1| ≥ 2i+ 2. Hence, i[kR](B

t
i) = (k +

1)|Vk+1|+k ≥ (k+1)(2i+2)+k. From these facts, we have that (k+1)(2i+2)+k ≤
i[kR](B

t
i) ≤ (k+1)(2i+3)−1. However, since (k+1)(2i+2)+k = (k+1)(2i+3)−1,

we obtain that i[kR](B
t
i) = (k+1)(2i+2)+k. Since i[kR](B

t
i) = (k+1)(2i+2)+k

and |Vk| = 1, we obtain that |Vk+1| = 2i+ 2.
Since Bt

i is 3-regular, each vertex in Vk+1 dominates at most 3 vertices in V0.
Thus, |N(Vk+1)| ≤ 3|Vk+1|. This implies that |N [Vk+1]| = |Vk+1| + |N(Vk+1)| ≤
(2i+2)+3(2i+2) = 8i+8. In other words, there are at most 8i+8 vertices that
are either in Vk+1 or are dominated by vertices in Vk+1. Since |V (Bt

i)| = 8i+10,
there are at least 2 vertices in the set V0 ∪ Vk that are not dominated by vertices
with label k + 1. One of these vertices belongs to the set Vk, since |Vk| = 1, and
the other vertex, say w, belongs to the set V0. Since f(w) = 0 and vertex w has
no neighbor in the set Vk+1, we conclude that f(N [w]) < k + |AN(w)|, which is
a contradiction.

Corollary 23 follows from Theorems 20 and 22.

Corollary 23. Let k ≥ 4 be an integer. If Bt
i is a generalized Blanuša snark,

with t = 2, or t = 1 with i = 1, or t = 1 with i even, then Bt
i is an independent

[k]-Roman graph.

5. Closing Remarks

In this work, we prove that, for all k ≥ 3, the independent [k]-Roman domination
problem and the [k]-Roman domination problem are NP-complete even when
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restricted to planar bipartite graphs with maximum degree 3 and also present
lower and upper bounds for the parameter i[kR](G). Moreover, we investigate
i[kR](G) for a family of 3-regular graphs called generalized Blanuša snarks.

In Corollary 23, we present an infinite family of independent [k]-Roman
graphs, which are graphs that have i[kR](G) = (k + 1)i(G). An interesting open
problem is finding other classes of independent [k]-Roman graphs.

Adabi et al. [2] proved that any graph G with ∆(G) ≤ 3 has γ[kR](G) =
i[kR](G) for k = 1. We remark that the family of planar bipartite graphs with
maximum degree 3 constructed in the reduction shown in Section 2 is an example
of infinite family of graphs with ∆(G) = 3 for which γ[kR](G) = i[kR](G) for all
k ≥ 1. Thus, another interesting line of research is finding other classes of graphs
with ∆(G) ≤ 3 for which γ[kR](G) = i[kR](G) for k ≥ 2. In fact, we conjecture
that this property holds for all generalized Blanuša snarks.
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