DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2024): 0.8

5-year Journal Impact Factor (2024): 0.7

CiteScore (2024): 2.1

SNIP (2024): 1.162

Discussiones Mathematicae Graph Theory

Article in press


Authors:

F. Zhang

Fei Zhang

Zhe Jiang Normal University
1146885453@qq.com

email: 1146885453@qq.com

D.-J. Huang

Dan-Jun Huang

Zhejiang Normal University

email: hdanjun@zjnu.cn

0000-0003-1179-1883

Title:

Vertex partitions of (C4, C5, C10)-free graphs

PDF

Source:

Discussiones Mathematicae Graph Theory

Received: 2024-06-05 , Revised: 2025-01-14 , Accepted: 2025-01-14 , Available online: 2025-01-29 , https://doi.org/10.7151/dmgt.2577

Abstract:

A graph $G$ is improperly $(d_1, d_2,\dots,d_k)$-colorable or just $(d_1, d_2,\dots,d_k)$-colorable if its vertices can be partitioned into $k$ subsets $V_1, V_2, \dots, V_k$ such that $\Delta(G[V_i])\leq d_i$ for $1\leq i\leq k$. It is known that every $(C_4, C_i, C_j)$-free planar graph is $(1, 0, 0)$-colorable whenever $5\leq i<j\leq 9$. In this paper, we prove that every $(C_4, C_5, C_{10})$-free planar graph is $(1, 0, 0)$-colorable.

Keywords:

planar graph, improper coloring, Steinberg conjecture, cycle

References:

  1. V. Cohen-Addad, M. Hebdige, D. Král, Z. Li and E. Salgado, Steinberg's Conjecture is false, J. Combin. Theory Ser. B 122 (2017) 452–456.
    https://doi.org/10.1016/j.jctb.2016.07.006
  2. K. Appel and W. Haken, Every planar map is four colorable, Part I. Discharging, Illinois J. Math. 21 (1977) 429–490.
    https://doi.org/10.1215/ijm/1256049011
  3. K. Appel, W. Haken and J. Koch, Every planar map is four colorable, Part II. Reducibilituy, Illinois J. Math. 21 (1977) 491–567.
    https://doi.org/10.1215/ijm/1256049012
  4. J.A. Bondy and U.S.R. Murty, Graph Theory, Grad. Texts in Math. 244 (Springer-Verlag, London, 2008).
    https://doi.org/10.1007/978-1-84628-970-5
  5. Y. Bu, J. Xu and Y. Wang, $(1, 0, 0)$-colorability of planar graphs without prescribed short cycles, J. Comb. Optim. 30 (2015) 627–646.
    https://doi.org//10.1007/s10878-013-9653-5
  6. M. Chen, Y. Wang, P. Liu and J. Xu, Planar graphs without cycles of length $4$ or $5$ are $(2, 0, 0)$-colorable, Discrete Math. 339 (2016) 886–905.
    https://doi.org//10.1016/j.disc.2015.10.029
  7. Y. Kang, L. Jin, P. Liu and Y. Wang, $(1,0,0)$-colorability of planar graphs without cycles of length $4$ or $6$, Discrete Math. 345 (2022) 112758.
    https://doi.org//10.1016/j.disc.2021.112758
  8. H. Lu, Y. Wang, W. Wang, Y. Bu, M. Montassier and A. Raspaud, On the $3$-colorability of planar graphs without $4$-, $7$- and $9$-cycles, Discrete Math. 309 (2009) 4596–4607.
    https://doi.org//10.1016/j.disc.2009.02.030
  9. S.A. Mondal, Planar graphs without $4$-, $5$- and $8$-cycles are $3$-colorable, Discuss. Math. Graph Theory 31 (2011) 775–789.
    https://doi.org/10.7151/dmgt.1579
  10. W.-F. Wang and M. Chen, Planar graphs without $4$, $6$, $8$-cycles are $3$-colorable, Sci. China Math. 50 (2007) 1552–1562.
    https://doi.org/10.1007/s11425-007-0106-4
  11. Y. Wang and Y. Yang, $(1, 0, 0)$-colorability of planar graphs without cycles of length $4$, $5$ or $9$, Discrete Math. 326 (2014) 44–49.
    https://doi.org//10.1016/j.disc.2014.03.001
  12. B. Xu, On $3$-colorable plane graphs without $5$- and $7$-cycles, J. Combin. Theory Ser. B 96 (2006) 958–963.
    https://doi.org//10.1016/j.jctb.2006.02.005

Close