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Abstract

A graph G is improperly (dy,ds, . .., d)-colorable or just (di, da, . .., dy)-
colorable if its vertices can be partitioned into k subsets Vi, V5, ..., Vi such
that A(G[V;]) < d; for 1 < i < k. It is known that every (C4, C;, C;)-free
planar graph is (1,0, 0)-colorable whenever 5 < i < j < 9. In this paper, we
prove that every (Cy, Cs, C1g)-free planar graph is (1,0, 0)-colorable.
Keywords: planar graph, improper coloring, Steinberg conjecture, cycle.
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1. INTRODUCTION

All graphs considered here are simple and undirected. Let G = (V| E) be a finite
graph with the vertex set V' and the edge set E. Let ¢1,19,...,7; be k positive
integers such that 3 < iy < iy < -+ <. The (C;,,Ci,,...,Ci)-free graph is
a graph without cycles of lengths i1,149,...,9. A proper k-coloring of a graph
G is a mapping ¢ : V — {1,2,...,k} such that ¢(u) # p(v) whenever uv € E.
The graph G which has a proper k-coloring is called k-colorable. The Four Color
Theorem (saying that every planar graph is 4-colorable) was proved by Appel,
Haken and Koch [2][3]. In 1976, Steinberg conjectured that every (Cy, Cs)-free
planar graph is 3-colorable, which was disproved by Cohen-Addad et al. in [1].
Let dy,ds,...,d; be k nonnegative integers. A graph is improperly (dy,ds,
..., dg)-colorable or just (di,ds,...,dg)-colorable, if the vertex set V can be
partitioned into k subsets Vi, Vo, ...,V such that A(G[Vi]) < d; for 1 < i < k.
Under this terminology, the Four Color Theorem can be described as: every
planar graph is (0, 0,0, 0)-colorable, and the Steinberg Conjecture says that every
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(Cy, Cs)-free planar graph is (0,0, 0)-colorable. Chen et al. [6] showed that
every (Cy, Cs)-free planar graph is (2,0, 0)-colorable. It was shown that every
(C4, C;, Cj)-free planar graph is (1,0,0)-colorable for all 5 < i < j < 9, see [5]
and [7]-[12].

Let G be the family of (Cy,Cs, Chg)-free planar graphs. In this paper, we
consider the improper coloring of every planar graph without cycles of lengths 4,
5 and 10.

Theorem 1. Every planar graph in G is (1,0,0)-colorable.

The rest of this section is devoted to introduce some definitions. The notation
and terminology used but undefined in this paper can be found in [4]. Call a graph
G planar if it can be embedded into the plane so that its edges meet only at their
ends. Any such particular embedding of a planar graph is called a plane graph.
For a plane graph G, we use F' to denote its face set. For a vertex v € V, a
neighbor of v is a vertex adjacent to v, and the set of neighbors of v is denoted
by N(v). The degree of v, denoted by dg(v) or simply d(v), is the number of
neighbors of v. The minimal degree of the vertices of G is denoted by §(G), and
the maximum degree of vertices of G is denoted by A(G). Call the vertex v a
k-vertex, or a kT-vertex, or a k™ -vertex if d(v) = k, or d(v) > k, or d(v) < k,
respectively. Let fi(v) be the number of k-faces incident with v. Similarly, we
can define f+(v) and fi-(v).

For a face f, the number of edges on the boundary of f (each cut edge is
counted twice) is called the degree of f, denoted by d(f). Call the face f a k-face,
orakT-face, or ak™-faceif d(f) =k, or d(f) > k, or d(f) < k, respectively. We
write f = [vivg - - vg] if vy, va,. .., v are consecutive vertices on the boundary of
f in a cyclic order, and say that f is a (d(v1),d(v2),...,d(v;))-face. A pendant
3-face of a vertex v is a 3-face which is not incident with v but is incident with a
3-vertex adjacent to v. Call a vertex or an edge triangular if it is incident with
a 3-face. If a 3-vertex v is triangular, say v is incident with a 3-face f, then its
neighbor not incident with f is called its outer neighbor. If the outer neighbor
of a 3-vertex v is a k-vertex, then we call it an outer k-neighbor of v. Let k be a
positive integer, call a vertex v k-triangular if it is incident with k non-adjacent
3-faces.

Let C be a cycle of a plane graph G. We use int(C) and ext(C') to denote
the sets of vertices located inside and outside C, respectively. The cycle C is
seperating if int(C) # () and ext(C) # (). Here we have some definitions.

2. REDUCIBLE CONFIGURATIONS

As usual, to properly color a vertex v means to assign v a color which has not
been appeared to any neighbor of v. For a (1,0, 0)-coloring, to color a vertex v
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means to color v with 1 such that v has at most one neighbor with color 1, or to
properly color v with i, i € {2,3}.

Let G € G be a planar graph which is not (1,0, 0)-colorable but every sub-
graph of G with fewer vertices is. That is, G is the counterexample to Theorem
1 with fewest number of vertices. Clearly, G is connected. Embed G into the
plane.

Lemma 2 [5]. §(G) > 3.
Lemma 3 [5]. If v is a 3-vertex in G, then v has a 4T -neighbor.

Lemma 4 [5]. If v is a 3-vertex incident with a (3,3,47)-face, then the outer
neighbor of v is a 4T -vertex.

3. STRUCTURES OF 2-CONNECTED PLANAR GRAPHS IN G

In this section, G = (V, E, F) is a 2-connected plane graph in G. As G is 2-
connected, every face is simple, i.e., its boundary is a cycle. Hence G has no
k-face for k € {4,5,10}. Suppose f and f’ are two faces in G. f and f’ are
adjacent if they share an edge. Two adjacent faces are normal adjacent if they
have only two common vertices. If f and f’ are two adjacent faces with common
edge zy, then f’ can be represented by fs,,. Moreover, if f = [v1v9vs] is a 3-face,
then f,,,, can be abbreviated to fis.

Lemma 5. Let fi be a 97 -face in G and fo be a 3-face in G. If fi and fo are
adjacent, then they are normal adjacent.

Proof. Suppose f = [v1vs - - - vi] is the 9~ -face adjacent to the 3-face T' = [v1v9v].
Obviously, k # 3; otherwise, there is a 4-cycle, a contradiction. Hence, k €
{6,7,8,9}. To prove f and T are normal adjacent, by symmetry, we only need
to prove that v # v;, i € {3,4,5,6}. If v = v3, then d(v2) = 2, contradicting to
Lemma 2. If v = vy, then vivov3v4v1 is a 4-cycle, a contradiction. If v = vy, then
V9U3V4U5V2 s a 4-cycle, a contradiction. If v = vg, then vovzvavsV6V2 is a b-cycle,
a contradiction. [

Since G is 2-connected, by Lemma 5 and because G is (Cy, C5, Cip)-free, it
is easy to show that the following lemma holds.

Lemma 6. (1) No two 3-faces in G are adjacent.

(2) A 6-face in G is adjacent to at most three 3-faces.
(3) A T-face in G is adjacent to at most two 3-faces.
(4) A 8-face in G is adjacent to at most one 3-face.
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(5) No 9-face in G is adjacent to a 3-face.
(6) No two 6-faces in G are adjacent.

Lemma 7. Let v be a 3-vertex, and vi,vy and vs be the neighbors of v in the
clockwise order. Let f; be the face with vv; and vv,11 as boundary edges, where
i €{1,2,3} and va = vy. If d(f1) = 3, d(f2) = 6 and d(f3) = 7, then G must

contain a subgraph G1 as shown in Figure 1.
Figure 1. The graph G; in Lemma 6. The shadow area might not be a face.

Proof. Let fi = [vviva], fa = [vvazizoxsvs], and f3 = [vvsyiyaysyavi]. By
Lemma 5, vo ¢ {y1,y2,y3,y4} and vy ¢ {x1, 29, x3}. If {x1, 22, 23} {Y1, Y2, Y3, Ya }
= (), then G has a 10-cycle v vox1T273V3Y1Y2Y3Y4V1, a contradiction. If 1 = y; or
r1 = ¥y9, then G has a 4-cycle yjvsvvay; or a 5-cycle yoy1v3vV2Yy2, a contradiction.
If 1 = y3 or 1 = y4, then G has a 4-cycle ysysvivoys or a 4-cycle yqv1vv2y4,
a contradiction. If zo = y4 or zo = y3, then G has a 4-cycle yqvivox1ys Or a
5-cycle y3ysv1vex1ys3, a contradiction. If x3 = y;, then d(v3) = 2, contradicting
to Lemma 2. If z9 = g9 or x9 = y;, then G has a 4-cycle ysy1v323Y2 Or a 5-
cycle y1v3vvex1y1, a contradiction. If x3 = y3 or x3 = y4, then G has a 4-cycle
V3Y1Y2y3vs or a b-cycle vsy1yays3y4vs, a contradiction. Therefore, x3 = yo. Hence,
G must have a subgraph G as shown in Figure 1. [

If a 3-vertex v is incident with three faces fi, fa and f3 such that d(f;) <
d(f2) < d(f3), then v is called a 3(Uf1).d(f2).d(f3))_yertex.

Lemma 8. G contains only nine types of triangular 3-vertex. (1) 33:6:8) _yertex;
(2) 3BS85 _perter; (3) 337D pertex; (4) 3378 vertex; (5) 33711 pertex; (6)
36B88) _verter; (7) 3G81) perter and (8) 3G yerter; (9) 36367 _verter.
Moreover, if G has (36.7) _vertices, then G has a 2-connected subgraph H so that
the outer boundary of H is a 3-cycle and there is no 3357 _vertex in H.

Proof. Suppose a 3-vertex v is incident with faces f1, fo and f3 so that d(f1) = 3
and d(f2) < d(f3). By Lemma 6, d(f;) ¢ {9,10} for each ¢ € {2,3}. Since G is
(Cy, Cs5, Chp)-free, d(f3) > d(f2) > 6. First suppose d(f2) = 6, by Lemma 6(5)
and (6), d(f3) = 7,8 or d(f3) > 11. Hence, we get (9), (1) or (2), respectively.
Suppose d(f2) = 7. Then d(f3) = 7,8 or d(f3) > 11. Hence, we get (3), (4) or
(5), respectively. Suppose d(f2) = 8. If d(f3) = 8, we get (6); otherwise, we get
(7). Finally suppose d(f2) > 11, we get (8).

Suppose G has a 3367 _vertex v. By Lemma 7, G contains the subgraph Gy
as shown in Figure 1. Then C = v3yiz3vs is a separating 3-cycle. Assume that
v € ext(C). Let G' = G[V(C) Uint(C)]. The outer boundary of G’ is a 3-cycle
and v ¢ G'. G is 2-connected, hence G’ is 2-connected. Since G is a finite graph,
we can get a 2-connected subgraph H of G by finite induction so that there is no
3(36.7)_vertex in H and the outer boundary of H is a 3-cycle. [
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To simplify notation, the triangular 3-vertex in the Lemma 8 is referred to
simply as 3@-vertex. For example, 3(1)-vertex is the 3(36:8)_vertex, 3(3)-vertex is
the 3377 _vertex.

For convenience, we need to define some notations to indicate the structures
around 6~ -vertex. A 639-vertex stands for the 3-triangular 6-vertex.

For 5-vertex, a 529-vertex stands for the 2-triangular 5-vertex which has one
pendant 3-face. A 5%-vertex stands for the 2-triangular 5-vertex which has no
pendant 3-face. A 5'vertex stands for the 5-vertex which is incident with at
most one 3-face. A 51¢1-vertex stands for the 1-triangular 5-vertex with f7(v) = 4
and three pendant 3-faces. A 5'2-vertex stands for the 1-triangular 5-vertex with
fe(v) =1, f7(v) = 2 and three pendant 3-faces.

For 4-vertex, a 4%9-vertex stands for the 2-triangular 4-vertex. A 4%9'-vertex
stands for the 429-vertex which is incident with one 6-face and one 7-face. A
4'9_vertex stands for the 1-triangular 4-vertex which has two pendant 3-faces.
A 491 _vertex stands for the 4'9-vertex which is incident with three 7-faces. A
4'_vertex stands for the 1-triangular 4-vertex which has one pendant 3-face. A
4'_vertex stands for the 1-triangular 4-vertex which has no pendant 3-face. A
4% -vertex stands for the 4-vertex which is incident with no 3-face and has four
pendant 3-faces.

For 3-vertex incident with no 3-face, a 3“-vertex stands for the 3-vertex whose
neighborhoods are all the 3()-vertices. A 3"-vertex stands for the 3-vertex whose
neighborhoods has two 3(®)-vertices. A 3%-vertex stands for the 3-vertex whose
neighborhoods has two 3(M-vertices.

Lemma 9. If v is a 4%9-vertex, then v cannot be incident with two 6-faces.

Proof. Suppose v is a 4%9-vertex. Let vy, va, v3, v4 be the neighbors of v in
clockwise order. Let f; be the face with vv; and vv;y1 as the boundary edges
of fi, where i € {1,2,3,4} and vs = v;. Then d(f1) = d(f3) = 3, say f1 =
[vvive] and f3 = [vusvs]. Assume to the contrary that d(f2) = d(fis) = 6,
say fo = [vvarizawsvs] and fi = [vvayiyaysvi]. By Lemma 5, {vi,va,v3,v4} N
{1, 29, 23,91,y2,y3} = 0. If {1, 29,23} N {y1,92,y3} = 0, then G has a 10-
cycle v1vV9x1X2T3V3V4Y1Y2Y3V1, a contradiction. So by symmetry, assume that
x1 € {y1,y2,y3} or xo = yo. If z; = ys3, then G has a 4-cycle ysvivvays, a
contradiction. If x1 = yo or 1 = y1, then G has a 4-cycle yoysvivoy2 or a 5-
cycle y1y2y3v1v2y1, respectively, a contradiction. If z9 = y9, then G has a 5-cycle
Y23V1V21Y2, a contradiction. [ |

For convenience, if f = [vivovs] is a (31,31, 4291)-face, say v3 is a 4291 -vertex,
and the other 3-face incident with vs is a (3(3), 4291 4291)_face, then we call f a
weak 3-face. If f = [vjvaus] is a (32,3 5F)-face say d(vs) > 5, such that the
outer neighbor of each 3()-vertex is a triangular 3-vertex and d(f12) > 11, then
we call f a special 3-face.
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Lemma 10. Let f = [vivav3] be a weak 3-face so that d(vi) < d(va2) and vs is
the 4291 -vertex. Then v; is not a 4°9-vertex, a 4'9-vertex, or a 5%9-vertex for each
ie{l,2}.

Proof. Let ' = [vsxy] be the second 3-face incident with vs. Then f’ is a
(3(3), 4291 4291)_face, say x is the 4291-vertex and y is the 3G)_vertex. Then fi3 is
a 7-face adjacent to two 3-faces, and fo3 is a 6-face adjacent to three 3-faces. By
Lemma 6(3) and (2), we can deduce that v; is not a 429-vertex, a 4'9-vertex, or
a 5%9-vertex for each i € {1,2}. Hence, Lemma 10 holds. |

Lemma 11. Let f = [vivavs] be a (3),30) 36))_face, v} (i € {1,2}) be the
outer 4T -neighbor of v;. Then at most one of v}, vh and v} is a 4'9-vertex, or a
4% _vertex or a 5%9-vertex. Furthermore, if one of them, say vy, is a 419 _yerter,
or a 4Y-vertezx or a 529-vertez, then at most one of vh and vh is a 4*-vertex.

Proof. By the definition of 3®)-vertex, d(fi2) = d(f13) = d(fo3) = 7. First we
may assume that v} is a 4'9-vertex. Then fi5 and fi3 are the 7-faces adjacent to
two 3-faces. So by Lemma 6(3), v} or v4 cannot be a 4'9-vertex, or a 4*-vertex
or a 529-vertex. If v} and v} are both A _yertex, then one of fia, fi3 and fo3
must be a 7-face adjacent to three 3-faces, contradicting to Lemma 6(3). Hence
Lemma 13 holds when v} is a 419-vertex. We can prove that Lemma 11 holds
when v} is a 4¥-vertex or a 5%9-vertex with a similar discussion as above. u

4. DISCHARGING PROCEDURE

To complete the proof of Theorem 1, we are going to derive a contradiction by a
discharging procedure according to the structures established above.

Let G = (V,E,F) be the counterexample to Theorem 1 with the fewest
vertices. First we assume that G is 2-connected. Thus the boundary of every
face of G is a cycle, and every vertex v of GG is incident with d(v) distinct faces.
The initial charge function ch in the discharging procedure is defined as: ch(v) =
d(v) —4 for each v € V', and ch(f) = d(f) — 4 for each f € F. By Euler’s formula
|V = |E| +|F| = 2 and Handshaking Theorem }, .\, d(v) = 2|E| = > s pd(f),
we can deduce that

D (do) =4+ ) (d(f) —4) = 8.

veV fer

If we can define suitable discharging rules to change the initial charge function
ch to the final charge function ch’ on VUF such that ch/(z) > Oforallz € VUF,
then 0 < > yupch/(x) =3 cyup ch(z) = =8, a contradiction completing the
proof of Theorem 1 when G is 2-connected.
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Now our proof will be divided into two cases depending on the existence of a
33:6.7)_vertex or not. Firstly, assume that G does not contain any 3367 vertex.
We design the following discharging rules.
R1. Every 6"-face f sends c;((f)) to each incident vertex.
R2. Let v be a triangular 3-vertex, and f be the 3-face incident with v. Then f
sends % to v when v is a 3()-vertex, % to v when v is a 3@ -vertex, % to v when
v is a 3G)-vertex, 1—14 to v when v is a 3(¥)-vertex.

Suppose that the charge of vertex v is a(v) after applying the rules R1 and R2.

R3. Suppose that v is a 3-vertex.

R3.1. If v is not incident with any 3-face, then v sends a(v) to each pendant
3-face evenly.

R3.2. If v is a 3W-vertex, i € {5,6,7,8}, then v sends a(v) to its incident
3-face.

RA4. Suppose that v is a 4-vertex.
R4.1. Suppose that v is a 429-vertex. If v is incident with a (3(3), 4291 4201).

face f, then v sends % to f and sends % to another incident 3-face. Otherwise,
v sends # to each incident 3-face.

R4.2. If v is a 4'9-vertex, then v sends % to its incident 3-face and sends
a(v)—3

——5—— to each pendant 3-face.

R4.3. If v is a 4'%-vertex, then v sends
a(v) — 2 to pendant 3-face.

R4.4. If v is a 4'“-vertex, then v sends 1 to its incident 3-face.

to its incident 3-face and sends

wiN

RA4.5. If v is not incident with any 3-face, then v sends «(v) to each pendant
3-face evenly.

R5. Suppose that v is a 5-vertex.

R5.1. Suppose that v is a 529-vertex.

(1) If v is incident with two (3(3), 309, 529))-faces, then v sends 2 to each
incident 3-face and sends % to pendant 3-face.

(2) If v is incident with exactly one (3¢, 30 529)-face or one (301, 3(1)

529)-face f, then v sends 1 to f, % to pendant 3-face and sends the remaining

charge to another incident 3-face;

(3) If v is incident with a special 3-face f, then v sends % to f, % to the
pendant 3-face and sends the remaining charge to another incident 3-face.

(4) Otherwise, v sends % to pendant 3-face and sends the remaining charge
to each incident 3-face evenly.
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R5.2. Suppose that v is a 5%-vertex. If v is incident with a special 3-face f,
then v sends to the special 3-face and the remaining charge to another incident

( )

3-face. Othervvlse v sends £ to each incident 3-face.

R5.3. Suppose that v is a 5'%vertex. If v is a 5'¢-vertex or a 5'®-vertex,
then v sends 1 to each incident 3-face and 4 to each pendant 3-face. Otherwise,
v sends 3 = to each incident 3-face and 4 to each pendant 3-face.

R6. Suppose that v is a 6-vertex.

R6.1. Suppose that v is a 639-vertex. Then v sends 31 to each incident
(3(3),3(3), 6)—face, 33 to each incident special 3-face, and sends the remaining
charge to other incident 3-faces evenly.

R6.2. Suppose that v is 1n01dent with at most two 3-faces. Then v sends =
to each incident 3-face, and sends 2 = to each pendant 3-face.

R7. Every 7t-vertex sends & = to each incident 3-face, and 2 = to each pendant
3-face.

Now we are going to check that ch/(z) >0 for all z € V U F.
Claim 12. Let v € V.. Then ch/(v) > 0.

Proof. By Lemma 2, d(v) > 3. Let d(v) = k. Set vy, ve, ..., v be the neighbors
of v in clockwise order. Let f; be the face incident with vv; and vv;4+1, where
i€{1,2,...,k} and vp11 = v1. Let t be the number of 3-faces incident with v

and m be the number of pendant 3-faces of v. Since G has no 4-cycles, t < L@J
and m < d(v) — 2t.

Case 1. d(v) > 7. By Rl and R7, v gets at least § from each incident 67-
face, sends % to each incident 3-face, and sends % to each pendant 3-face. Hence,
%ﬂ(v) > ch( )+ 3(izﬁ( )—t) )5 St—2m > d2(5v)—4+%(d(zf)—t)—%t—%(d(v)—%) =

Case 2. d(v) = 6. Then ch(v) = 2. Note that a(v) > ch(v) + 2(d(v) —t) >3
by Rl Suppose that v is a 639-vertex. If f;+(v) = 3, then ch’(v) > 2 + % X
3— % x3=0Dby Rl and R6. So fr+(v) < 2. That is, v is incident with at
most one (33),33) 6)-face. Moreover, if v is incident with one (3(3), 3(3)_6)-face,
then v is not incident with any special 3-face. Therefore, ch/(v) = 0 by R6. So
assume that v is not incident with any (3%),3®) 6)-face. By Lemma 6(2) and
the definition of special 3-face, we can show that v is incident with at most one
special 3-face. So ¢h/(v) =0 by R6 and a(v) > 3.

Suppose that v is not a 639-vertex. Then ¢ < 2. By Lemma 6(6), v is incident
with at least one 7*-face, which sends at least 3 to v. Hence, by R1 and R6,
ch'(v)>2+324+3(6—t—1)— 3t — ém—f—7t>0
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Case 3. d(v) = 5. Then t < 2 and ch(v) = 1. By R1, a(v) > 1+ 3(d(v) — t)
> 2.

Suppose that ¢t = 2. Suppose that v is a 5%9-vertex, say d(f1) = d(f1) = 3.
If v is incident with two (3(3) 3( ),529)-faces, then fr(v) = 3. Hence, by R1
and R5, ch/(v) > 1 + 3x3-2 x2- & =0. Now assume that v is incident
with at most one (3(3),3(3),529) face. Let A = {f | f is a (30, 3B) 5%)-
face, or a (3, 31 529)-face, or a special 3-face}. If f; is a (33, 30) 529)-
face, then d(f2) = d(fs) = 7, which implies that fi is not in A. If f; is a
(31,31 529)_face or a special 3-face, then d(f5) = 6 by Lemma 6(3). Therefore,
d(f2) = 6, which implies that d(f3) > 7 by Lemma 6(6). Hence, fy is not in A.
Thus, at most one of f; and f4 belongs to A. Hence, ch’/(v) = 0 by R5 and a(v) >
2. If v is a 52°-vertex. Then ch’(v) = a(v)—max{2 x O‘(Zv), B4+ (aw)—22)}=0
by R5.2 and v is incident with at most one special 3-face.

Suppose that ¢ = 1, say d(f1) = 3. Then f7+ (v) > 2 by Lemma 6(6). If
m < 2, then ch/(v) > 1+ 2 x24+4x2-1-1x2= % by Rl and R5. Now
assume that m = 3, say v; is a trlangular 3- vertex for all i € {3,4,5}. Note
that fg(v) < 2 by Lemma 6(6). If fs(v) =2, then f;;+(v) =2 by Lemma 6 and

Lemma 8. Hence, ch/(v) > 1+ % ><2—i——><2—7—7><3—21391 by R1 and R5. If
fe(v) =1, then fi1+(v) > 1. Hence ch’()>1—|— + 542 ><2—1—7><3—22361

when f7(v) =2or ch/(v) > 1+ + & +2 +11—§—7><3— 557 When f7(v) < 1.

If fo(v) =0 and fr(v) =4, then ch(v) > 142 x4—1—2x3=0. Otherwise,

fﬁ(v):Oandf7(v)§3,thench'(v)Zl—i—%xi&—i—%—%—%XB:%.
Suppose that ¢ = 0. Then f;+(v) > 3 by Lemma 6(6). Hence, ch/(v) >

1+2x3+4x2-—2x5=2 byR5.

C’ase 4. d(v) = 4. If v is not a 4?9-vertex, then a(v) > # x 3 > 1. Hence,
ch/(v) > 0 by R4. So we may assume that v is a 4%9-vertex. If v is not incident
with any (3(3),4291 4291)_face, then ch/(v) > a(v) — 2 x # =0 by R4. If v is
incident with a (3(®), 4291 4291)-face, say f; is a (3(3), 4291 4%91)-face with vy is a
30G)_vertex and vy is a 4%9'-vertex, then d(f4) = 7 and d(f») = 6. Now wv3 is not
the 4291-vertex by Lemma 6(2), and vs is not the 3G)-vertex. So f3 is not the

(30 4291 4291) _face. Hence, ch’(v) > ch(v) +1+2 -0 -2=0byR4

Case 5. d(v) = 3. Suppose v is a triangular 3-vertex, then ch/(v) > 0 by R1
and R2. Otherwise, ch/(v) > ch(v) + § x 3 =0 by RI. |

By the rules R3-R7 and since G does not contain any 33:67_vertex, we can
check that Observation 13 and Observation 14 hold. We use 7(x — y) to denote
the charge that x sends to y, where z,y € F(G) UV(G).

Observation 13. Let f be a 3-face and v be a vertex incident with f.
(1) Suppose that d(v) = 3. If v is a 3 -vertex, then T(v — f) > % If v is
a 3 vertex, then (v — f) > 2. Ifvisa 3®) _vertex, then (v — f) > 2.
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(2) Suppose that v is a 49-vertex and f is not the (30,4291 4291)_face. Let
1! be the second face incident with v. By Lemma 9, f7+(v) > 1. First assume that
v is a 429 -vertex. If ' is a (33,4291, 4%9")-face, then T(v — f) = 2; otherwise,
(v — f) = &. Neat assume that v is not a 4% -vertex, then (v — f) > 2.

(3) Suppose that v is a 2-triangular 5-vertex. Let f' be the second 3-face
incident with v.

(3.1) Suppose that v is a 529-vertex and f is not the (3(3),3() 529)_face,
nor the (3(1),3(3), 529)-face, nor the special 3-face. If f' is a special 3-face, then
fe(v) =2 and fi1+(v) > 1 by Lemma 6. Therefore, 7(v — f) > ?g If f' is a
(33),30) 529)_face, then fr(v) > 2 and fr+(v) > 3. Therefore, T(v — f) > iz
If £ is a (31, 3W) 529) face, then fe(v) = 2 and fi;+(v) > 1 by Lemma 6.

Therefore, T(v — f) > %g% For the other cases, T(v — f) > %.

(3.2) Suppose that v is a 5?°-vertex. If f' is a special 3-face, then fg(v) = 2
and fr+(v) > 1. Therefore, (v — f) > 232, Otherwise, (v — f) > 33.

(4) Suppose that v is a 639-vertex. Let f' and f” be the 3-faces incident with
v other than f. If f" or " is a special 3-face, say f', then f and f"” are not the
the special 3-faces by Lemma 6. Therefore, T(v — f) > % If exactly one of f’

and f" is a (3®),3®)6)-face, then fr(v) > 2 and T(v — f) > 2. For the other
cases, T(v — f) > 1.
Observation 14. Let v € V(G) and f be the pendant 3-face of v.

(1) Let v be a 3-vertex which is not incident with any 3-face.

(1.1) Suppose that v has three pendant 3-faces. If v is a 3"-vertex, then
(v — f) = %. Otherwise, T(v — f) > 23381

(1.2) Suppose that v has two pendant 3-faces. If v is a 3™ -vertex, then (v —
f)=1. Ifvis a 3°-vertex, then T(v — f) = %. If fz(v) =2 and fs(v) = 1, then
(v = f) = &. Otherwise, (v — f) > 2.

(1.3) Suppose that v has one pendant 3-face. If fe(v) = 1 and fr(v) = 2,
then T(v — f) = 5;. Otherwise, T(v — f) > 1.
(2) Let v be a 4-vertex.
(2.1) Suppose that v is a 4Y9-vertex. If fr(v) = 3, then (v — f) = 2 if
) =
(2.

fe(v) =2, then fi1+(v) =1 and 7(v — f) > 123 Otherwise, T(v — f) > T%'
2) Suppose that v is a 4"%-verter. If fo(v) = 2, then fs+(v) = 1 and
(v — f) > 3. Otherwise, T(v — f) > 3.

(2.3) Suppose that f3(v) = 0. If v is a 4“-vertex, then 7(v — f) > % If v is
not a 4 -vertez, then (v — f) > 4

Now we are ready to show that ch/(f) > 0 for each face f € F. Note that

d(f) ¢ {4,5,10}.
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Claim 15. Let f € F. Then ch/'(f) > 0.

Proof. Suppose that d(f) > 6. Then ch/(f) > ch(f) — CCZ%) x d(f) =0 by R1.

So we assume that d(f) = 3. That is f = [vivavs] with d(v1) < d(ve) < d(v3).
Note that ch(f) = —1. Let v} be the outer neighbor of v; when d(v;) = 3.

Case 1. d(v1) > 4. Suppose that f is a weak 3-face, say vy is a 4291-vertex,
then vy and v3 cannot be a 429 vertex, a 4'9-vertex or a 5%9-vertex by Lemma 10.
Hence, ch/(f) > =14 2 + 2 x 2 = 33 by R4-R7 and Observation 13. Otherwise,
T(v; = f) > & for each z e {1, 2 3} by R4-R7 and Observation 13. Hence,
ch'(f) > -1+ 5 x3=1.

Case 2. d(vl) = 3 and d(vz) > 5. Note that 7(f — v1) < § by R2, and
T(v; — f) > 77 for each i € {2,3} by R5-R7 and Observatlon 13. Hence,
ch(f)z-1-§+Bx2=18.

Case 3. d(v1) = 3, d(v2) = 4 and d(v3) > 5. Suppose that vy is a 3(M-vertex
or a 3®W-vertex. Then T(f = v1) < % by R2 and because one of fi5 and fi3
is an 8-face. If d(fi2) = 8, then vg cannot be a 4%9-vertex or a 4Y9-vertex by
Lemma 6(4). Hence, 7(vy — f) > 2 by R4 and T(U3 —> f) > 22 by R5-R7 and
Observation 13. Hence, ch/(f) > 1 -5 —i— 5+ ‘;’g 154 If d(flg) = 8, then v3 is

not a 529-vertex by Lemma 6(4). Hence (UQ — f) 2 and 7(v3 — f) > 32 by
R4-R7 and Observation 13. Hence, ch/(f) > —1— = —|— —|— gg f—612
Suppose that vy is a 30)-vertex, then 7(f — vl) =z by R2. If vg is a 5%9-

vertex, then vg is not incident with any (30,4201 4201). face by Lemma 6. Hence,

T(ve — f) > 271 and T(vg = f) > & by R4 and Observation 13. Thus, ch/(f) >
—1-1+2 4+ = 4. Ifvgisnot a529 vertex, then c/(f) > —1—-1+2 —i—gg 223%
by R5-R7 and Obbervatlon 13.

Otherwise, vy is a 3()-vertex, i € {2,5,6,7,8}, then 7(f — v1) < % by R2,
and 7(va = f)+7(v3 = f) > 24 52 = &L by R4-R7 and Observation 13. Hence,
H(f)>-1-FH+8 =52

Case 4. d(vi) = 3 and d(v2) = d(v3) = 4.

Subcase 4.1. Both vy and vz are 4%9-vertices. By symmetry, we may assume
d(flg) Z d(flz). By Lemma 6, d(f13) =7 or d(flg) Z 11, and d(fgg) = 6 or
d(fa3) > 11.

Suppose that d(fz3) = 6. Then d(fi2) # 6 by Lemma 9. First suppose that
d(fis) > 11. By R4, 7(vs > f) > A x (3 + {5) = 5. If d(flg) =7, then f is
not a weak 3-face by Lemma 6(2). Hence T(vg = f ) > o1 by Observation 13.
Note that v] is not a triangular 3-vertex. Hence T(’Ul — f ) > 21 by Observation
14 and R57R7 Therefore ch’(f) 1+ &+ 8+ 2 =2 Ifd(fi2) > 11, then
T(ve — f) > ( L) = by R4. 1 and (v1 — f) > & by Observation
13(1). Hence, ch’(f) -1+ 2= >< 2+ 2 = 2. Next suppose that d(fi3) = 7.
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Then d(f12) = 7 by G contains no 3:%7)_vertex. Hence, 7(f — v1) = 1 by R2
and 7(v; — f) > 22 (i € {2,3}) by R4.1. Note that v} is not a triangular 3- Vertex
and has at most one pendant 3-face when d(v]) = 3 Hence, 7'(1)1 — f) > o= by
Observation 14 and R5-R7. Hence, ch/(f) > -1 -1+ 0 x2+ L =0.

Suppose that d(fa3) > 11. If d(fi3) > 11, then T(f = v1) < Si by R2,
T(“Z_)f)z%x(%"‘fl):ﬁandT(”3_>f) ;X(%"‘ﬂ):nby

R4.1. Hence, ch/(f) > =1 — 55 + ég + 11 = % So suppose that d(f13) = 1.
Then d(f12) =7by G contalns no 3(367) vertex. Hence, 7(f — v1) = = by R2
and T(v; = f) > 3 x (35 +2) = & for each i € {2,3} by R4.1. By Lemma

6(3), v} is not a triangular 3—VerteX and at most has one pendant 3-face when
d(vi) = 3. Hence, 7(vi — f) > 5 by Observation 14 and R5-R7. Thus,
ch(f) 2 —1—7+7 X2+ 5 = 3.

Subcase 4.2. Exactly one of vy and vs is a 429-vertex, say vy. Suppose that
vg is a 419-vertex. Then 7(v3 — f) = 2 by R4.2. By Lemma 6, d(f2) ¢ {8,9},
d(f13) ¢ {8,9} and d(f23) ¢ {7,8 9} If d(f12) > 11, then 7(vg — f) > (% +
L) =128 by R4dand 7(f — v1) < 55 by R2. Hence, ch’(f) —1——+ +§g Z.
If d(flg) =7, then d(fi13) = 7 or d(flg) > 11, and 7(vgy — f) > 21 by Observatlon
13. When d(f13) = 7, v} is not a triangular 3-vertex and at most has one pendant
3-face when d(v]) = 3 by Lemma 6(3). Then T(Ul — f) > 5 by R5-R7 and
Observation 14. Hence ch(f)>-1-24+5+24+L=0by R2 When d( f13) >
11, 7(v1 = f) 2 = by Observation 13. Hence, Ch’(f) > -1+ % + % + % = ﬁ.
It d(flg) =6, then d(fa3) > 11 and d(fi3) > 11 by Lemma 9 and G contains no
3(3’6’7)—Vertex. So 7(ve — f) 1 >< (l + 15) = % by R4 and 7(f — v1) < % by
R2. Hence, ch/(f) > —1 — =5 —|— =+ 33
Suppose that vs is a 41b—vertex. Then, T(vs = f) = % by R4. If f is a weak
3-face, then 7(vy — f) = % by R4. Now d(fi12) = 7 and fa3 is a 6-face adjacent
to three 3-faces, or d(f23) = 7 and fi2 is a 6-face adjacent to three 3-faces.
Therefore, v} is not a triangular 3-vertex and fi3 is adjacent to two 3-faces by vs
a 4'%-vertex. Then d(f13) = 7 or d(f13) > 11, which implies that 1)1 is not a
3(W_vertex or a 3®-vertex. If v1 is not a 3()-vertex, then 7(f — v;) < 35 by R2.
Hence, ch/(f) > —1—4;+ 2+ 2+ % = 53 by Observation 14 and R5- R7 If vy is
a 30)-vertex, then v{ has exactly one pendant 3-face when d(vi) = 3, and 7(v] —
f) > 4 7 by Observation 14 and R5-R7. Hence, ch’(f) > —1— 7—1— +2 +21 =0 by
R2. So assume that f is not a weak 3-face. Then 7(vy — f) 2 by Observamon
13. If vy is not a 3() Vertex i € {1,3,4}, then 7(f — v1) < 55 by R2. Hence,
ch(f) > —=1— 35+ 3+ & = 53 Otherwise, d(fi3) = 8 or d(flz) = 7, which
implies that v} is not a triangular 3-vertex or a 3"-vertex. Then 7(v] — f) > %
by Observation 14. Hence, ch/(f) > —1 — % + % + % + % = 4—12 by R2.
Suppose that vs is a 41°-vertex, then 7(f — v1) < % by R2, 7(ve — f) > % by
Observation 13 and 7(v3 — f) = 1 by R4. Hence, ch/(f) > -1 -t +2+1= 2.
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Subcase 4.3. Neither vy nor v3 is a 429-vertex. Then 7(v; — f) > % by R4 for
eachi € {2,3}. If vy is a 3(1)—vertex, then at most one of vy and V3 ie a 419 vertex,
say vy. Hence, T(vs — f) > % by R4. Thus, ch/(f) > -1 — = + z + 3 =L by
R2. Otherwise, ch/(f) > —1 — 1 + 21 x 2 =0 by R2 and R4.

Case 5. d(v1) = d(vg) = 3 and d(v3) > 7. Suppose that both v; and vy
are 3(M-vertices. Now v} is not a triangular 3-vertex for each ¢ € {1,2}. Hence,
(v, — f) > 21 for each i € {1,2} by Observation 14. Therefore, ch'(f) >
—1—%><2+ +ﬁx2_0byR2andR7

Suppose that exactly one of v; and vs is a 3()-vertex, say v;. Then vy is not
a 3G)-vertex. Note that v} is not a triangular 3-vertex or a 3“-vertex. Hence,
T(v] = f) > L by Observation 14. Therefore, ch'(f) > -1— 1 — L +2+1 =1L
by R2 and RY.

Suppose that neither v; nor vy is a 3 _vertex. If at least one of v, and vy
is a 3(®)-vertex, then d(fi12) = 7. Now at most one of v] and v} is a triangular
3-vertex or a 3“-vertex, say ). Hence T(vhy — f) > 1 by Observation 14.
Therefore, ch/(f) > —1— 2 x 2 + + 4 ==0by R2 and R7. Suppose that neither
vy nor vy is a 3(3)-vertex. Then ch’(f) >-1— 4 x248 = =0 by R2 and RT.

Case 6. d(v1) = d(vy) = 3 and d(v3) = 6. If vz is incident with at most
two 3-faces, then 7(vg — f) = 8 = by R6. With the similar arguments as Case 5,
we can show that c¢h/(f) > 0. So we may assume that vs is a 639-vertex. Then

d(f13) ¢ {8,9} and d(fa23) ¢ {8,9}. By symmetry, assume that d(fa23) > d(fi3).

Subcase 6.1. d(fa3) > 11. Suppose that d(fi3) > 11. Then 7(f — v;) < 35
for each i € {1, 2} by R2. By R6, 7(vs — f) > 1 x (£ x 2+ 5 +2) = L2, Hence,
ch(f)>—-1—g4 x2+ =1

Suppose that d(flg) = 7. Then d(f12) > 7 by G contains no 367 _vertex.
Hence T(f — v1) < 1 by R2, 7(vy — f) > 2 by Observation 13, and 7(v3 —
f) 2 by Observatlon 13. Note that v} is not a triangular 3-vertex or a 3%-
vertex by Lemma 6(3). Hence T(v] = f) > % by Observation 14. Therefore,
cH(f)z-1-7+F+7+%=m

Suppose that d(flg) = 6. Then d(f12) = 8 or d(fi2) > 11 by Lemma 6
and G contains no 3(367_vertex. By Observation 13(4), 7(v3 — f) > 2
d(fi12) = 8, then 7(f — v1) = % by R2 and 7(va — f) > 25 by Observation 13.
Note that v} is not a triangular 3-vertex by Lemma 6(4). Hence () = f) > &
by Observation 14. Therefore, ch (f)>-1-2t+2+3+ 2 =5 Thus,

d(fi2) > 11. Then 7(f — 1)1) < by R2 and T(UQ — f) > 2 by Observation

13. Hence, ch/(f) > —1— 35 + 22 —l— 2 =1

Subcase 6.2. d(fe3) = 7. Suppose that d(f13) = 7. Then d(f12) > 7 by G

contains no 3367 vertex. Note that vl (i € {1,2}) is not a triangular 3-vertex
by Lemma 6(3). Then 7(v, — f) > Z for each i € {1,2} by Observation 14. If
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d(fi2) = 7, then 7(f — v;) = £ for each i € {1,2} by R2, and 7(v3 — f) = 2
by R6.1. Hence, ch/(f) > -1 -1 x2+ 2 + 2 x2 =0. If d(f12) > 8, then
7(f — v;) < §; for each i € {1,2} by R2, and 7(vs — f) > 22 by Observation
13(4). Hence, ch/(f) > —1— &4 x24+ 32+ 2 x2= 1.

Suppose that d(fi3) = 6. Then d(fi2) = 8 or d(fi12) > 11 by Lemma 6
and G contains no 3(367_yertex. By Observation 13(4), 7(v3 — f) > 2
d(fi2) = 8, then v, (i € {1,2}) is not a triangular 3-vertex or a 3"-vertex by
Lemma 6(4). Hence, 7(v] — f) > 1 for each i € {1,2}. Therefore, ch'(f) >
—1—§— 17+ 5%+1x2= g7 by R2. Thus, d(f12) > 11, and 7(vy — f) > &
by Observation 13. Hence, ch/(f) > —1 — % + % + % = 2%1 by R2.

Subcase 6.3. d(f23) = 6. Then d(f13) = 6. Note that d(f12) = 8 or d(fi2) >
11 by Lemma 6 and G contains no 397 -vertex. By Observation 13(4), 7(vs —
=2

Suppose that d(fi2) = 8. Note that v (¢ € {1,2}) is not a triangular 3-vertex
by Lemma 6(4). Then 7(f — v;) < % and 7(v, — f) > % for each i € {1,2} by
R2-R7 and Observation 14. Suppose that vs is incident with at least one special
3-face. Note that one of v and vj, say v}, has exactly one pendant 3-face f
when d(v}) = d(vh) = 3. Hence, 7(v] — f) > 5 by Observation 14 and R5-R7.
Thus, ch/(f) > -1 — % x 2+ % + % + % = % Suppose that vs is not incident
with any special 3-face. Then 7(vs — f) > 1 by Observation 13(4). Hence,
ch'(f)>-1-tx2+1+3x2=0.

Suppose that d(f12) > 11. Then 7(f — v;) < % for each i € {1,2} by
R2. If f is a special 3-face, then ch/(f) > —1 — % X 2+ % = 0 by R6 and
Observation 13(4). Otherwise, at least one of v{ and vj is not a triangular 3-
vertex, say v}, then 7(v] — f) > & by Observation 14 and R5-R7. Hence,
ch(f)>—1—dkx24+8 42— 1

Case 7. d(v1) = d(v2) = 3 and d(vs) = 5. If 7(v3 — f) > 2, then ch/(f) > 0

by the similar argument as Case 5. So we may assume that 7(vs — f) < %.
That is, v3 is a 529-vertex, or a 5%-vertex, or a 5 -vertex, or a 5'°2-vertex. By

symmetry, assume that d(fa3) > d(f13).

Subcase 7.1. d(faz) > 11. Suppose that d(fi3) > 11. Then 7(f — v;) < =
for each i € {1,2} by R2, and v3 is neither a 5'¢-vertex nor a 5'>-vertex. Note
that a(vs) > 1+ ﬁ x 2+ % = 5 by R1. If vg is a 5%-vertex, then 7(vz — f) >
$(a(vs) — 22) > B2 by R5.1. If vg is a 5%-vertex, then 7(vg — f) > $a(vs) > 25
by R5.2. Hence, ch/(f) > —1 — 3z x 2+ min{33, £} = L.

Suppose that d(f13) = 8. Then v is not a 5?9-vertex and v/ is not a triangular
3-vertex by Lemma 6(4). So 7(v3 — f) > 22 by Observation 13(3) and R5.3, and
T(v] — f) > £ by Observation 14 and R5-R7. Hence, ch/(f) > -1 —3 — & +
% + % = %31 by R2.

Suppose that d(fi3) = 7. Then d(fi2) > 7 since G contains no 3(367)-vertex.
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By R2 and Observation 13, 7(f = v1) < 1 and 7(v; — f) > £. Note that
(U3) >1 + + 11 + 3 2= ‘;’?ﬁl Suppose that vs is a 529-vertex. By Lemma 6(3),
v} is not a trlangular 3-vertex or a 3"-vertex. So 7(v] — f) > % by Observation
14 and R5-R7. If vz incident with a (3(3),3(3),529)—face then fr7(vs) = 2 and
fi1+(v3) = 1. Thus, T(’l}g — f) > 1+ 2+ L+3-(1+3) = %g? by R5. 1 Hence,
ch'(f) > —-1-1+ ggi +i+2 = Otherw1se T(vs = f) > L(a(vg) — 32) > ;‘;
by R5. Hence, ch/(f) > —1 — = —|— g‘% + 4 7+ 77 = % If v3 is a 5le- Vertex or
a 5l-vertex, then 7(v3 — f) = 1 by R5 3. Note that v} is not a triangular
3-vertex or a 3%-vertex. Hence, ch/(f) > —1 — = —|— 1 —|— 7 =0 by Observation 14
and R5-R7. If 1)3 is a 5%-vertex, then 7(v3 — f) > Za(vg) > 2 by R5. Hence,
ch(f)y>-1-1+8=0.
Suppose that d(fi3) = 6. Then d(f12) = 8 or d(f12) > 11 by Lemma 6 and
G contains no 367 _vertex. By Observation 13, 7(vs — f) > ?—?. If d(fi12) =8,
then v, (i € {1,2}) is not a triangular 3-vertex and has at most two pendant
3-faces when d(v]) = 3 by Lemma 6(4). So 7(v] — f) % and T(U2 — f) > 243(;1
by Observation 14 and R5-R7. Hence, ch/(f) > —1— ¢t + 22+ 1 + 231 +3 =5
by R3. Thus, d(fi2) > 11. Hence, ch'(f) > —1 — 2 + % i % = 52; by R2 and
Observation 13.

Subcase 7.2. d(fa3) = 8. Then v3 is a 5%*-vertex, and vh is not a triangular 3-
vertex. Then 7(vh — f) > % by Observation 14 and R5— R7 and T(vg = f) > 3%51)
by Observation 13(3). Hence, ch/(f) > —1— 1 + 232 + & = ;5 by R2.

Subcase 7.3. d(fa3) =1T7.

Subcase 7.3.1. d(fi13) = 7. Then d(f12) > 7 since G contains no 3(367)-vertex.
Suppose that d(fi2) = 7. Then v3 is not a 5'®2-vertex. Now 7(f — v;) = % for
each i € {1,2} by R2 and 7(vz — f) > 2 by R5. If d(v}) > 4 or d(vh) > 4,
say v}, then 7(v] — f) > & by Observation 14. Hence, ch/(f) > -1 —1 x 2+
2+ 2 = L. So suppose that d(v}) = d(vh) = 3. If vz is a 5%-vertex, then
g = f) > 2 x (1+2x2+1) =2 by R5.2. If both v} and v} are not
the triangular 3-vertices, then at most one of them has three pendant 3-faces,
say v]. Hence, T(Ul — f) Z and (v — f) > 1 by Observation 14. Thus,
ch’(f) —1-= >< 2+ 241 7+ 2%1 = o7. If one of v} and vh is a triangular 3-vertex,
say v, then v2 is not a trlangular 3 vertex and has exactly one pendant 3 face.
So 7(vh — f) > % by Observation 14. Hence, ch/(f) > —1— = >< 2+ 5 23 T+ 21 =0.
Now we may assume that v3 is a 529-vertex or a 5'-vertex. Then v (z € {1,2})
is not a triangular 3-vertex and at most one of them has two pendant 3-faces by
Lemma 6(3), say v}. So 7(v] — f) > L and 7(v) — f) > 5= by Observation 14.
Hence, ch/(f) > -1 -4 x2+ 2+ 14+ L =0.

Suppose that d( flg) = 8. Then v} is not a triangular 3-vertex by Lemma
6(4) and 7(f —> v;) = 73 for each i € {1,2} by R1. If vs is a 5%9-vertex, then
T(vg — f) > T by Observatlon 13. By Lemma 6(3) and 5(4), v (i € {1,2})

(2
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has at most one pendant 3-face when d( ) = 3 Hence, 7(v, — f) > o= by
Observation 14. Thus, ch/(f) > —1 — & x 2+ 5= x 2+ 2T = L Otherwise,
T(vg = f) > min{j x (1+2 x 24 1), 1} =1 by R5 2 and R5 3. Hence, ch/(f) >
-1 - ﬁ X241+ % =0 by Observation 14.

Suppose that d(fi2) > 11. Then T(vZ = f) > 77 for each i € {1,2} by
Observation 13(1), and T(Us — f) > 2 by Observation 14 and R5. Note that
at most one of v] and v} is a trlangular 3-vertex, say vi. So 7‘(02 — f) > 21 by
Observation 14 and R5-R7. Hence, ch/(f) > -1+ & x 24 3 T4z = =2

Subcase 7.3.2. d(f13) = 6. Then d(f12) = 8 or d(f12) > 11 by Lemma 6 and G
contains no 367 _vertex. First suppose that d(fi2) = 8, then 7(f — vy)+7(f —
v2) = ¢ + 75 = & by R2. By Lemma 6(4), v} (i € {1,2}) is not a triangular 3-
vertex. If vg is a 529-vertex, then 7(v3 — f) > S by Observation 13(3). Note that
v} in not a 3“-vertex or a 3"-vertex and v2 has exactly one pendant 3-face when
d(v5) = 3 by Lemma 6. Then T(U1 — f) 5 and T(Uz — f) > 12 by Observation
14. Hence, ch'(f) > -1 — 2 + S+ L + B = . Otherwise, T(U3 — f)>1by
Observation 13(3) and R5, and T(v —> f)>1 for each i € {1,2} by Observation
14. Hence, ch/(f) > —1 =4+14+1x2=4. Next suppose that d(fi2) > 11.
Then 7(f — v1) < 55 by R2 and (vz — f) > 2 by Observation 13(1 ) If vg is
a 529-vertex, then 7'(2;3 — f) > S by Observatlon 13(3). Note that v/ is not a
triangular 3-vertex, or a 3w—vertex, or a 3™-vertex. Hence, 7(vh — f) > %. Thus,
ch(f) > —1— &+ t+ 2+ 8= Otherwise, 7(v3 — f) > 1 by Observation
13(3), ch/(f) > —1— 5+ 2 +1=

Subcase 7.4. d(fa3) = 6. Then d(f13) = 6, and v is neither a 5'“1-vertex nor
a bl-vertex. Note that d(f12) = 8 or d(f12) > 11 by Lemma 6 and G contains no

3(36.7) vertex. First suppose that d(fi2) = 8. Then 7(vs — f) > min{1, 29} =1

by R5 and Observation 13. By Lemma 6(4), v, (i € {1,2}) is not a triangular

(2
3-vertex, or a 3¥-vertex, or a 3™-vertex. Hence, 7(v; — f) > % for each i € {1,2}

by Observation 14. Hence, ch/(f) > —1 — % x2+1+ % x 2 =0 by R2. Next
suppose that d(f12) > 11. If f is a special 3-face, then 7(vs — f) > % by
R5. Hence, ch/(f) > =1 — 55 x 2 + 3 35 = 0 by R2. Otherwise, at least one of

vi (i € {1,2}) is not a trlangular 3- Vertex, say v. Hence, 7(v{ — f) > £ by

i
Observation 14. Note that f11+ (v3) > 11 when v3 is a 529-vertex. So 7(vz —

f) > min{l x (1+3+x2+ L 1) 29 = mln{%}ﬁ, ggi} 21l by R5 and
Observation 13. Hence ch’/ (f) -1 % X 24 g+ 537 = 131 by R2.

Case 8. d(vi) = d(v2) = 3 and d(v3) = 4. Then d(v ) > 4 for each i € {1,2}
by Lemma 4. By Observation 14 and R5-R7, 7(v] — f) > for each i € {1,2}.
By symmetry, assume that d(fes) > d(f13).

Subcase 8.1. d(fa3) > 11. Suppose that d(f13) > 8. Then 7(f — v1)+7(f —
v2) < ¢+ 35 = & by R2. Note that 7(v] — f) > 13 for each i € {1,2} by
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Observation 14 and R5 R7 By R4, 7(vs — f) > min{3 x (3 + %), 3,%,1} =
Hence, ch/(f) > —1 — =2 —|— }lgg x 2+ ﬁ = 99%.

Suppose that d(f13) < 7. Then d(fi2) > 7 by Lemma 6 and G contains no
3(3.6.7)_vertex. Hence, 7(f — v1) < % by R2 and 7(ve — f) > = by Observatlon
13. By Observation 13 and R4, 7(vz — f) > % Hence, ch/(f) > —1- 6 + 2+
5 x243=10
14 7 7 462

Subcase 8.2. d(fs3) = 8. By Lemma 6(4), vs is not a 4%9-vertex or a 49-
vertex. Then 7(v3 — f) > 2 by R4. Hence, ch/(f) > —1— ¢ x2+ 24+ x2= L
by R2.

7 by
> 2 by
L (i € {1,2}) is not a 4'9-vertex or a 2-
3 for each i € {1,2} by Observation 14
X2+ % 3 4 % x 2 =0 by R2. Otherwise,
1-—

Subcase 8.3. d(fa3) = 7. Suppose that d(fi3) = 7. Then d(fi2)
G contains no 3367 vertex. If vy is a 4%9-vertex, then 7(v3 — f)
Observation 13(2). By Lemma 6(3), v
triangular 5-vertex. Hence, 7(v, — f)
and R5-R7. Therefore, ch/(f) > —1 —
T(vg — f) > % by R4. Hence, ch/(f) > % ><2+%+15—4 x 2 =0 by R2.

Suppose that d(f13) = 6. Then d(f12) = 8 or d(fi2) > 11 by Lemma 6 and
G contains no 3307 _vertex. If d(fi2) = 8, then 7(f — v1) + 7(f — ) =
5+ 11= 2 by R2. By Lemma 6(4), v} (i € {1,2}) is not a 4'-vertex, a 4%-
vertex or a 2-triangular 5-vertex. Then 7(v) — f) > £ for each i € {1,2} by
Observation 14 and R5—R7. By Observation 13(2) and R4, 7(vs — f) > %
Hence, ch/(f) > -1 — 1+ + 3 x 2= If d(f12) > 11, then 7(f — v1) < =5
by R2 and 7(va — f) > 2 by Observatlon 13(1). Note that T(Ug — f) > 2 by
Observation 13(1) and R4 Hence, ch/(f) > -1 — —3 +2+2+ 2 x2= %

2
>

‘ NIV

Subcase 8.4. d(fgg) = 6. Note that d(flg) =6 and d(flg) =8 or d(flg) > 11
by Lemma 6 and G contains no 3397 _vertex. By Lemma 9, v3 is not a 429-vertex,
then 7(vs — f) > 2 by R4. First suppose that d(fi2) = 8, then v} (i € {1,2})
is not a 419-vertex by Lemma 6(4). Hence 7(v; — f) 2 2 for each i € {1,2} by
Observation 14(2) and R5-R7. Hence, ch/(f) > —1 — = >< 2+ 4 + £ x2=0Dhy
R2. Next suppose that d(fi2) > 11. Then ch/(f) > —1 33 X 2+ I+ x2=252
by R2.

Case 9. d(vy) = d(ve) = d(v3) = 3. Then d(v]) > 4 for each i{1,2,3} by
Lemma 4. So 7(v] — f) > & for each i € {1,2,3} by Observation 14 and R5-
R7. By symmetry, we may assume d(f23) > d(f13) > d(f12) and d(f13) > 7 by
Lemma 6.

Suppose that d(fi3) > 11. Then ch/(f) > —1— 4 x 2+ & + 2 x 3= Ll by
R2 and Observation 13.

suppose that d(fi3) = 8. If d(fa3) > 11, then ch/(f) > -1 -1 — L+ 3 +
2 x3= 462 by R2 and Observation 13. If d(f23) = 8, then v (i € {1,2,3}) is
not a 4'-vertex, or a 4¥-vertex, or a 2-triangular 5-vertex by Lemma 6. Hence,
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T(vi — f) > 3 for each i € {1,2,3} by Observation 14 and R5-R7. Therefore,
ch(f)>-1-%1x2+1x3=1byR2

Suppose that d(fi3) = 7. Then d(fi2) = 7 since G contains no 3367 _vertex.
If d(fo3) > 11, then 7(f — v1) = 1 by R2 and 7(v; — f) > 2 for each i € {2,3}
by Observation 13(1). Hence, ch/(f) > —1—1+2 x24+ 32 x3 = 2. If d(fo3) = 8,
then v} (i € {2,3}) is not a 4'-vertex, or a 4“-vertex, or a 5%9-vertex by Lemma
6(3). By Observation 14 and R5-R7, 7(v; — f) > + for each i € {2,3}. Hence,
ch'(f) > —1—dx2-L+2+1x2= L byR2. Ifd(fo3) =7, then 7(f — v;) = 1
for each i € {1,2,3} by R2. By Lemma 11, at most one of v, (i € {1,2,3}) is
a 419-vertex, or a 4%-vertex, or a 529-vertex, say v;. Furthermore, if v} is a
4%9_vertex, or a 4%-vertex, or a 5%9-vertex, then at most one of v} and vh is a
4%-vertex, say vh. Hence, 7(v] — f) > &, 7(vh = f) > & and 7(v} — f) > 2 by
Observation 14 and R5-R7. Therefore, ch/(f) > —1-1x3+ 5 +2+2=0. =

So far, it has been proved that if a 2-connected graph G is a minimal coun-
terexample of Theorem 1, then G has at least a 3367 _vertex. By Lemma 8, G
has a 2-connected subgraph H such that the outer boundary of H is a 3-cycle
and H has no 3367 _vertex. Obviously, H is a planar graph. Let f; = [v1vV3]
be the non-interface of H. Now, we can proceed a discharging procedure in
H = (V(H),E(H),F(H)). Call the edge in E(H) \ E(fy) as the inner edge.
Let the initial function chy of v € V(H) U F(H) be chy(z) = dgy(z) —4. Then
dg(v) > 3 forv € V(H)\ {fo} and dg(v) > 2 for v € V(fy). We define the
following discharging rules.

rl. Let v € V(fp). Then v sends % to each incident 3-face f, f # fo, % to pendant
3-face.

r2. For x € (V(H)\ V(fo)) U (F(H)\ {fo}), we redistribute ch(x) according to
the rules R1-R7 defined in the former.

Let the new charge function, obtained by the rules r1 and r2 after discharging
be ch’y. By Observation 13-14, a face f € F(H)\V (fy) gets at most % from its
incident vertices and at most % from its outer neighbors. Obviously, following
the proofs of Claim 12 and Claim 15, we have ch/(z) > 0 for all z € (V(H) \
V(fo)) U (F(H)\ {fo}) after rules r1-r2. That is > cv v () (du(v) —4) +

> rer(n{for(du(f) —4) = 0.

Then we consider the new charge of v; € V(fy). Let t denote the number of
incident 3-faces of v; (except fy) and m denote the number of pendant 3-faces
dp (vi)—2

2

of v;. Since H does not contain adjacent 3-faces, we have t < [ J and

m < d(v;)) — 2t — 2. Since G € G, fe+(vi) > dug(v;) — (t +1). Let f be the
6+-face incident with v;. By R1, 7(f — v;) > &. If dy(v;) = 2, then t =m = 0
and fg+(vi) > 1. So chy(vi) > du(vi) — 4—1—% = —%. If dg(v;) = 3, then
t =0, m <1and fg+(v;) > 2. By Lemma 6(6), fr+(v;) > 1. So chy(v;) >
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dp(vi) —4—2m+ 142> 10 1If ch/y(v;) > 4, then by r1-12, we can get

Ch/H(Ui) > dH(U,) —4 4 %(dH(v,) —1- t) - %t — %m
4 13 1 8 4
> = N Y 4y = ) 9
= 3dH(’UZ) 3 Bt 7t 7(dH(’UZ) 2t 2)
16,1 6716 d(vi) —2\ 67
1) = grdnlv) =3t =57 2 5ydn(v) =3 < 2 > T a1
25 20 10
i) =7 2 =5
Therefore,
8= > (du(v)—4)+ Z (du(f) —4)
veV(H) feF(H
= Z ch'(v) + Z ch’(f)
veV (H) FEF(H)
(2) = Z ch'(v) + Z ch'(f) + Z ch!(v) + ch'(fo)
veV(H)\V{fo} feF(H)\{fo} veV(fo)
)
> Z ch'(v) + ch/(fo) > 3 x <—3> —1=—6.
veV(fo)

The proof of Theorem 1 is completed when the minimal counterexample G
is 2-connected. Now we assume that G is not 2-connected, i.e., G has some cut
vertices. Let B be an end block of G. That is, B contains an unique cut vertex
t*. By Lemma 2, B is 2-connected. Thus the boundary of every face of B is
a cycle, and every vertex v of B is incident with dp(v) distinct faces. Clearly,
B has no 4-face, 5-face or 10-face. If B contains a 3(367)_vertex, then B has a
2-connected subgraph H' such that the outer boundary of H' is a 3-cycle and H’
contains no 3367 vertex by Lemma 8. In H', we can use the same discharging
rules as in H to deduce a contradiction. Suppose B has no 3(367)_vertices. Let
fo be the exterior face of B. Moreover, each structural property established
for G in Section 2 and Section 3 fails for B only when t* is involved. For any
x € V(B) U F(B), the initial charge function chp in the discharging procedure
is defined as chp(z) = dp(x) — 4. We proceed the discharging rules R1-R7 in B.
For z € V(B) U F(B)\{t*}, we can get ch/z(xz) > 0 after R1I-R7. Let ¢ denote
the number of incident 3-faces of t* and m denote the number of pendant 3-

faces of t*. Since B does not contain adjacent 3-faces, we have t < L%J and
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m < dp(t*) — 2t. Thus,

4 1
ch’y(t*) > dp(t*) — 4 — gt —omt g(dB(t*) —1)
4 1, 8 4
> —dp(t*) —4— —t— —t—— ) —
> BdB(t) gt ==t 7(dB(t) 2t)
16 1 16 1 dp(t")
= — N ——t—4> — ) — = —4
(3) 21dB(75 ) -4z 21dB(t ) 3 o

25
= —dp(t") —4 — 4.
) B(t") >

Therefore,
8= (dpw)—4)+ Y (dp(f)—4)
veV(B) fEeF(B)
= Y cipv)+ Y chl(f)
veV(B) feF(B)
(4) = Y o)+ Y chlp(f) +chp(tY)
veV(B)\{t*} feF(B)

> chlg(t*) > —4.

A contradiction completing the proof of Theorem 1 when G is not 2-connected.
Hence, we show that every planar graph in G is (1,0, 0)-colorable. That is, The-
orem 1 holds.
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