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Abstract

A graph G is improperly (d1, d2, . . . , dk)-colorable or just (d1, d2, . . . , dk)-
colorable if its vertices can be partitioned into k subsets V1, V2, . . . , Vk such
that ∆(G[Vi]) ≤ di for 1 ≤ i ≤ k. It is known that every (C4, Ci, Cj)-free
planar graph is (1, 0, 0)-colorable whenever 5 ≤ i < j ≤ 9. In this paper, we
prove that every (C4, C5, C10)-free planar graph is (1, 0, 0)-colorable.
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1. Introduction

All graphs considered here are simple and undirected. Let G = (V,E) be a finite
graph with the vertex set V and the edge set E. Let i1, i2, . . . , ik be k positive
integers such that 3 ≤ i1 < i2 < · · · < ik. The (Ci1 , Ci2 , . . . , Cik)-free graph is
a graph without cycles of lengths i1, i2, . . . , ik. A proper k-coloring of a graph
G is a mapping φ : V → {1, 2, . . . , k} such that φ(u) ̸= φ(v) whenever uv ∈ E.
The graph G which has a proper k-coloring is called k-colorable. The Four Color
Theorem (saying that every planar graph is 4-colorable) was proved by Appel,
Haken and Koch [2][3]. In 1976, Steinberg conjectured that every (C4, C5)-free
planar graph is 3-colorable, which was disproved by Cohen-Addad et al. in [1].

Let d1, d2, . . . , dk be k nonnegative integers. A graph is improperly (d1, d2,
. . . , dk)-colorable or just (d1, d2, . . . , dk)-colorable, if the vertex set V can be
partitioned into k subsets V1, V2, . . . , Vk such that ∆(G[Vi]) ≤ di for 1 ≤ i ≤ k.
Under this terminology, the Four Color Theorem can be described as: every
planar graph is (0, 0, 0, 0)-colorable, and the Steinberg Conjecture says that every
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(C4, C5)-free planar graph is (0, 0, 0)-colorable. Chen et al. [6] showed that
every (C4, C5)-free planar graph is (2, 0, 0)-colorable. It was shown that every
(C4, Ci, Cj)-free planar graph is (1, 0, 0)-colorable for all 5 ≤ i < j ≤ 9, see [5]
and [7]–[12].

Let G be the family of (C4, C5, C10)-free planar graphs. In this paper, we
consider the improper coloring of every planar graph without cycles of lengths 4,
5 and 10.

Theorem 1. Every planar graph in G is (1, 0, 0)-colorable.

The rest of this section is devoted to introduce some definitions. The notation
and terminology used but undefined in this paper can be found in [4]. Call a graph
G planar if it can be embedded into the plane so that its edges meet only at their
ends. Any such particular embedding of a planar graph is called a plane graph.
For a plane graph G, we use F to denote its face set. For a vertex v ∈ V , a
neighbor of v is a vertex adjacent to v, and the set of neighbors of v is denoted
by N(v). The degree of v, denoted by dG(v) or simply d(v), is the number of
neighbors of v. The minimal degree of the vertices of G is denoted by δ(G), and
the maximum degree of vertices of G is denoted by ∆(G). Call the vertex v a
k-vertex, or a k+-vertex, or a k−-vertex if d(v) = k, or d(v) ≥ k, or d(v) ≤ k,
respectively. Let fk(v) be the number of k-faces incident with v. Similarly, we
can define fk+(v) and fk−(v).

For a face f , the number of edges on the boundary of f (each cut edge is
counted twice) is called the degree of f , denoted by d(f). Call the face f a k-face,
or a k+-face, or a k−-face if d(f) = k, or d(f) ≥ k, or d(f) ≤ k, respectively. We
write f = [v1v2 · · · vk] if v1, v2, . . . , vk are consecutive vertices on the boundary of
f in a cyclic order, and say that f is a (d(v1), d(v2), . . . , d(vk))-face. A pendant
3-face of a vertex v is a 3-face which is not incident with v but is incident with a
3-vertex adjacent to v. Call a vertex or an edge triangular if it is incident with
a 3-face. If a 3-vertex v is triangular, say v is incident with a 3-face f , then its
neighbor not incident with f is called its outer neighbor. If the outer neighbor
of a 3-vertex v is a k-vertex, then we call it an outer k-neighbor of v. Let k be a
positive integer, call a vertex v k-triangular if it is incident with k non-adjacent
3-faces.

Let C be a cycle of a plane graph G. We use int(C) and ext(C) to denote
the sets of vertices located inside and outside C, respectively. The cycle C is
seperating if int(C) ̸= ∅ and ext(C) ̸= ∅. Here we have some definitions.

2. Reducible Configurations

As usual, to properly color a vertex v means to assign v a color which has not
been appeared to any neighbor of v. For a (1, 0, 0)-coloring, to color a vertex v
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means to color v with 1 such that v has at most one neighbor with color 1, or to
properly color v with i, i ∈ {2, 3}.

Let G ∈ G be a planar graph which is not (1, 0, 0)-colorable but every sub-
graph of G with fewer vertices is. That is, G is the counterexample to Theorem
1 with fewest number of vertices. Clearly, G is connected. Embed G into the
plane.

Lemma 2 [5]. δ(G) ≥ 3.

Lemma 3 [5]. If v is a 3-vertex in G, then v has a 4+-neighbor.

Lemma 4 [5]. If v is a 3-vertex incident with a (3, 3, 4−)-face, then the outer
neighbor of v is a 4+-vertex.

3. Structures of 2-Connected Planar Graphs in G

In this section, G = (V,E, F ) is a 2-connected plane graph in G. As G is 2-
connected, every face is simple, i.e., its boundary is a cycle. Hence G has no
k-face for k ∈ {4, 5, 10}. Suppose f and f ′ are two faces in G. f and f ′ are
adjacent if they share an edge. Two adjacent faces are normal adjacent if they
have only two common vertices. If f and f ′ are two adjacent faces with common
edge xy, then f ′ can be represented by fxy. Moreover, if f = [v1v2v3] is a 3-face,
then fv1v2 can be abbreviated to f12.

Lemma 5. Let f1 be a 9−-face in G and f2 be a 3-face in G. If f1 and f2 are
adjacent, then they are normal adjacent.

Proof. Suppose f = [v1v2 · · · vk] is the 9−-face adjacent to the 3-face T = [v1v2v].
Obviously, k ̸= 3; otherwise, there is a 4-cycle, a contradiction. Hence, k ∈
{6, 7, 8, 9}. To prove f and T are normal adjacent, by symmetry, we only need
to prove that v ̸= vi, i ∈ {3, 4, 5, 6}. If v = v3, then d(v2) = 2, contradicting to
Lemma 2. If v = v4, then v1v2v3v4v1 is a 4-cycle, a contradiction. If v = v5, then
v2v3v4v5v2 is a 4-cycle, a contradiction. If v = v6, then v2v3v4v5v6v2 is a 5-cycle,
a contradiction.

Since G is 2-connected, by Lemma 5 and because G is (C4, C5, C10)-free, it
is easy to show that the following lemma holds.

Lemma 6. (1) No two 3-faces in G are adjacent.

(2) A 6-face in G is adjacent to at most three 3-faces.

(3) A 7-face in G is adjacent to at most two 3-faces.

(4) A 8-face in G is adjacent to at most one 3-face.
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(5) No 9-face in G is adjacent to a 3-face.

(6) No two 6-faces in G are adjacent.

Lemma 7. Let v be a 3-vertex, and v1, v2 and v3 be the neighbors of v in the
clockwise order. Let fi be the face with vvi and vvi+1 as boundary edges, where
i ∈ {1, 2, 3} and v4 = v1. If d(f1) = 3, d(f2) = 6 and d(f3) = 7, then G must
contain a subgraph G1 as shown in Figure 1.

y1

y4

y3

v1v2

v

v3

x3(y2)

x1

x2

Figure 1. The graph G1 in Lemma 6. The shadow area might not be a face.

Proof. Let f1 = [vv1v2], f2 = [vv2x1x2x3v3], and f3 = [vv3y1y2y3y4v1]. By
Lemma 5, v2 /∈ {y1, y2, y3, y4} and v1 /∈ {x1, x2, x3}. If {x1, x2, x3}∩{y1, y2, y3, y4}
= ∅, then G has a 10-cycle v1v2x1x2x3v3y1y2y3y4v1, a contradiction. If x1 = y1 or
x1 = y2, then G has a 4-cycle y1v3vv2y1 or a 5-cycle y2y1v3vv2y2, a contradiction.
If x1 = y3 or x1 = y4, then G has a 4-cycle y3y4v1v2y3 or a 4-cycle y4v1vv2y4,
a contradiction. If x2 = y4 or x2 = y3, then G has a 4-cycle y4v1v2x1y4 or a
5-cycle y3y4v1v2x1y3, a contradiction. If x3 = y1, then d(v3) = 2, contradicting
to Lemma 2. If x2 = y2 or x2 = y1, then G has a 4-cycle y2y1v3x3y2 or a 5-
cycle y1v3vv2x1y1, a contradiction. If x3 = y3 or x3 = y4, then G has a 4-cycle
v3y1y2y3v3 or a 5-cycle v3y1y2y3y4v3, a contradiction. Therefore, x3 = y2. Hence,
G must have a subgraph G1 as shown in Figure 1.

If a 3-vertex v is incident with three faces f1, f2 and f3 such that d(f1) ≤
d(f2) ≤ d(f3), then v is called a 3(d(f1),d(f2),d(f3))-vertex.

Lemma 8. G contains only nine types of triangular 3-vertex. (1) 3(3,6,8)-vertex;
(2) 3(3,6,11

+)-vertex; (3) 3(3,7,7)-vertex; (4) 3(3,7,8)-vertex; (5) 3(3,7,11
+)-vertex; (6)

3(3,8,8)-vertex; (7) 3(3,8,11
+)-vertex and (8) 3(3,11

+,11+)-vertex; (9) 3(3,6,7)-vertex.
Moreover, if G has (3,6,7)-vertices, then G has a 2-connected subgraph H so that
the outer boundary of H is a 3-cycle and there is no 3(3,6,7)-vertex in H.
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Proof. Suppose a 3-vertex v is incident with faces f1, f2 and f3 so that d(f1) = 3
and d(f2) ≤ d(f3). By Lemma 6, d(fi) /∈ {9, 10} for each i ∈ {2, 3}. Since G is
(C4, C5, C10)-free, d(f3) ≥ d(f2) ≥ 6. First suppose d(f2) = 6, by Lemma 6(5)
and (6), d(f3) = 7, 8 or d(f3) ≥ 11. Hence, we get (9), (1) or (2), respectively.
Suppose d(f2) = 7. Then d(f3) = 7, 8 or d(f3) ≥ 11. Hence, we get (3), (4) or
(5), respectively. Suppose d(f2) = 8. If d(f3) = 8, we get (6); otherwise, we get
(7). Finally suppose d(f2) ≥ 11, we get (8).

Suppose G has a 3(3,6,7)-vertex v. By Lemma 7, G contains the subgraph G1

as shown in Figure 1. Then C = v3y1x3v3 is a separating 3-cycle. Assume that
v ∈ ext(C). Let G′ = G[V (C) ∪ int(C)]. The outer boundary of G′ is a 3-cycle
and v /∈ G′. G is 2-connected, hence G′ is 2-connected. Since G is a finite graph,
we can get a 2-connected subgraph H of G by finite induction so that there is no
3(3,6,7)-vertex in H and the outer boundary of H is a 3-cycle.

To simplify notation, the triangular 3-vertex in the Lemma 8 is referred to
simply as 3(i)-vertex. For example, 3(1)-vertex is the 3(3,6,8)-vertex, 3(3)-vertex is
the 3(3,7,7)-vertex.

For convenience, we need to define some notations to indicate the structures
around 6−-vertex. A 63g-vertex stands for the 3-triangular 6-vertex.

For 5-vertex, a 52g-vertex stands for the 2-triangular 5-vertex which has one
pendant 3-face. A 52b-vertex stands for the 2-triangular 5-vertex which has no
pendant 3-face. A 51c-vertex stands for the 5-vertex which is incident with at
most one 3-face. A 51c1-vertex stands for the 1-triangular 5-vertex with f7(v) = 4
and three pendant 3-faces. A 51c2-vertex stands for the 1-triangular 5-vertex with
f6(v) = 1, f7(v) = 2 and three pendant 3-faces.

For 4-vertex, a 42g-vertex stands for the 2-triangular 4-vertex. A 42g1-vertex
stands for the 42g-vertex which is incident with one 6-face and one 7-face. A
41g-vertex stands for the 1-triangular 4-vertex which has two pendant 3-faces.
A 41g1-vertex stands for the 41g-vertex which is incident with three 7-faces. A
41b-vertex stands for the 1-triangular 4-vertex which has one pendant 3-face. A
41c-vertex stands for the 1-triangular 4-vertex which has no pendant 3-face. A
4w-vertex stands for the 4-vertex which is incident with no 3-face and has four
pendant 3-faces.

For 3-vertex incident with no 3-face, a 3w-vertex stands for the 3-vertex whose
neighborhoods are all the 3(3)-vertices. A 3m-vertex stands for the 3-vertex whose
neighborhoods has two 3(3)-vertices. A 3s-vertex stands for the 3-vertex whose
neighborhoods has two 3(1)-vertices.

Lemma 9. If v is a 42g-vertex, then v cannot be incident with two 6-faces.

Proof. Suppose v is a 42g-vertex. Let v1, v2, v3, v4 be the neighbors of v in
clockwise order. Let fi be the face with vvi and vvi+1 as the boundary edges
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of fi, where i ∈ {1, 2, 3, 4} and v5 = v1. Then d(f1) = d(f3) = 3, say f1 =
[vv1v2] and f3 = [vv3v4]. Assume to the contrary that d(f2) = d(f4) = 6,
say f2 = [vv2x1x2x3v3] and f4 = [vv4y1y2y3v1]. By Lemma 5, {v1, v2, v3, v4} ∩
{x1, x2, x3, y1, y2, y3} = ∅. If {x1, x2, x3} ∩ {y1, y2, y3} = ∅, then G has a 10-
cycle v1v2x1x2x3v3v4y1y2y3v1, a contradiction. So by symmetry, assume that
x1 ∈ {y1, y2, y3} or x2 = y2. If x1 = y3, then G has a 4-cycle y3v1vv2y3, a
contradiction. If x1 = y2 or x1 = y1, then G has a 4-cycle y2y3v1v2y2 or a 5-
cycle y1y2y3v1v2y1, respectively, a contradiction. If x2 = y2, then G has a 5-cycle
y2y3v1v2x1y2, a contradiction.

For convenience, if f = [v1v2v3] is a (3+, 3+, 42g1)-face, say v3 is a 42g1-vertex,
and the other 3-face incident with v3 is a (3(3), 42g1 , 42g1)-face, then we call f a
weak 3-face. If f = [v1v2v3] is a (3(2), 3(2), 5+)-face say d(v3) ≥ 5, such that the
outer neighbor of each 3(2)-vertex is a triangular 3-vertex and d(f12) ≥ 11, then
we call f a special 3-face.

Lemma 10. Let f = [v1v2v3] be a weak 3-face so that d(v1) ≤ d(v2) and v3 is
the 42g1-vertex. Then vi is not a 42g-vertex, a 41g-vertex, or a 52g-vertex for each
i ∈ {1, 2}.

Proof. Let f ′ = [v3xy] be the second 3-face incident with v3. Then f ′ is a
(3(3), 42g1 , 42g1)-face, say x is the 42g1-vertex and y is the 3(3)-vertex. Then f13 is
a 7-face adjacent to two 3-faces, and f23 is a 6-face adjacent to three 3-faces. By
Lemma 6(3) and (2), we can deduce that vi is not a 42g-vertex, a 41g-vertex, or
a 52g-vertex for each i ∈ {1, 2}. Hence, Lemma 10 holds.

Lemma 11. Let f = [v1v2v3] be a (3(3), 3(3), 3(3))-face, v′i (i ∈ {1, 2}) be the
outer 4+-neighbor of vi. Then at most one of v′1, v

′
2 and v′3 is a 41g-vertex, or a

4w-vertex or a 52g-vertex. Furthermore, if one of them, say v′1, is a 41g-vertex,
or a 4w-vertex or a 52g-vertex, then at most one of v′2 and v′3 is a 41b-vertex.

Proof. By the definition of 3(3)-vertex, d(f12) = d(f13) = d(f23) = 7. First we
may assume that v′1 is a 41g-vertex. Then f12 and f13 are the 7-faces adjacent to
two 3-faces. So by Lemma 6(3), v′2 or v′3 cannot be a 41g-vertex, or a 4w-vertex
or a 52g-vertex. If v′2 and v′3 are both 41b-vertex, then one of f12, f13 and f23
must be a 7-face adjacent to three 3-faces, contradicting to Lemma 6(3). Hence
Lemma 13 holds when v′1 is a 41g-vertex. We can prove that Lemma 11 holds
when v′1 is a 4w-vertex or a 52g-vertex with a similar discussion as above.

4. Discharging Procedure

To complete the proof of Theorem 1, we are going to derive a contradiction by a
discharging procedure according to the structures established above.



Vertex Partitions of (C4, C5, C10)-Free Planar Graphs 7

Let G = (V,E, F ) be the counterexample to Theorem 1 with the fewest
vertices. First we assume that G is 2-connected. Thus the boundary of every
face of G is a cycle, and every vertex v of G is incident with d(v) distinct faces.
The initial charge function ch in the discharging procedure is defined as: ch(v) =
d(v)−4 for each v ∈ V , and ch(f) = d(f)−4 for each f ∈ F . By Euler’s formula
|V | − |E|+ |F | = 2 and Handshaking Theorem

∑
v∈V d(v) = 2 |E| =

∑
f∈F d(f),

we can deduce that ∑
v∈V

(d(v)− 4) +
∑
f∈F

(d(f)− 4) = −8.

If we can define suitable discharging rules to change the initial charge function
ch to the final charge function ch′ on V ∪F such that ch′(x) ≥ 0 for all x ∈ V ∪ F ,
then 0 ≤

∑
x∈V ∪F ch′(x) =

∑
x∈V ∪F ch(x) = −8, a contradiction completing the

proof of Theorem 1 when G is 2-connected.
Now our proof will be divided into two cases depending on the existence of a

3(3,6,7)-vertex or not. Firstly, assume that G does not contain any 3(3,6,7)-vertex.
We design the following discharging rules.

R1. Every 6+-face f sends ch(f)
d(f) to each incident vertex.

R2. Let v be a triangular 3-vertex, and f be the 3-face incident with v. Then f
sends 1

6 to v when v is a 3(1)-vertex, 1
33 to v when v is a 3(2)-vertex, 1

7 to v when

v is a 3(3)-vertex, 1
14 to v when v is a 3(4)-vertex.

Suppose that the charge of vertex v is α(v) after applying the rules R1 and R2.

R3. Suppose that v is a 3-vertex.

R3.1. If v is not incident with any 3-face, then v sends α(v) to each pendant
3-face evenly.

R3.2. If v is a 3(i)-vertex, i ∈ {5, 6, 7, 8}, then v sends α(v) to its incident
3-face.

R4. Suppose that v is a 4-vertex.

R4.1. Suppose that v is a 42g-vertex. If v is incident with a (3(3), 42g1 , 42g1)-
face f , then v sends 10

21 to f and sends 2
7 to another incident 3-face. Otherwise,

v sends α(v)
2 to each incident 3-face.

R4.2. If v is a 41g-vertex, then v sends 4
7 to its incident 3-face and sends

α(v)− 4
7

2 to each pendant 3-face.

R4.3. If v is a 41b-vertex, then v sends 2
3 to its incident 3-face and sends

α(v)− 2
3 to pendant 3-face.

R4.4. If v is a 41c-vertex, then v sends 1 to its incident 3-face.

R4.5. If v is not incident with any 3-face, then v sends α(v) to each pendant
3-face evenly.
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R5. Suppose that v is a 5-vertex.

R5.1. Suppose that v is a 52g-vertex.

(1) If v is incident with two (3(3), 3(3), 52g))-faces, then v sends 20
21 to each

incident 3-face and sends 8
21 to pendant 3-face.

(2) If v is incident with exactly one (3(3), 3(3), 52g)-face or one (3(1), 3(1),
52g)-face f , then v sends 1 to f , 10

21 to pendant 3-face and sends the remaining
charge to another incident 3-face;

(3) If v is incident with a special 3-face f , then v sends 35
33 to f , 10

21 to the
pendant 3-face and sends the remaining charge to another incident 3-face.

(4) Otherwise, v sends 10
21 to pendant 3-face and sends the remaining charge

to each incident 3-face evenly.

R5.2. Suppose that v is a 52b-vertex. If v is incident with a special 3-face f ,
then v sends 35

33 to the special 3-face and the remaining charge to another incident

3-face. Otherwise, v sends α(v)
2 to each incident 3-face.

R5.3. Suppose that v is a 51c-vertex. If v is a 51c1-vertex or a 51c2-vertex,
then v sends 1 to each incident 3-face and 4

7 to each pendant 3-face. Otherwise,
v sends 8

7 to each incident 3-face and 4
7 to each pendant 3-face.

R6. Suppose that v is a 6-vertex.

R6.1. Suppose that v is a 63g-vertex. Then v sends 23
21 to each incident

(3(3), 3(3), 6)-face, 35
33 to each incident special 3-face, and sends the remaining

charge to other incident 3-faces evenly.

R6.2. Suppose that v is incident with at most two 3-faces. Then v sends 8
7

to each incident 3-face, and sends 4
7 to each pendant 3-face.

R7. Every 7+-vertex sends 8
7 to each incident 3-face, and 4

7 to each pendant
3-face.

Now we are going to check that ch′(x) ≥ 0 for all x ∈ V ∪ F .

Claim 12. Let v ∈ V . Then ch′(v) ≥ 0.

Proof. By Lemma 2, d(v) ≥ 3. Let d(v) = k. Set v1, v2, . . . , vk be the neighbors
of v in clockwise order. Let fi be the face incident with vvi and vvi+1, where
i ∈ {1, 2, . . . , k} and vk+1 = v1. Let t be the number of 3-faces incident with v

and m be the number of pendant 3-faces of v. Since G has no 4-cycles, t ≤
⌊
d(v)
2

⌋
and m ≤ d(v)− 2t.

Case 1. d(v) ≥ 7. By R1 and R7, v gets at least 1
3 from each incident 6+-

face, sends 8
7 to each incident 3-face, and sends 4

7 to each pendant 3-face. Hence,
ch′(v) ≥ ch(v)+ 1

3(d(v)−t)− 8
7 t−

4
7m ≥ d(v)−4+ 1

3(d(v)−t)− 8
7 t−

4
7(d(v)−2t) =

16
21d(v)−

1
3 t− 4 ≥ 16

21d(v)−
1
6d(v)− 4 = 25

42d(v)− 4 ≥ 1
6 .
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Case 2. d(v) = 6. Then ch(v) = 2. Note that α(v) ≥ ch(v) + 1
3(d(v)− t) ≥ 3

by R1. Suppose that v is a 63g-vertex. If f7+(v) = 3, then ch′(v) ≥ 2 + 3
7 ×

3 − 23
21 × 3 = 0 by R1 and R6. So f7+(v) ≤ 2. That is, v is incident with at

most one (3(3), 3(3), 6)-face. Moreover, if v is incident with one (3(3), 3(3), 6)-face,
then v is not incident with any special 3-face. Therefore, ch′(v) = 0 by R6. So
assume that v is not incident with any (3(3), 3(3), 6)-face. By Lemma 6(2) and
the definition of special 3-face, we can show that v is incident with at most one
special 3-face. So ch′(v) = 0 by R6 and α(v) ≥ 3.

Suppose that v is not a 63g-vertex. Then t ≤ 2. By Lemma 6(6), v is incident
with at least one 7+-face, which sends at least 3

7 to v. Hence, by R1 and R6,
ch′(v) ≥ 2 + 3

7 + 1
3(6− t− 1)− 8

7 t−
4
7m = 2

3 − 1
3 t ≥ 0.

Case 3. d(v) = 5. Then t ≤ 2 and ch(v) = 1. By R1, α(v) ≥ 1 + 1
3(d(v)− t)

≥ 2.

Suppose that t = 2. Suppose that v is a 52g-vertex, say d(f1) = d(f4) = 3.
If v is incident with two (3(3), 3(3), 52g)-faces, then f7(v) = 3. Hence, by R1
and R5, ch′(v) ≥ 1 + 3

7 × 3 − 20
21 × 2 − 8

21 = 0. Now assume that v is incident

with at most one (3(3), 3(3), 52g)-face. Let A = {f | f is a (3(3), 3(3), 52g)-
face, or a (3(1), 3(1), 52g)-face, or a special 3-face}. If f1 is a (3(3), 3(3), 52g)-
face, then d(f2) = d(f5) = 7, which implies that f4 is not in A. If f1 is a
(3(1), 3(1), 52g)-face or a special 3-face, then d(f5) = 6 by Lemma 6(3). Therefore,
d(f2) = 6, which implies that d(f3) ≥ 7 by Lemma 6(6). Hence, f4 is not in A.
Thus, at most one of f1 and f4 belongs to A. Hence, ch′(v) = 0 by R5 and α(v) ≥
2. If v is a 52b-vertex. Then ch′(v) = α(v)−max{2× α(v)

2 , 3533 + (α(v)− 35
33)} = 0

by R5.2 and v is incident with at most one special 3-face.

Suppose that t = 1, say d(f1) = 3. Then f7+(v) ≥ 2 by Lemma 6(6). If
m ≤ 2, then ch′(v) ≥ 1 + 3

7 × 2 + 1
3 × 2 − 1 − 4

7 × 2 = 8
21 by R1 and R5. Now

assume that m = 3, say vi is a triangular 3-vertex for all i ∈ {3, 4, 5}. Note
that f6(v) ≤ 2 by Lemma 6(6). If f6(v) = 2, then f11+(v) = 2 by Lemma 6 and
Lemma 8. Hence, ch′(v) ≥ 1+ 1

3 × 2+ 7
11 × 2− 8

7 −
4
7 × 3 = 19

231 by R1 and R5. If
f6(v) = 1, then f11+(v) ≥ 1. Hence, ch′(v) ≥ 1+ 1

3 +
7
11 +

3
7 × 2− 1− 4

7 × 3 = 26
231

when f7(v) = 2 or ch′(v) ≥ 1+ 1
3 +

7
11 +

3
7 +

7
11 −

8
7 −

4
7 × 3 = 41

231 when f7(v) ≤ 1.
If f6(v) = 0 and f7(v) = 4, then ch′(v) ≥ 1 + 3

7 × 4− 1− 4
7 × 3 = 0. Otherwise,

f6(v) = 0 and f7(v) ≤ 3, then ch′(v) ≥ 1 + 3
7 × 3 + 7

11 − 8
7 − 4

7 × 3 = 5
77 .

Suppose that t = 0. Then f7+(v) ≥ 3 by Lemma 6(6). Hence, ch′(v) ≥
1 + 3

7 × 3 + 1
3 × 2− 4

7 × 5 = 2
21 by R5.

Case 4. d(v) = 4. If v is not a 42g-vertex, then α(v) ≥ 1
3 × 3 ≥ 1. Hence,

ch′(v) ≥ 0 by R4. So we may assume that v is a 42g-vertex. If v is not incident

with any (3(3), 42g1 , 42g1)-face, then ch′(v) ≥ α(v) − 2 × α(v)
2 = 0 by R4. If v is

incident with a (3(3), 42g1 , 42g1)-face, say f1 is a (3(3), 42g1 , 42g1)-face with v1 is a
3(3)-vertex and v2 is a 42g1-vertex, then d(f4) = 7 and d(f2) = 6. Now v3 is not
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the 42g1-vertex by Lemma 6(2), and v3 is not the 3(3)-vertex. So f3 is not the
(3(3), 42g1 , 42g1)-face. Hence, ch′(v) ≥ ch(v) + 1

3 + 3
7 − 10

21 − 2
7 = 0 by R4.

Case 5. d(v) = 3. Suppose v is a triangular 3-vertex, then ch′(v) ≥ 0 by R1
and R2. Otherwise, ch′(v) ≥ ch(v) + 1

3 × 3 = 0 by R1.

By the rules R3–R7 and since G does not contain any 3(3,6,7)-vertex, we can
check that Observation 13 and Observation 14 hold. We use τ(x → y) to denote
the charge that x sends to y, where x, y ∈ F (G) ∪ V (G).

Observation 13. Let f be a 3-face and v be a vertex incident with f .

(1) Suppose that d(v) = 3. If v is a 3(5)-vertex, then τ(v → f) ≥ 5
77 . If v is

a 3(7)-vertex, then τ(v → f) ≥ 3
22 . If v is a 3(8)-vertex, then τ(v → f) ≥ 3

11 .

(2) Suppose that v is a 42g-vertex and f is not the (3(3), 42g1 , 42g1)-face. Let
f ′ be the second face incident with v. By Lemma 9, f7+(v) ≥ 1. First assume that
v is a 42g1-vertex. If f ′ is a (3(3), 42g1 , 42g1)-face, then τ(v → f) = 2

7 ; otherwise,
τ(v → f) = 8

21 . Next assume that v is not a 42g1-vertex, then τ(v → f) ≥ 3
7 .

(3) Suppose that v is a 2-triangular 5-vertex. Let f ′ be the second 3-face
incident with v.

(3.1) Suppose that v is a 52g-vertex and f is not the (3(3), 3(3), 52g)-face,
nor the (3(1), 3(3), 52g)-face, nor the special 3-face. If f ′ is a special 3-face, then
f6(v) = 2 and f11+(v) ≥ 1 by Lemma 6. Therefore, τ(v → f) ≥ 59

77 . If f ′ is a

(3(3), 3(3), 52g)-face, then f7(v) ≥ 2 and f7+(v) ≥ 3. Therefore, τ(v → f) ≥ 17
21 .

If f ′ is a (3(1), 3(1), 52g)-face, then f6(v) = 2 and f11+(v) ≥ 1 by Lemma 6.
Therefore, τ(v → f) ≥ 191

231 . For the other cases, τ(v → f) ≥ 6
7 .

(3.2) Suppose that v is a 52b-vertex. If f ′ is a special 3-face, then f6(v) = 2
and f7+(v) ≥ 1. Therefore, τ(v → f) ≥ 239

231 . Otherwise, τ(v → f) ≥ 22
21 .

(4) Suppose that v is a 63g-vertex. Let f ′ and f ′′ be the 3-faces incident with
v other than f . If f ′ or f ′′ is a special 3-face, say f ′, then f and f ′′ are not the
the special 3-faces by Lemma 6. Therefore, τ(v → f) ≥ 32

33 . If exactly one of f ′

and f ′′ is a (3(3), 3(3), 6)-face, then f7(v) ≥ 2 and τ(v → f) ≥ 22
21 . For the other

cases, τ(v → f) ≥ 1.

Observation 14. Let v ∈ V (G) and f be the pendant 3-face of v.

(1) Let v be a 3-vertex which is not incident with any 3-face.

(1.1) Suppose that v has three pendant 3-faces. If v is a 3w-vertex, then
τ(v → f) = 2

21 . Otherwise, τ(v → f) ≥ 38
231 .

(1.2) Suppose that v has two pendant 3-faces. If v is a 3m-vertex, then τ(v →
f) = 1

7 . If v is a 3s-vertex, then τ(v → f) = 1
6 . If f7(v) = 2 and f8(v) = 1, then

τ(v → f) = 5
28 . Otherwise, τ(v → f) ≥ 46

231 .
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(1.3) Suppose that v has one pendant 3-face. If f6(v) = 1 and f7(v) = 2,
then τ(v → f) = 4

21 . Otherwise, τ(v → f) ≥ 11
42 .

(2) Let v be a 4-vertex.

(2.1) Suppose that v is a 41g-vertex. If f7(v) = 3, then τ(v → f) = 5
14 ; if

f6(v) = 2, then f11+(v) = 1 and τ(v → f) ≥ 169
462 . Otherwise, τ(v → f) ≥ 191

462 .

(2.2) Suppose that v is a 41b-vertex. If f6(v) = 2, then f8+(v) = 1 and
τ(v → f) ≥ 1

2 . Otherwise, τ(v → f) ≥ 11
21 .

(2.3) Suppose that f3(v) = 0. If v is a 4w-vertex, then τ(v → f) ≥ 3
7 . If v is

not a 4w-vertex, then τ(v → f) ≥ 4
7 .

Now we are ready to show that ch′(f) ≥ 0 for each face f ∈ F . Note that
d(f) /∈ {4, 5, 10}.

Claim 15. Let f ∈ F . Then ch′(f) ≥ 0.

Proof. Suppose that d(f) ≥ 6. Then ch′(f) ≥ ch(f) − ch(f)
d(f) × d(f) = 0 by R1.

So we assume that d(f) = 3. That is f = [v1v2v3] with d(v1) ≤ d(v2) ≤ d(v3).
Note that ch(f) = −1. Let v′i be the outer neighbor of vi when d(vi) = 3.

Case 1. d(v1) ≥ 4. Suppose that f is a weak 3-face, say v1 is a 42g1-vertex,
then v2 and v3 cannot be a 42g-vertex, a 41g-vertex or a 52g-vertex by Lemma 10.
Hence, ch′(f) ≥ −1 + 2

7 +
2
3 × 2 = 13

21 by R4–R7 and Observation 13. Otherwise,
τ(vi → f) ≥ 8

21 for each i ∈ {1, 2, 3} by R4–R7 and Observation 13. Hence,
ch′(f) ≥ −1 + 8

21 × 3 = 1
7 .

Case 2. d(v1) = 3 and d(v2) ≥ 5. Note that τ(f → v1) ≤ 1
6 by R2, and

τ(vi → f) ≥ 59
77 for each i ∈ {2, 3} by R5–R7 and Observation 13. Hence,

ch′(f) ≥ −1− 1
6 + 59

77 × 2 = 169
462 .

Case 3. d(v1) = 3, d(v2) = 4 and d(v3) ≥ 5. Suppose that v1 is a 3(1)-vertex
or a 3(4)-vertex. Then τ(f → v1) ≤ 1

6 by R2 and because one of f12 and f13
is an 8-face. If d(f12) = 8, then v2 cannot be a 42g-vertex or a 41g-vertex by
Lemma 6(4). Hence, τ(v2 → f) ≥ 2

3 by R4 and τ(v3 → f) ≥ 59
77 by R5–R7 and

Observation 13. Hence, ch′(f) ≥ −1− 1
6 +

2
3 +

59
77 = 41

154 . If d(f13) = 8, then v3 is
not a 52g-vertex by Lemma 6(4). Hence, τ(v2 → f) ≥ 2

7 and τ(v3 → f) ≥ 32
33 by

R4–R7 and Observation 13. Hence, ch′(f) ≥ −1− 1
6 + 2

7 + 32
33 = 41

462 .

Suppose that v1 is a 3(3)-vertex, then τ(f → v1) =
1
7 by R2. If v3 is a 52g-

vertex, then v2 is not incident with any (3(3), 42g1 , 42g1)-face by Lemma 6. Hence,
τ(v2 → f) ≥ 8

21 and τ(v3 → f) ≥ 17
21 by R4 and Observation 13. Thus, ch′(f) ≥

−1− 1
7+

8
21+

17
21 = 1

21 . If v3 is not a 52g-vertex, then ch′(f) ≥ −1− 1
7+

2
7+

32
33 = 26

231
by R5–R7 and Observation 13.

Otherwise, v1 is a 3(i)-vertex, i ∈ {2, 5, 6, 7, 8}, then τ(f → v1) ≤ 1
33 by R2,

and τ(v2 → f)+ τ(v3 → f) ≥ 2
7 +

59
77 = 81

77 by R4–R7 and Observation 13. Hence,
ch′(f) ≥ −1− 1

33 + 81
77 = 5

231 .
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Case 4. d(v1) = 3 and d(v2) = d(v3) = 4.

Subcase 4.1. Both v2 and v3 are 42g-vertices. By symmetry, we may assume
d(f13) ≥ d(f12). By Lemma 6, d(f13) = 7 or d(f13) ≥ 11, and d(f23) = 6 or
d(f23) ≥ 11.

Suppose that d(f23) = 6. Then d(f12) ̸= 6 by Lemma 9. First suppose that
d(f13) ≥ 11. By R4.1, τ(v3 → f) ≥ 1

2 × (13 + 7
11) =

16
33 . If d(f12) = 7, then f is

not a weak 3-face by Lemma 6(2). Hence, τ(v2 → f) ≥ 8
21 by Observation 13.

Note that v′1 is not a triangular 3-vertex. Hence, τ(v′1 → f) ≥ 2
21 by Observation

14 and R5–R7. Therefore, ch′(f) ≥ −1 + 8
21 +

16
33 +

2
21 = 5

77 . If d(f12) ≥ 11, then
τ(v2 → f) ≥ 1

2 × (13 + 7
11) = 16

33 by R4.1 and τ(v1 → f) ≥ 3
11 by Observation

13(1). Hence, ch′(f) ≥ −1 + 16
33 × 2 + 3

11 = 8
33 . Next suppose that d(f13) = 7.

Then d(f12) = 7 by G contains no 3(3,6,7)-vertex. Hence, τ(f → v1) =
1
7 by R2

and τ(vi → f) ≥ 10
21 (i ∈ {2, 3}) by R4.1. Note that v′1 is not a triangular 3-vertex

and has at most one pendant 3-face when d(v′1) = 3. Hence, τ(v′1 → f) ≥ 4
21 by

Observation 14 and R5–R7. Hence, ch′(f) ≥ −1− 1
7 + 10

21 × 2 + 4
21 = 0.

Suppose that d(f23) ≥ 11. If d(f13) ≥ 11, then τ(f → v1) ≤ 1
33 by R2,

τ(v2 → f) ≥ 1
2 ×

(
1
3 + 7

11

)
= 16

33 and τ(v3 → f) ≥ 1
2 ×

(
7
11 + 7

11

)
= 7

11 by
R4.1. Hence, ch′(f) ≥ −1 − 1

33 + 16
33 + 7

11 = 1
11 . So suppose that d(f13) = 7.

Then d(f12) = 7 by G contains no 3(3,6,7)-vertex. Hence, τ(f → v1) =
1
7 by R2

and τ(vi → f) ≥ 1
2 × ( 7

11 + 3
7) = 41

77 for each i ∈ {2, 3} by R4.1. By Lemma
6(3), v′1 is not a triangular 3-vertex and at most has one pendant 3-face when
d(v′1) = 3. Hence, τ(v′1 → f) ≥ 4

21 by Observation 14 and R5–R7. Thus,
ch′(f) ≥ −1− 1

7 + 41
77 × 2 + 4

21 = 26
231 .

Subcase 4.2. Exactly one of v2 and v3 is a 42g-vertex, say v2. Suppose that
v3 is a 41g-vertex. Then τ(v3 → f) = 4

7 by R4.2. By Lemma 6, d(f12) /∈ {8, 9},
d(f13) /∈ {8, 9} and d(f23) /∈ {7, 8, 9}. If d(f12) ≥ 11, then τ(v2 → f) ≥ 1

2 × (13 +
7
11) =

16
33 by R4 and τ(f → v1) ≤ 1

33 by R2. Hence, ch′(f) ≥ −1− 1
33+

4
7+

16
33 = 2

77 .
If d(f12) = 7, then d(f13) = 7 or d(f13) ≥ 11, and τ(v2 → f) ≥ 8

21 by Observation
13. When d(f13) = 7, v′1 is not a triangular 3-vertex and at most has one pendant
3-face when d(v′1) = 3 by Lemma 6(3). Then τ(v′1 → f) ≥ 4

21 by R5–R7 and
Observation 14. Hence, ch′(f) ≥ −1− 1

7 +
8
21 +

4
7 +

4
21 = 0 by R2. When d(f13) ≥

11, τ(v1 → f) ≥ 5
77 by Observation 13. Hence, ch′(f) ≥ −1 + 5

77 +
4
7 +

8
21 = 4

231 .
If d(f12) = 6, then d(f23) ≥ 11 and d(f13) ≥ 11 by Lemma 9 and G contains no
3(3,6,7)-vertex. So τ(v2 → f) ≥ 1

2 ×
(
1
3 + 7

11

)
= 16

33 by R4 and τ(f → v1) ≤ 1
33 by

R2. Hence, ch′(f) ≥ −1− 1
33 + 4

7 + 16
33 = 2

77 .

Suppose that v3 is a 41b-vertex. Then, τ(v3 → f) = 2
3 by R4. If f is a weak

3-face, then τ(v2 → f) = 2
7 by R4. Now d(f12) = 7 and f23 is a 6-face adjacent

to three 3-faces, or d(f23) = 7 and f12 is a 6-face adjacent to three 3-faces.
Therefore, v′1 is not a triangular 3-vertex and f13 is adjacent to two 3-faces by v3
is a 41b-vertex. Then d(f13) = 7 or d(f13) ≥ 11, which implies that v1 is not a
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3(1)-vertex or a 3(4)-vertex. If v1 is not a 3(3)-vertex, then τ(f → v1) ≤ 1
33 by R2.

Hence, ch′(f) ≥ −1− 1
33+

2
3+

2
7+

2
21 = 4

231 by Observation 14 and R5–R7. If v1 is

a 3(3)-vertex, then v′1 has exactly one pendant 3-face when d(v′1) = 3, and τ(v′1 →
f) ≥ 4

21 by Observation 14 and R5–R7. Hence, ch′(f) ≥ −1− 1
7+

2
3+

2
7+

4
21 = 0 by

R2. So assume that f is not a weak 3-face. Then τ(v2 → f) ≥ 8
21 by Observation

13. If v1 is not a 3(i)-vertex, i ∈ {1, 3, 4}, then τ(f → v1) ≤ 1
33 by R2. Hence,

ch′(f) ≥ −1 − 1
33 + 2

3 + 8
21 = 4

231 . Otherwise, d(f13) = 8 or d(f12) = 7, which
implies that v′1 is not a triangular 3-vertex or a 3w-vertex. Then τ(v′1 → f) ≥ 1

7
by Observation 14. Hence, ch′(f) ≥ −1− 1

6 + 2
3 + 8

21 + 1
7 = 1

42 by R2.

Suppose that v3 is a 41c-vertex, then τ(f → v1) ≤ 1
6 by R2, τ(v2 → f) ≥ 2

7 by
Observation 13 and τ(v3 → f) = 1 by R4. Hence, ch′(f) ≥ −1− 1

6 +
2
7 + 1 = 5

42 .

Subcase 4.3. Neither v2 nor v3 is a 42g-vertex. Then τ(vi → f) ≥ 4
7 by R4 for

each i ∈ {2, 3}. If v1 is a 3(1)-vertex, then at most one of v2 and v3 is a 41g-vertex,
say v2. Hence, τ(v3 → f) ≥ 2

3 by R4. Thus, ch′(f) ≥ −1 − 1
6 + 4

7 + 2
3 = 1

14 by
R2. Otherwise, ch′(f) ≥ −1− 1

7 + 4
7 × 2 = 0 by R2 and R4.

Case 5. d(v1) = d(v2) = 3 and d(v3) ≥ 7. Suppose that both v1 and v2
are 3(1)-vertices. Now v′i is not a triangular 3-vertex for each i ∈ {1, 2}. Hence,
τ(v′i → f) ≥ 2

21 for each i ∈ {1, 2} by Observation 14. Therefore, ch′(f) ≥
−1− 1

6 × 2 + 8
7 + 2

21 × 2 = 0 by R2 and R7.

Suppose that exactly one of v1 and v2 is a 3(1)-vertex, say v1. Then v2 is not
a 3(3)-vertex. Note that v′1 is not a triangular 3-vertex or a 3w-vertex. Hence,
τ(v′1 → f) ≥ 1

7 by Observation 14. Therefore, ch′(f) ≥ −1− 1
6 −

1
14 +

8
7 +

1
7 = 1

21
by R2 and R7.

Suppose that neither v1 nor v2 is a 3(1)-vertex. If at least one of v1 and v2
is a 3(3)-vertex, then d(f12) = 7. Now at most one of v′1 and v′2 is a triangular
3-vertex or a 3w-vertex, say v′1. Hence, τ(v′2 → f) ≥ 1

7 by Observation 14.
Therefore, ch′(f) ≥ −1− 1

7 × 2+ 8
7 +

1
7 = 0 by R2 and R7. Suppose that neither

v1 nor v2 is a 3(3)-vertex. Then ch′(f) ≥ −1− 1
14 × 2 + 8

7 = 0 by R2 and R7.

Case 6. d(v1) = d(v2) = 3 and d(v3) = 6. If v3 is incident with at most
two 3-faces, then τ(v3 → f) = 8

7 by R6. With the similar arguments as Case 5,
we can show that ch′(f) ≥ 0. So we may assume that v3 is a 63g-vertex. Then
d(f13) /∈ {8, 9} and d(f23) /∈ {8, 9}. By symmetry, assume that d(f23) ≥ d(f13).

Subcase 6.1. d(f23) ≥ 11. Suppose that d(f13) ≥ 11. Then τ(f → vi) ≤ 1
33

for each i ∈ {1, 2} by R2. By R6, τ(v3 → f) ≥ 1
3 × ( 7

11 × 2+ 1
3 +2) = 119

99 . Hence,
ch′(f) ≥ −1− 1

33 × 2 + 119
99 = 14

99 .

Suppose that d(f13) = 7. Then d(f12) ≥ 7 by G contains no 3(3,6,7)-vertex.
Hence, τ(f → v1) ≤ 1

7 by R2, τ(v2 → f) ≥ 5
77 by Observation 13, and τ(v3 →

f) ≥ 32
33 by Observation 13. Note that v′1 is not a triangular 3-vertex or a 3w-

vertex by Lemma 6(3). Hence, τ(v′1 → f) ≥ 1
7 by Observation 14. Therefore,
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ch′(f) ≥ −1− 1
7 + 32

33 + 1
7 + 5

77 = 8
231 .

Suppose that d(f13) = 6. Then d(f12) = 8 or d(f12) ≥ 11 by Lemma 6
and G contains no 3(3,6,7)-vertex. By Observation 13(4), τ(v3 → f) ≥ 32

33 . If
d(f12) = 8, then τ(f → v1) =

1
6 by R2 and τ(v2 → f) ≥ 3

22 by Observation 13.
Note that v′1 is not a triangular 3-vertex by Lemma 6(4). Hence, τ(v′1 → f) ≥ 2

21
by Observation 14. Therefore, ch′(f) ≥ −1 − 1

6 + 32
33 + 3

22 + 2
21 = 8

231 . Thus,
d(f12) ≥ 11. Then τ(f → v1) ≤ 1

33 by R2 and τ(v2 → f) ≥ 3
11 by Observation

13. Hence, ch′(f) ≥ −1− 1
33 + 32

33 + 3
11 = 7

33 .

Subcase 6.2. d(f23) = 7. Suppose that d(f13) = 7. Then d(f12) ≥ 7 by G
contains no 3(3,6,7)-vertex. Note that v′i (i ∈ {1, 2}) is not a triangular 3-vertex
by Lemma 6(3). Then τ(v′i → f) ≥ 2

21 for each i ∈ {1, 2} by Observation 14. If
d(f12) = 7, then τ(f → vi) =

1
7 for each i ∈ {1, 2} by R2, and τ(v3 → f) = 23

21
by R6.1. Hence, ch′(f) ≥ −1 − 1

7 × 2 + 23
21 + 2

21 × 2 = 0. If d(f12) ≥ 8, then
τ(f → vi) ≤ 1

14 for each i ∈ {1, 2} by R2, and τ(v3 → f) ≥ 32
33 by Observation

13(4). Hence, ch′(f) ≥ −1− 1
14 × 2 + 32

33 + 2
21 × 2 = 4

231 .

Suppose that d(f13) = 6. Then d(f12) = 8 or d(f12) ≥ 11 by Lemma 6
and G contains no 3(3,6,7)-vertex. By Observation 13(4), τ(v3 → f) ≥ 32

33 . If
d(f12) = 8, then v′i (i ∈ {1, 2}) is not a triangular 3-vertex or a 3w-vertex by
Lemma 6(4). Hence, τ(v′i → f) ≥ 1

7 for each i ∈ {1, 2}. Therefore, ch′(f) ≥
−1 − 1

6 − 1
14 + 32

33 + 1
7 × 2 = 4

231 by R2. Thus, d(f12) ≥ 11, and τ(v2 → f) ≥ 5
77

by Observation 13. Hence, ch′(f) ≥ −1− 1
33 + 32

33 + 5
77 = 5

231 by R2.

Subcase 6.3. d(f23) = 6. Then d(f13) = 6. Note that d(f12) = 8 or d(f12) ≥
11 by Lemma 6 and G contains no 3(3,6,7)-vertex. By Observation 13(4), τ(v3 →
f) ≥ 32

33 .

Suppose that d(f12) = 8. Note that v′i (i ∈ {1, 2}) is not a triangular 3-vertex
by Lemma 6(4). Then τ(f → vi) ≤ 1

6 and τ(v′i → f) ≥ 1
6 for each i ∈ {1, 2} by

R2–R7 and Observation 14. Suppose that v3 is incident with at least one special
3-face. Note that one of v′1 and v′2, say v′1, has exactly one pendant 3-face f
when d(v′1) = d(v′2) = 3. Hence, τ(v′1 → f) ≥ 11

42 by Observation 14 and R5–R7.
Thus, ch′(f) ≥ −1 − 1

6 × 2 + 32
33 + 11

42 + 1
6 = 5

77 . Suppose that v3 is not incident
with any special 3-face. Then τ(v3 → f) ≥ 1 by Observation 13(4). Hence,
ch′(f) ≥ −1− 1

6 × 2 + 1 + 1
6 × 2 = 0.

Suppose that d(f12) ≥ 11. Then τ(f → vi) ≤ 1
33 for each i ∈ {1, 2} by

R2. If f is a special 3-face, then ch′(f) ≥ −1 − 1
33 × 2 + 35

33 = 0 by R6 and
Observation 13(4). Otherwise, at least one of v′1 and v′2 is not a triangular 3-
vertex, say v′1, then τ(v′1 → f) ≥ 2

21 by Observation 14 and R5–R7. Hence,
ch′(f) ≥ −1− 1

33 × 2 + 32
33 + 2

21 = 1
231 .

Case 7. d(v1) = d(v2) = 3 and d(v3) = 5. If τ(v3 → f) ≥ 8
7 , then ch′(f) ≥ 0

by the similar argument as Case 5. So we may assume that τ(v3 → f) < 8
7 .

That is, v3 is a 52g-vertex, or a 52b-vertex, or a 51c1-vertex, or a 51c2-vertex. By
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symmetry, assume that d(f23) ≥ d(f13).

Subcase 7.1. d(f23) ≥ 11. Suppose that d(f13) ≥ 11. Then τ(f → vi) ≤ 1
33

for each i ∈ {1, 2} by R2, and v3 is neither a 51c1-vertex nor a 51c2-vertex. Note
that α(v3) ≥ 1 + 7

11 × 2 + 1
3 = 86

33 by R1. If v3 is a 52g-vertex, then τ(v3 → f) ≥
1
2(α(v3)−

10
21) ≥

82
77 by R5.1. If v3 is a 52b-vertex, then τ(v3 → f) ≥ 1

2α(v3) ≥
43
33

by R5.2. Hence, ch′(f) ≥ −1− 1
33 × 2+min{43

33 ,
82
77} = 1

231 .
Suppose that d(f13) = 8. Then v3 is not a 5

2g-vertex and v′1 is not a triangular
3-vertex by Lemma 6(4). So τ(v3 → f) ≥ 22

21 by Observation 13(3) and R5.3, and
τ(v′1 → f) ≥ 1

6 by Observation 14 and R5–R7. Hence, ch′(f) ≥ −1 − 1
6 − 1

33 +
22
21 + 1

6 = 4
231 by R2.

Suppose that d(f13) = 7. Then d(f12) ≥ 7 since G contains no 3(3,6,7)-vertex.
By R2 and Observation 13, τ(f → v1) ≤ 1

7 and τ(v2 → f) ≥ 5
77 . Note that

α(v3) ≥ 1 + 1
3 + 7

11 + 3
7 = 554

231 . Suppose that v3 is a 52g-vertex. By Lemma 6(3),
v′1 is not a triangular 3-vertex or a 3w-vertex. So τ(v′1 → f) ≥ 1

7 by Observation

14 and R5–R7. If v3 incident with a (3(3), 3(3), 52g)-face, then f7(v3) = 2 and
f11+(v3) = 1. Thus, τ(v3 → f) ≥ 1+ 3

7 +
7
11 +

3
7 − (1+ 10

21) =
235
231 by R5.1. Hence,

ch′(f) ≥ −1− 1
7 +

235
231 +

1
7 +

5
77 = 19

231 . Otherwise, τ(v3 → f) ≥ 1
2(α(v3)−

10
21) ≥

74
77

by R5. Hence, ch′(f) ≥ −1 − 1
7 + 74

77 + 1
7 + 5

77 = 2
77 . If v3 is a 51c1-vertex or

a 51c2-vertex, then τ(v3 → f) = 1 by R5.3. Note that v′1 is not a triangular
3-vertex or a 3w-vertex. Hence, ch′(f) ≥ −1− 1

7 + 1 + 1
7 = 0 by Observation 14

and R5–R7. If v3 is a 52b-vertex, then τ(v3 → f) ≥ 1
2α(v3) >

8
7 by R5. Hence,

ch′(f) ≥ −1− 1
7 + 8

7 = 0.
Suppose that d(f13) = 6. Then d(f12) = 8 or d(f12) ≥ 11 by Lemma 6 and

G contains no 3(3,6,7)-vertex. By Observation 13, τ(v3 → f) ≥ 59
77 . If d(f12) = 8,

then v′i (i ∈ {1, 2}) is not a triangular 3-vertex and has at most two pendant
3-faces when d(v′i) = 3 by Lemma 6(4). So τ(v′1 → f) ≥ 1

6 and τ(v′2 → f) ≥ 46
231

by Observation 14 and R5–R7. Hence, ch′(f) ≥ −1− 1
6 +

59
77 +

1
6 +

46
231 +

3
22 = 47

462
by R3. Thus, d(f12) ≥ 11. Hence, ch′(f) ≥ −1 − 1

33 + 59
77 + 3

11 = 2
231 by R2 and

Observation 13.

Subcase 7.2. d(f23) = 8. Then v3 is a 52b-vertex, and v′2 is not a triangular 3-
vertex. Then τ(v′2 → f) ≥ 1

6 by Observation 14 and R5–R7, and τ(v3 → f) ≥ 239
231

by Observation 13(3). Hence, ch′(f) ≥ −1− 1
6 + 239

231 + 1
6 = 8

231 by R2.

Subcase 7.3. d(f23) = 7.

Subcase 7.3.1. d(f13) = 7. Then d(f12) ≥ 7 since G contains no 3(3,6,7)-vertex.
Suppose that d(f12) = 7. Then v3 is not a 51c2-vertex. Now τ(f → vi) =

1
7 for

each i ∈ {1, 2} by R2 and τ(v3 → f) ≥ 20
21 by R5. If d(v′1) ≥ 4 or d(v′2) ≥ 4,

say v′1, then τ(v′1 → f) ≥ 5
14 by Observation 14. Hence, ch′(f) ≥ −1 − 1

7 × 2 +
20
21 + 5

14 = 1
42 . So suppose that d(v′1) = d(v′2) = 3. If v3 is a 52b-vertex, then

τ(v3 → f) ≥ 1
2 × (1 + 3

7 × 2 + 1
3) = 23

21 by R5.2. If both v′1 and v′2 are not
the triangular 3-vertices, then at most one of them has three pendant 3-faces,
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say v′1. Hence, τ(v′1 → f) ≥ 2
21 and τ(v′2 → f) ≥ 1

7 by Observation 14. Thus,
ch′(f) ≥ −1− 1

7×2+ 23
21+

1
7+

2
21 = 1

21 . If one of v
′
1 and v′2 is a triangular 3-vertex,

say v′1, then v′2 is not a triangular 3-vertex and has exactly one pendant 3-face.
So τ(v′2 → f) ≥ 4

21 by Observation 14. Hence, ch′(f) ≥ −1− 1
7 × 2+ 23

21 +
4
21 = 0.

Now we may assume that v3 is a 52g-vertex or a 51c1-vertex. Then v′i (i ∈ {1, 2})
is not a triangular 3-vertex and at most one of them has two pendant 3-faces by
Lemma 6(3), say v′1. So τ(v′1 → f) ≥ 1

7 and τ(v′2 → f) ≥ 4
21 by Observation 14.

Hence, ch′(f) ≥ −1− 1
7 × 2 + 20

21 + 1
7 + 4

21 = 0.
Suppose that d(f12) = 8. Then v′i is not a triangular 3-vertex by Lemma

6(4) and τ(f → vi) = 1
14 for each i ∈ {1, 2} by R1. If v3 is a 52g-vertex, then

τ(v3 → f) ≥ 17
21 by Observation 13. By Lemma 6(3) and 5(4), v′i (i ∈ {1, 2})

has at most one pendant 3-face when d(v′i) = 3. Hence, τ(v′i → f) ≥ 4
21 by

Observation 14. Thus, ch′(f) ≥ −1 − 1
14 × 2 + 4

21 × 2 + 17
21 = 1

21 . Otherwise,
τ(v3 → f) ≥min{1

2 × (1 + 3
7 × 2 + 1

3), 1} = 1 by R5.2 and R5.3. Hence, ch′(f) ≥
−1− 1

14 × 2 + 1 + 1
7 = 0 by Observation 14.

Suppose that d(f12) ≥ 11. Then τ(vi → f) ≥ 5
77 for each i ∈ {1, 2} by

Observation 13(1), and τ(v3 → f) ≥ 17
21 by Observation 14 and R5. Note that

at most one of v′1 and v′2 is a triangular 3-vertex, say v′1. So τ(v′2 → f) ≥ 2
21 by

Observation 14 and R5–R7. Hence, ch′(f) ≥ −1 + 5
77 × 2 + 17

21 + 2
21 = 8

231 .

Subcase 7.3.2. d(f13) = 6. Then d(f12) = 8 or d(f12) ≥ 11 by Lemma 6 and G
contains no 3(3,6,7)-vertex. First suppose that d(f12) = 8, then τ(f → v1)+τ(f →
v2) =

1
6 + 1

14 = 5
21 by R2. By Lemma 6(4), v′i (i ∈ {1, 2}) is not a triangular 3-

vertex. If v3 is a 52g-vertex, then τ(v3 → f) ≥ 6
7 by Observation 13(3). Note that

v′1 in not a 3w-vertex or a 3m-vertex and v′2 has exactly one pendant 3-face when
d(v′2) = 3 by Lemma 6. Then τ(v′1 → f) ≥ 1

6 and τ(v′2 → f) ≥ 11
42 by Observation

14. Hence, ch′(f) ≥ −1 − 5
21 + 6

7 + 1
6 + 11

42 = 1
21 . Otherwise, τ(v3 → f) ≥ 1 by

Observation 13(3) and R5, and τ(v′i → f) ≥ 1
7 for each i ∈ {1, 2} by Observation

14. Hence, ch′(f) ≥ −1 − 5
21 + 1 + 1

7 × 2 = 1
21 . Next suppose that d(f12) ≥ 11.

Then τ(f → v1) ≤ 1
33 by R2 and τ(v2 → f) ≥ 5

77 by Observation 13(1). If v3 is
a 52g-vertex, then τ(v3 → f) ≥ 6

7 by Observation 13(3). Note that v′2 is not a
triangular 3-vertex, or a 3w-vertex, or a 3m-vertex. Hence, τ(v′2 → f) ≥ 1

6 . Thus,
ch′(f) ≥ −1− 1

33 + 1
6 + 5

77 + 6
7 = 9

154 . Otherwise, τ(v3 → f) ≥ 1 by Observation
13(3), ch′(f) ≥ −1− 1

33 + 5
77 + 1 = 8

231 .

Subcase 7.4. d(f23) = 6. Then d(f13) = 6, and v3 is neither a 51c1-vertex nor
a 51c2-vertex. Note that d(f12) = 8 or d(f12) ≥ 11 by Lemma 6 and G contains no
3(3,6,7)-vertex. First suppose that d(f12) = 8. Then τ(v3 → f) ≥min{1, 239231} = 1
by R5 and Observation 13. By Lemma 6(4), v′i (i ∈ {1, 2}) is not a triangular
3-vertex, or a 3w-vertex, or a 3m-vertex. Hence, τ(v′i → f) ≥ 1

6 for each i ∈ {1, 2}
by Observation 14. Hence, ch′(f) ≥ −1 − 1

6 × 2 + 1 + 1
6 × 2 = 0 by R2. Next

suppose that d(f12) ≥ 11. If f is a special 3-face, then τ(v3 → f) ≥ 35
33 by

R5. Hence, ch′(f) ≥ −1 − 1
33 × 2 + 35

33 = 0 by R2. Otherwise, at least one of
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v′i (i ∈ {1, 2}) is not a triangular 3-vertex, say v′1. Hence, τ(v′1 → f) ≥ 1
6 by

Observation 14. Note that f11+(v3) ≥ 11 when v3 is a 52g-vertex. So τ(v3 →
f) ≥min{1

2 × (1 + 1
3 × 2 + 7

11 − 10
21),

239
231)} =min{211

231 ,
239
231} = 211

231 by R5 and
Observation 13. Hence, ch′(f) ≥ −1− 1

33 × 2 + 1
6 + 211

231 = 3
154 by R2.

Case 8. d(v1) = d(v2) = 3 and d(v3) = 4. Then d(v′i) ≥ 4 for each i ∈ {1, 2}
by Lemma 4. By Observation 14 and R5–R7, τ(v′i → f) ≥ 5

14 for each i ∈ {1, 2}.
By symmetry, assume that d(f23) ≥ d(f13).

Subcase 8.1. d(f23) ≥ 11. Suppose that d(f13) ≥ 8. Then τ(f → v1)+ τ(f →
v2) ≤ 1

6 + 1
33 = 13

66 by R2. Note that τ(v′i → f) ≥ 169
462 for each i ∈ {1, 2} by

Observation 14 and R5–R7. By R4, τ(v3 → f) ≥min{1
2 × (12 +

7
11),

4
7 ,

2
3 , 1} = 25

44 .
Hence, ch′(f) ≥ −1− 13

66 + 169
462 × 2 + 25

44 = 95
924 .

Suppose that d(f13) ≤ 7. Then d(f12) ≥ 7 by Lemma 6 and G contains no
3(3,6,7)-vertex. Hence, τ(f → v1) ≤ 1

6 by R2 and τ(v2 → f) ≥ 5
77 by Observation

13. By Observation 13 and R4, τ(v3 → f) ≥ 3
7 . Hence, ch′(f) ≥ −1 − 1

6 + 5
77 +

5
14 × 2 + 3

7 = 19
462 .

Subcase 8.2. d(f23) = 8. By Lemma 6(4), v3 is not a 42g-vertex or a 41g-
vertex. Then τ(v3 → f) ≥ 2

3 by R4. Hence, ch′(f) ≥ −1− 1
6 ×2+ 2

3 +
5
14 ×2 = 1

21
by R2.

Subcase 8.3. d(f23) = 7. Suppose that d(f13) = 7. Then d(f12) ≥ 7 by
G contains no 3(3,6,7)-vertex. If v3 is a 42g-vertex, then τ(v3 → f) ≥ 3

7 by
Observation 13(2). By Lemma 6(3), v′i (i ∈ {1, 2}) is not a 41g-vertex or a 2-
triangular 5-vertex. Hence, τ(v′i → f) ≥ 1

2 for each i ∈ {1, 2} by Observation 14
and R5–R7. Therefore, ch′(f) ≥ −1− 1

7 × 2 + 3
7 + 3

7 × 2 = 0 by R2. Otherwise,
τ(v3 → f) ≥ 4

7 by R4. Hence, ch′(f) ≥ −1− 1
7 × 2 + 4

7 + 5
14 × 2 = 0 by R2.

Suppose that d(f13) = 6. Then d(f12) = 8 or d(f12) ≥ 11 by Lemma 6 and
G contains no 3(3,6,7)-vertex. If d(f12) = 8, then τ(f → v1) + τ(f → v2) =
1
6 + 1

14 = 5
21 by R2. By Lemma 6(4), v′i (i ∈ {1, 2}) is not a 41g-vertex, a 4w-

vertex or a 2-triangular 5-vertex. Then τ(v′i → f) ≥ 1
2 for each i ∈ {1, 2} by

Observation 14 and R5–R7. By Observation 13(2) and R4, τ(v3 → f) ≥ 2
7 .

Hence, ch′(f) ≥ −1− 5
21 + 2

7 + 1
2 × 2 = 1

21 . If d(f12) ≥ 11, then τ(f → v1) ≤ 1
33

by R2 and τ(v2 → f) ≥ 5
77 by Observation 13(1). Note that τ(v3 → f) ≥ 2

7 by
Observation 13(1) and R4. Hence, ch′(f) ≥ −1− 1

33 + 5
77 + 2

7 + 5
14 × 2 = 8

231 .

Subcase 8.4. d(f23) = 6. Note that d(f13) = 6 and d(f12) = 8 or d(f12) ≥ 11
by Lemma 6 and G contains no 3(3,6,7)-vertex. By Lemma 9, v3 is not a 4

2g-vertex,
then τ(v3 → f) ≥ 4

7 by R4. First suppose that d(f12) = 8, then v′i (i ∈ {1, 2})
is not a 41g-vertex by Lemma 6(4). Hence τ(v′i → f) ≥ 8

21 for each i ∈ {1, 2} by
Observation 14(2) and R5–R7. Hence, ch′(f) ≥ −1− 1

6 × 2 + 4
7 + 8

21 × 2 = 0 by
R2. Next suppose that d(f12) ≥ 11. Then ch′(f) ≥ −1− 1

33 ×2+ 4
7 +

5
14 ×2 = 52

231
by R2.
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Case 9. d(v1) = d(v2) = d(v3) = 3. Then d(v′i) ≥ 4 for each i{1, 2, 3} by
Lemma 4. So τ(v′i → f) ≥ 5

14 for each i ∈ {1, 2, 3} by Observation 14 and R5–
R7. By symmetry, we may assume d(f23) ≥ d(f13) ≥ d(f12) and d(f13) ≥ 7 by
Lemma 6.

Suppose that d(f13) ≥ 11. Then ch′(f) ≥ −1− 1
33 × 2+ 3

11 +
5
14 × 3 = 131

462 by
R2 and Observation 13.

Suppose that d(f13) = 8. If d(f23) ≥ 11, then ch′(f) ≥ −1 − 1
6 − 1

33 + 3
22 +

5
14 × 3 = 5

462 by R2 and Observation 13. If d(f23) = 8, then v′i (i ∈ {1, 2, 3}) is
not a 41g-vertex, or a 4w-vertex, or a 2-triangular 5-vertex by Lemma 6. Hence,
τ(v′i → f) ≥ 1

2 for each i ∈ {1, 2, 3} by Observation 14 and R5–R7. Therefore,
ch′(f) ≥ −1− 1

6 × 2 + 1
2 × 3 = 1

6 by R2.

Suppose that d(f13) = 7. Then d(f12) = 7 since G contains no 3(3,6,7)-vertex.
If d(f23) ≥ 11, then τ(f → v1) =

1
7 by R2 and τ(vi → f) ≥ 5

77 for each i ∈ {2, 3}
by Observation 13(1). Hence, ch′(f) ≥ −1− 1

7+
5
77×2+ 5

14×3 = 9
154 . If d(f23) = 8,

then v′i (i ∈ {2, 3}) is not a 41g-vertex, or a 4w-vertex, or a 52g-vertex by Lemma
6(3). By Observation 14 and R5–R7, τ(v′i → f) ≥ 1

2 for each i ∈ {2, 3}. Hence,
ch′(f) ≥ −1− 1

14×2− 1
7+

5
14+

1
2×2 = 1

14 by R2. If d(f23) = 7, then τ(f → vi) =
1
7

for each i ∈ {1, 2, 3} by R2. By Lemma 11, at most one of v′i (i ∈ {1, 2, 3}) is
a 41g-vertex, or a 4w-vertex, or a 52g-vertex, say v′1. Furthermore, if v′1 is a
41g-vertex, or a 4w-vertex, or a 52g-vertex, then at most one of v′2 and v′3 is a
41b-vertex, say v′2. Hence, τ(v

′
1 → f) ≥ 5

14 , τ(v
′
2 → f) ≥ 1

2 and τ(v′3 → f) ≥ 4
7 by

Observation 14 and R5–R7. Therefore, ch′(f) ≥ −1− 1
7 × 3 + 5

14 +
1
2 +

4
7 = 0.

So far, it has been proved that if a 2-connected graph G is a minimal coun-
terexample of Theorem 1, then G has at least a 3(3,6,7)-vertex. By Lemma 8, G
has a 2-connected subgraph H such that the outer boundary of H is a 3-cycle
and H has no 3(3,6,7)-vertex. Obviously, H is a planar graph. Let f0 = [v1v2v3]
be the non-interface of H. Now, we can proceed a discharging procedure in
H = (V (H), E(H), F (H)). Call the edge in E(H) \ E(f0) as the inner edge.
Let the initial function chH of x ∈ V (H) ∪ F (H) be chH(x) = dH(x)− 4. Then
dH(v) ≥ 3 for v ∈ V (H) \ {f0} and dH(v) ≥ 2 for v ∈ V (f0). We define the
following discharging rules.

r1. Let v ∈ V (f0). Then v sends 8
7 to each incident 3-face f , f ̸= f0,

4
7 to pendant

3-face.

r2. For x ∈ (V (H) \ V (f0)) ∪ (F (H) \ {f0}), we redistribute ch(x) according to
the rules R1–R7 defined in the former.

Let the new charge function, obtained by the rules r1 and r2 after discharging
be ch′H . By Observation 13–14, a face f ∈ F (H)\V (f0) gets at most 8

7 from its
incident vertices and at most 4

7 from its outer neighbors. Obviously, following
the proofs of Claim 12 and Claim 15, we have ch′(x) ≥ 0 for all x ∈ (V (H) \
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V (f0)) ∪ (F (H) \ {f0}) after rules r1–r2. That is
∑

v∈V (H)\V (f0)
(dH(v) − 4) +∑

f∈F (H)\{f0}(dH(f)− 4) ≥ 0.

Then we consider the new charge of vi ∈ V (f0). Let t denote the number of
incident 3-faces of vi (except f0) and m denote the number of pendant 3-faces

of vi. Since H does not contain adjacent 3-faces, we have t ≤
⌊
dH(vi)−2

2

⌋
and

m ≤ d(vi) − 2t − 2. Since G ∈ G, f6+(vi) ≥ dH(vi) − (t + 1). Let f be the
6+-face incident with vi. By R1, τ(f → vi) ≥ 1

3 . If dH(vi) = 2, then t = m = 0
and f6+(vi) ≥ 1. So ch′H(vi) ≥ dH(vi) − 4 + 1

3 = −5
3 . If dH(vi) = 3, then

t = 0, m ≤ 1 and f6+(vi) ≥ 2. By Lemma 6(6), f7+(vi) ≥ 1. So ch′H(vi) ≥
dH(vi)− 4− 4

7m+ 1
3 + 3

7 ≥ −17
21 . If ch

′
H(vi) ≥ 4, then by r1–r2, we can get

ch′H(vi) ≥ dH(vi)− 4 +
1

3
(dH(vi)− 1− t)− 8

7
t− 4

7
m

≥ 4

3
dH(vi)−

13

3
− 1

3
t− 8

7
t− 4

7
(dH(vi)− 2t− 2)

=
16

21
dH(vi)−

1

3
t− 67

21
≥ 16

21
dH(vi)−

1

3

(
dH(vi)− 2

2

)
− 67

21
(1)

=
25

42
dH(vi)−

20

7
≥ −10

21
.

Therefore,

−8 =
∑

v∈V (H)

(dH(v)− 4) +
∑

f∈F (H)

(dH(f)− 4)

=
∑

v∈V (H)

ch′(v) +
∑

f∈F (H)

ch′(f)

=
∑

v∈V (H)\V {f0}

ch′(v) +
∑

f∈F (H)\{f0}

ch′(f) +
∑

v∈V (f0)

ch′(v) + ch′(f0)(2)

≥
∑

v∈V (f0)

ch′(v) + ch′(f0) ≥ 3×
(
−5

3

)
− 1 = −6.

The proof of Theorem 1 is completed when the minimal counterexample G
is 2-connected. Now we assume that G is not 2-connected, i.e., G has some cut
vertices. Let B be an end block of G. That is, B contains an unique cut vertex
t∗. By Lemma 2, B is 2-connected. Thus the boundary of every face of B is
a cycle, and every vertex v of B is incident with dB(v) distinct faces. Clearly,
B has no 4-face, 5-face or 10-face. If B contains a 3(3,6,7)-vertex, then B has a
2-connected subgraph H ′ such that the outer boundary of H ′ is a 3-cycle and H ′

contains no 3(3,6,7)-vertex by Lemma 8. In H ′, we can use the same discharging
rules as in H to deduce a contradiction. Suppose B has no 3(3,6,7)-vertices. Let
f0 be the exterior face of B. Moreover, each structural property established
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for G in Section 2 and Section 3 fails for B only when t∗ is involved. For any
x ∈ V (B) ∪ F (B), the initial charge function chB in the discharging procedure
is defined as chB(x) = dB(x)− 4. We proceed the discharging rules R1–R7 in B.
For x ∈ V (B) ∪ F (B)\{t∗}, we can get ch′B(x) ≥ 0 after R1–R7. Let t denote
the number of incident 3-faces of t∗ and m denote the number of pendant 3-

faces of t∗. Since B does not contain adjacent 3-faces, we have t ≤
⌊
dB(t∗

2

⌋
and

m ≤ dB(t
∗)− 2t. Thus,

ch′B(t
∗) ≥ dB(t

∗)− 4− 8

7
t− 4

7
m+

1

3
(dB(t

∗)− t)

≥ 4

3
dB(t

∗)− 4− 1

3
t− 8

7
t− 4

7
(dB(t

∗)− 2t)

=
16

21
dB(t

∗)− 1

3
t− 4 ≥ 16

21
dB(t

∗)− 1

3
· dB(t

∗)

2
− 4(3)

=
25

42
dB(t

∗)− 4 > − 4.

Therefore,

−8 =
∑

v∈V (B)

(dB(v)− 4) +
∑

f∈F (B)

(dB(f)− 4)

=
∑

v∈V (B)

ch′B(v) +
∑

f∈F (B)

ch′B(f)

=
∑

v∈V (B)\{t∗}

ch′B(v) +
∑

f∈F (B)

ch′B(f) + ch′B(t
∗)(4)

≥ ch′B(t
∗) > −4.

A contradiction completing the proof of Theorem 1 whenG is not 2-connected.
Hence, we show that every planar graph in G is (1, 0, 0)-colorable. That is, The-
orem 1 holds.
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