VERTEX PARTITIONS OF (C_4, C_5, C_{10}) -FREE PLANAR GRAPHS

ZHANG FEI AND DANJUN HUANG

Department of Mathematics Zhejiang Normal University Yingbin Road 688, Jinhua 321004, China

> e-mail: 1146885453@qq.com hdanjun@zjnu.cn

Abstract

A graph G is improperly (d_1, d_2, \ldots, d_k) -colorable or just (d_1, d_2, \ldots, d_k) -colorable if its vertices can be partitioned into k subsets V_1, V_2, \ldots, V_k such that $\Delta(G[V_i]) \leq d_i$ for $1 \leq i \leq k$. It is known that every (C_4, C_i, C_j) -free planar graph is (1, 0, 0)-colorable whenever $5 \leq i < j \leq 9$. In this paper, we prove that every (C_4, C_5, C_{10}) -free planar graph is (1, 0, 0)-colorable.

Keywords: planar graph, improper coloring, Steinberg conjecture, cycle. **2020 Mathematics Subject Classification:** 05C15.

1. Introduction

All graphs considered here are simple and undirected. Let G = (V, E) be a finite graph with the vertex set V and the edge set E. Let i_1, i_2, \ldots, i_k be k positive integers such that $3 \leq i_1 < i_2 < \cdots < i_k$. The $(C_{i_1}, C_{i_2}, \ldots, C_{i_k})$ -free graph is a graph without cycles of lengths i_1, i_2, \ldots, i_k . A proper k-coloring of a graph G is a mapping $\varphi: V \to \{1, 2, \ldots, k\}$ such that $\varphi(u) \neq \varphi(v)$ whenever $uv \in E$. The graph G which has a proper k-coloring is called k-colorable. The Four Color Theorem (saying that every planar graph is 4-colorable) was proved by Appel, Haken and Koch [2][3]. In 1976, Steinberg conjectured that every (C_4, C_5) -free planar graph is 3-colorable, which was disproved by Cohen-Addad et al. in [1].

Let d_1, d_2, \ldots, d_k be k nonnegative integers. A graph is improperly (d_1, d_2, \ldots, d_k) -colorable or just (d_1, d_2, \ldots, d_k) -colorable, if the vertex set V can be partitioned into k subsets V_1, V_2, \ldots, V_k such that $\Delta(G[V_i]) \leq d_i$ for $1 \leq i \leq k$. Under this terminology, the Four Color Theorem can be described as: every planar graph is (0, 0, 0, 0)-colorable, and the Steinberg Conjecture says that every

 (C_4, C_5) -free planar graph is (0,0,0)-colorable. Chen *et al.* [6] showed that every (C_4, C_5) -free planar graph is (2,0,0)-colorable. It was shown that every (C_4, C_i, C_j) -free planar graph is (1,0,0)-colorable for all $5 \le i < j \le 9$, see [5] and [7]–[12].

Let \mathcal{G} be the family of (C_4, C_5, C_{10}) -free planar graphs. In this paper, we consider the improper coloring of every planar graph without cycles of lengths 4, 5 and 10.

Theorem 1. Every planar graph in \mathcal{G} is (1,0,0)-colorable.

The rest of this section is devoted to introduce some definitions. The notation and terminology used but undefined in this paper can be found in [4]. Call a graph G planar if it can be embedded into the plane so that its edges meet only at their ends. Any such particular embedding of a planar graph is called a plane graph. For a plane graph G, we use F to denote its face set. For a vertex $v \in V$, a neighbor of v is a vertex adjacent to v, and the set of neighbors of v is denoted by N(v). The degree of v, denoted by $d_G(v)$ or simply d(v), is the number of neighbors of v. The minimal degree of the vertices of G is denoted by $\delta(G)$, and the maximum degree of vertices of G is denoted by $\delta(G)$. Call the vertex v a k-vertex, or a k-vertex, or a k-vertex if d(v) = k, or $d(v) \ge k$, or $d(v) \le k$, respectively. Let $f_k(v)$ be the number of k-faces incident with v. Similarly, we can define $f_{k+}(v)$ and $f_{k-}(v)$.

For a face f, the number of edges on the boundary of f (each cut edge is counted twice) is called the degree of f, denoted by d(f). Call the face f a k-face, or a k^+ -face, or a k^- -face if d(f) = k, or $d(f) \ge k$, or $d(f) \le k$, respectively. We write $f = [v_1v_2 \cdots v_k]$ if v_1, v_2, \ldots, v_k are consecutive vertices on the boundary of f in a cyclic order, and say that f is a $(d(v_1), d(v_2), \ldots, d(v_k))$ -face. A pendant 3-face of a vertex v is a 3-face which is not incident with v but is incident with a 3-vertex adjacent to v. Call a vertex or an edge triangular if it is incident with a 3-face. If a 3-vertex v is triangular, say v is incident with a 3-face f, then its neighbor not incident with f is called its $outer\ neighbor$. If the outer neighbor of a 3-vertex v is a k-vertex, then we call it an $outer\ k$ -neighbor of v. Let k be a positive integer, call a vertex v k-triangular if it is incident with k non-adjacent 3-faces.

Let C be a cycle of a plane graph G. We use int(C) and ext(C) to denote the sets of vertices located inside and outside C, respectively. The cycle C is seperating if $int(C) \neq \emptyset$ and $ext(C) \neq \emptyset$. Here we have some definitions.

2. Reducible Configurations

As usual, to properly color a vertex v means to assign v a color which has not been appeared to any neighbor of v. For a (1,0,0)-coloring, to color a vertex v

means to color v with 1 such that v has at most one neighbor with color 1, or to properly color v with $i, i \in \{2,3\}$.

Let $G \in \mathcal{G}$ be a planar graph which is not (1,0,0)-colorable but every subgraph of G with fewer vertices is. That is, G is the counterexample to Theorem 1 with fewest number of vertices. Clearly, G is connected. Embed G into the plane.

Lemma 2 [5]. $\delta(G) \geq 3$.

Lemma 3 [5]. If v is a 3-vertex in G, then v has a 4^+ -neighbor.

Lemma 4 [5]. If v is a 3-vertex incident with a $(3,3,4^-)$ -face, then the outer neighbor of v is a 4^+ -vertex.

3. Structures of 2-Connected Planar Graphs in $\mathcal G$

In this section, G = (V, E, F) is a 2-connected plane graph in \mathcal{G} . As G is 2-connected, every face is simple, i.e., its boundary is a cycle. Hence G has no k-face for $k \in \{4, 5, 10\}$. Suppose f and f' are two faces in G. f and f' are adjacent if they share an edge. Two adjacent faces are normal adjacent if they have only two common vertices. If f and f' are two adjacent faces with common edge xy, then f' can be represented by f_{xy} . Moreover, if $f = [v_1v_2v_3]$ is a 3-face, then $f_{v_1v_2}$ can be abbreviated to f_{12} .

Lemma 5. Let f_1 be a 9^- -face in G and f_2 be a 3-face in G. If f_1 and f_2 are adjacent, then they are normal adjacent.

Proof. Suppose $f = [v_1v_2 \cdots v_k]$ is the 9⁻-face adjacent to the 3-face $T = [v_1v_2v]$. Obviously, $k \neq 3$; otherwise, there is a 4-cycle, a contradiction. Hence, $k \in \{6,7,8,9\}$. To prove f and T are normal adjacent, by symmetry, we only need to prove that $v \neq v_i$, $i \in \{3,4,5,6\}$. If $v = v_3$, then $d(v_2) = 2$, contradicting to Lemma 2. If $v = v_4$, then $v_1v_2v_3v_4v_1$ is a 4-cycle, a contradiction. If $v = v_5$, then $v_2v_3v_4v_5v_2$ is a 4-cycle, a contradiction. If $v = v_6$, then $v_2v_3v_4v_5v_6v_2$ is a 5-cycle, a contradiction.

Since G is 2-connected, by Lemma 5 and because G is (C_4, C_5, C_{10}) -free, it is easy to show that the following lemma holds.

Lemma 6. (1) No two 3-faces in G are adjacent.

- (2) A 6-face in G is adjacent to at most three 3-faces.
- (3) A 7-face in G is adjacent to at most two 3-faces.
- (4) A 8-face in G is adjacent to at most one 3-face.

- (5) No 9-face in G is adjacent to a 3-face.
- (6) No two 6-faces in G are adjacent.

Lemma 7. Let v be a 3-vertex, and v_1, v_2 and v_3 be the neighbors of v in the clockwise order. Let f_i be the face with vv_i and vv_{i+1} as boundary edges, where $i \in \{1,2,3\}$ and $v_4 = v_1$. If $d(f_1) = 3$, $d(f_2) = 6$ and $d(f_3) = 7$, then G must contain a subgraph G_1 as shown in Figure 1. Figure 1. The graph G_1 in Lemma 6. The shadow area might not be a face.

Proof. Let $f_1 = [vv_1v_2]$, $f_2 = [vv_2x_1x_2x_3v_3]$, and $f_3 = [vv_3y_1y_2y_3y_4v_1]$. By Lemma 5, $v_2 \notin \{y_1, y_2, y_3, y_4\}$ and $v_1 \notin \{x_1, x_2, x_3\}$. If $\{x_1, x_2, x_3\} \cap \{y_1, y_2, y_3, y_4\}$ $=\emptyset$, then G has a 10-cycle $v_1v_2x_1x_2x_3v_3y_1y_2y_3y_4v_1$, a contradiction. If $x_1=y_1$ or $x_1 = y_2$, then G has a 4-cycle $y_1v_3vv_2y_1$ or a 5-cycle $y_2y_1v_3vv_2y_2$, a contradiction. If $x_1 = y_3$ or $x_1 = y_4$, then G has a 4-cycle $y_3y_4v_1v_2y_3$ or a 4-cycle $y_4v_1v_2y_4$, a contradiction. If $x_2 = y_4$ or $x_2 = y_3$, then G has a 4-cycle $y_4v_1v_2x_1y_4$ or a 5-cycle $y_3y_4v_1v_2x_1y_3$, a contradiction. If $x_3 = y_1$, then $d(v_3) = 2$, contradicting to Lemma 2. If $x_2 = y_2$ or $x_2 = y_1$, then G has a 4-cycle $y_2y_1v_3x_3y_2$ or a 5cycle $y_1v_3v_2x_1y_1$, a contradiction. If $x_3 = y_3$ or $x_3 = y_4$, then G has a 4-cycle $v_3y_1y_2y_3v_3$ or a 5-cycle $v_3y_1y_2y_3y_4v_3$, a contradiction. Therefore, $x_3=y_2$. Hence, G must have a subgraph G_1 as shown in Figure 1.

If a 3-vertex v is incident with three faces f_1 , f_2 and f_3 such that $d(f_1) \leq$ $d(f_2) \leq d(f_3)$, then v is called a $3^{(d(f_1),d(f_2),d(f_3))}$ -vertex.

Lemma 8. G contains only nine types of triangular 3-vertex. (1) $3^{(3,6,8)}$ -vertex; (2) $3^{(3,6,11^+)}$ -vertex; (3) $3^{(3,7,7)}$ -vertex; (4) $3^{(3,7,8)}$ -vertex; (5) $3^{(3,7,11^+)}$ -vertex; (6) $3^{(3,8,8)}$ -vertex: (7) $3^{(3,8,11^+)}$ -vertex and (8) $3^{(3,11^+,11^+)}$ -vertex: (9) $3^{(3,6,7)}$ -vertex. Moreover, if G has (3,6,7)-vertices, then G has a 2-connected subgraph H so that the outer boundary of H is a 3-cycle and there is no $3^{(3,6,7)}$ -vertex in H.

Proof. Suppose a 3-vertex v is incident with faces f_1 , f_2 and f_3 so that $d(f_1) = 3$ and $d(f_2) \leq d(f_3)$. By Lemma 6, $d(f_i) \notin \{9, 10\}$ for each $i \in \{2, 3\}$. Since G is (C_4, C_5, C_{10}) -free, $d(f_3) \ge d(f_2) \ge 6$. First suppose $d(f_2) = 6$, by Lemma 6(5) and (6), $d(f_3) = 7.8$ or $d(f_3) \ge 11$. Hence, we get (9), (1) or (2), respectively. Suppose $d(f_2) = 7$. Then $d(f_3) = 7.8$ or $d(f_3) \ge 11$. Hence, we get (3), (4) or (5), respectively. Suppose $d(f_2) = 8$. If $d(f_3) = 8$, we get (6); otherwise, we get (7). Finally suppose $d(f_2) \ge 11$, we get (8).

Suppose G has a $3^{(3,6,7)}$ -vertex v. By Lemma 7, G contains the subgraph G_1 as shown in Figure 1. Then $C = v_3 y_1 x_3 v_3$ is a separating 3-cycle. Assume that $v \in ext(C)$. Let $G' = G[V(C) \cup int(C)]$. The outer boundary of G' is a 3-cycle and $v \notin G'$. G is 2-connected, hence G' is 2-connected. Since G is a finite graph, we can get a 2-connected subgraph H of G by finite induction so that there is no $3^{(3,6,7)}$ -vertex in H and the outer boundary of H is a 3-cycle.

To simplify notation, the triangular 3-vertex in the Lemma 8 is referred to simply as $3^{(i)}$ -vertex. For example, $3^{(1)}$ -vertex is the $3^{(3,6,8)}$ -vertex, $3^{(3)}$ -vertex is the $3^{(3,7,7)}$ -vertex.

For convenience, we need to define some notations to indicate the structures around 6^- -vertex. A 6^{3g} -vertex stands for the 3-triangular 6-vertex.

For 5-vertex, a 5^{2g} -vertex stands for the 2-triangular 5-vertex which has one pendant 3-face. A 5^{2b} -vertex stands for the 2-triangular 5-vertex which has no pendant 3-face. A 5^{1c} -vertex stands for the 5-vertex which is incident with at most one 3-face. A 5^{1c_1} -vertex stands for the 1-triangular 5-vertex with $f_7(v) = 4$ and three pendant 3-faces. A 5^{1c_2} -vertex stands for the 1-triangular 5-vertex with $f_6(v) = 1$, $f_7(v) = 2$ and three pendant 3-faces.

For 4-vertex, a 4^{2g} -vertex stands for the 2-triangular 4-vertex. A 4^{2g_1} -vertex stands for the 4^{2g} -vertex which is incident with one 6-face and one 7-face. A 4^{1g} -vertex stands for the 1-triangular 4-vertex which has two pendant 3-faces. A 4^{1g_1} -vertex stands for the 4^{1g} -vertex which is incident with three 7-faces. A 4^{1b} -vertex stands for the 1-triangular 4-vertex which has one pendant 3-face. A 4^{1c} -vertex stands for the 1-triangular 4-vertex which has no pendant 3-face. A 4^{w} -vertex stands for the 4-vertex which is incident with no 3-face and has four pendant 3-faces.

For 3-vertex incident with no 3-face, a 3^w -vertex stands for the 3-vertex whose neighborhoods are all the $3^{(3)}$ -vertices. A 3^m -vertex stands for the 3-vertex whose neighborhoods has two $3^{(3)}$ -vertices. A 3^s -vertex stands for the 3-vertex whose neighborhoods has two $3^{(1)}$ -vertices.

Lemma 9. If v is a 4^{2g} -vertex, then v cannot be incident with two 6-faces.

Proof. Suppose v is a 4^{2g} -vertex. Let v_1, v_2, v_3, v_4 be the neighbors of v in clockwise order. Let f_i be the face with vv_i and vv_{i+1} as the boundary edges of f_i , where $i \in \{1, 2, 3, 4\}$ and $v_5 = v_1$. Then $d(f_1) = d(f_3) = 3$, say $f_1 = [vv_1v_2]$ and $f_3 = [vv_3v_4]$. Assume to the contrary that $d(f_2) = d(f_4) = 6$, say $f_2 = [vv_2x_1x_2x_3v_3]$ and $f_4 = [vv_4y_1y_2y_3v_1]$. By Lemma 5, $\{v_1, v_2, v_3, v_4\} \cap \{x_1, x_2, x_3, y_1, y_2, y_3\} = \emptyset$. If $\{x_1, x_2, x_3\} \cap \{y_1, y_2, y_3\} = \emptyset$, then G has a 10-cycle $v_1v_2x_1x_2x_3v_3v_4y_1y_2y_3v_1$, a contradiction. So by symmetry, assume that $x_1 \in \{y_1, y_2, y_3\}$ or $x_2 = y_2$. If $x_1 = y_3$, then G has a 4-cycle $y_2y_3v_1v_2y_3$, a contradiction. If $x_1 = y_2$ or $x_1 = y_1$, then G has a 4-cycle $y_2y_3v_1v_2y_2$ or a 5-cycle $y_1y_2y_3v_1v_2y_1$, respectively, a contradiction. If $x_2 = y_2$, then G has a 5-cycle $y_2y_3v_1v_2x_1y_2$, a contradiction.

For convenience, if $f = [v_1v_2v_3]$ is a $(3^+, 3^+, 4^{2g_1})$ -face, say v_3 is a 4^{2g_1} -vertex, and the other 3-face incident with v_3 is a $(3^{(3)}, 4^{2g_1}, 4^{2g_1})$ -face, then we call f a weak 3-face. If $f = [v_1v_2v_3]$ is a $(3^{(2)}, 3^{(2)}, 5^+)$ -face say $d(v_3) \geq 5$, such that the outer neighbor of each $3^{(2)}$ -vertex is a triangular 3-vertex and $d(f_{12}) \geq 11$, then we call f a special 3-face.

Lemma 10. Let $f = [v_1v_2v_3]$ be a weak 3-face so that $d(v_1) \leq d(v_2)$ and v_3 is the 4^{2g_1} -vertex. Then v_i is not a 4^{2g} -vertex, a 4^{1g} -vertex, or a 5^{2g} -vertex for each $i \in \{1,2\}$.

Proof. Let $f' = [v_3xy]$ be the second 3-face incident with v_3 . Then f' is a $(3^{(3)}, 4^{2g_1}, 4^{2g_1})$ -face, say x is the 4^{2g_1} -vertex and y is the $3^{(3)}$ -vertex. Then f_{13} is a 7-face adjacent to two 3-faces, and f_{23} is a 6-face adjacent to three 3-faces. By Lemma 6(3) and (2), we can deduce that v_i is not a 4^{2g} -vertex, a 4^{1g} -vertex, or a 5^{2g} -vertex for each $i \in \{1, 2\}$. Hence, Lemma 10 holds.

Lemma 11. Let $f = [v_1v_2v_3]$ be a $(3^{(3)}, 3^{(3)}, 3^{(3)})$ -face, v_i' $(i \in \{1, 2\})$ be the outer 4^+ -neighbor of v_i . Then at most one of v_1' , v_2' and v_3' is a 4^{1g} -vertex, or a 4^w -vertex or a 5^{2g} -vertex. Furthermore, if one of them, say v_1' , is a 4^{1g} -vertex, or a 4^w -vertex or a 5^{2g} -vertex, then at most one of v_2' and v_3' is a 4^{1b} -vertex.

Proof. By the definition of $3^{(3)}$ -vertex, $d(f_{12}) = d(f_{13}) = d(f_{23}) = 7$. First we may assume that v'_1 is a 4^{1g} -vertex. Then f_{12} and f_{13} are the 7-faces adjacent to two 3-faces. So by Lemma 6(3), v'_2 or v'_3 cannot be a 4^{1g} -vertex, or a 4^w -vertex or a 5^{2g} -vertex. If v'_2 and v'_3 are both 4^{1b} -vertex, then one of f_{12} , f_{13} and f_{23} must be a 7-face adjacent to three 3-faces, contradicting to Lemma 6(3). Hence Lemma 13 holds when v'_1 is a 4^{1g} -vertex. We can prove that Lemma 11 holds when v'_1 is a 4^w -vertex or a 5^{2g} -vertex with a similar discussion as above.

4. Discharging Procedure

To complete the proof of Theorem 1, we are going to derive a contradiction by a discharging procedure according to the structures established above.

Let G=(V,E,F) be the counterexample to Theorem 1 with the fewest vertices. First we assume that G is 2-connected. Thus the boundary of every face of G is a cycle, and every vertex v of G is incident with d(v) distinct faces. The initial charge function ch in the discharging procedure is defined as: ch(v)=d(v)-4 for each $v\in V$, and ch(f)=d(f)-4 for each $f\in F$. By Euler's formula |V|-|E|+|F|=2 and Handshaking Theorem $\sum_{v\in V}d(v)=2\,|E|=\sum_{f\in F}d(f)$, we can deduce that

$$\sum_{v \in V} (d(v) - 4) + \sum_{f \in F} (d(f) - 4) = -8.$$

If we can define suitable discharging rules to change the initial charge function ch to the final charge function ch' on $V \cup F$ such that $ch'(x) \ge 0$ for all $x \in V \cup F$, then $0 \le \sum_{x \in V \cup F} ch'(x) = \sum_{x \in V \cup F} ch(x) = -8$, a contradiction completing the proof of Theorem 1 when G is 2-connected.

Now our proof will be divided into two cases depending on the existence of a $3^{(3,6,7)}$ -vertex or not. Firstly, assume that G does not contain any $3^{(3,6,7)}$ -vertex. We design the following discharging rules.

- **R1.** Every 6^+ -face f sends $\frac{ch(f)}{d(f)}$ to each incident vertex.
- **R2.** Let v be a triangular 3-vertex, and f be the 3-face incident with v. Then f sends $\frac{1}{6}$ to v when v is a $3^{(1)}$ -vertex, $\frac{1}{33}$ to v when v is a $3^{(2)}$ -vertex, $\frac{1}{7}$ to v when v is a $3^{(3)}$ -vertex, $\frac{1}{14}$ to v when v is a $3^{(4)}$ -vertex.

Suppose that the charge of vertex v is $\alpha(v)$ after applying the rules R1 and R2.

- **R3.** Suppose that v is a 3-vertex.
- **R3.1.** If v is not incident with any 3-face, then v sends $\alpha(v)$ to each pendant 3-face evenly.
- **R3.2.** If v is a $3^{(i)}$ -vertex, $i \in \{5, 6, 7, 8\}$, then v sends $\alpha(v)$ to its incident 3-face.
- **R4.** Suppose that v is a 4-vertex.
- **R4.1.** Suppose that v is a 4^{2g} -vertex. If v is incident with a $(3^{(3)}, 4^{2g_1}, 4^{2g_1})$ -face f, then v sends $\frac{10}{21}$ to f and sends $\frac{2}{7}$ to another incident 3-face. Otherwise, v sends $\frac{\alpha(v)}{2}$ to each incident 3-face.
- **R4.2.** If v is a 4^{1g} -vertex, then v sends $\frac{4}{7}$ to its incident 3-face and sends $\frac{\alpha(v)-\frac{4}{7}}{2}$ to each pendant 3-face.
- **R4.3.** If v is a 4^{1b} -vertex, then v sends $\frac{2}{3}$ to its incident 3-face and sends $\alpha(v) \frac{2}{3}$ to pendant 3-face.
 - **R4.4.** If v is a 4^{1c} -vertex, then v sends 1 to its incident 3-face.
- **R4.5.** If v is not incident with any 3-face, then v sends $\alpha(v)$ to each pendant 3-face evenly.
- **R5.** Suppose that v is a 5-vertex.
 - **R5.1.** Suppose that v is a 5^{2g} -vertex.
- (1) If v is incident with two $(3^{(3)}, 3^{(3)}, 5^{2g)})$ -faces, then v sends $\frac{20}{21}$ to each incident 3-face and sends $\frac{8}{21}$ to pendant 3-face.
- (2) If v is incident with exactly one $(3^{(3)}, 3^{(3)}, 5^{2g})$ -face or one $(3^{(1)}, 3^{(1)}, 5^{2g})$ -face f, then v sends 1 to f, $\frac{10}{21}$ to pendant 3-face and sends the remaining charge to another incident 3-face;
- (3) If v is incident with a special 3-face f, then v sends $\frac{35}{33}$ to f, $\frac{10}{21}$ to the pendant 3-face and sends the remaining charge to another incident 3-face.
- (4) Otherwise, v sends $\frac{10}{21}$ to pendant 3-face and sends the remaining charge to each incident 3-face evenly.

- **R5.2.** Suppose that v is a 5^{2b} -vertex. If v is incident with a special 3-face f, then v sends $\frac{35}{33}$ to the special 3-face and the remaining charge to another incident 3-face. Otherwise, v sends $\frac{\alpha(v)}{2}$ to each incident 3-face.
- **R5.3.** Suppose that v is a 5^{1c} -vertex. If v is a 5^{1c_1} -vertex or a 5^{1c_2} -vertex, then v sends 1 to each incident 3-face and $\frac{4}{7}$ to each pendant 3-face. Otherwise, v sends $\frac{8}{7}$ to each incident 3-face and $\frac{4}{7}$ to each pendant 3-face.

R6. Suppose that v is a 6-vertex.

- **R6.1.** Suppose that v is a 6^{3g} -vertex. Then v sends $\frac{23}{21}$ to each incident $(3^{(3)}, 3^{(3)}, 6)$ -face, $\frac{35}{33}$ to each incident special 3-face, and sends the remaining charge to other incident 3-faces evenly.
- **R6.2.** Suppose that v is incident with at most two 3-faces. Then v sends $\frac{8}{7}$ to each incident 3-face, and sends $\frac{4}{7}$ to each pendant 3-face.

R7. Every 7^+ -vertex sends $\frac{8}{7}$ to each incident 3-face, and $\frac{4}{7}$ to each pendant 3-face.

Now we are going to check that $ch'(x) \geq 0$ for all $x \in V \cup F$.

Claim 12. Let $v \in V$. Then $ch'(v) \ge 0$.

Proof. By Lemma 2, $d(v) \geq 3$. Let d(v) = k. Set v_1, v_2, \ldots, v_k be the neighbors of v in clockwise order. Let f_i be the face incident with vv_i and vv_{i+1} , where $i \in \{1, 2, \ldots, k\}$ and $v_{k+1} = v_1$. Let t be the number of 3-faces incident with v and m be the number of pendant 3-faces of v. Since G has no 4-cycles, $t \leq \left\lfloor \frac{d(v)}{2} \right\rfloor$ and $m \leq d(v) - 2t$.

Case 1. $d(v) \geq 7$. By R1 and R7, v gets at least $\frac{1}{3}$ from each incident 6^+ -face, sends $\frac{8}{7}$ to each incident 3-face, and sends $\frac{4}{7}$ to each pendant 3-face. Hence, $ch'(v) \geq ch(v) + \frac{1}{3}(d(v) - t) - \frac{8}{7}t - \frac{4}{7}m \geq d(v) - 4 + \frac{1}{3}(d(v) - t) - \frac{8}{7}t - \frac{4}{7}(d(v) - 2t) = \frac{16}{21}d(v) - \frac{1}{3}t - 4 \geq \frac{16}{21}d(v) - \frac{1}{6}d(v) - 4 = \frac{25}{42}d(v) - 4 \geq \frac{1}{6}$.

Case 2. d(v)=6. Then ch(v)=2. Note that $\alpha(v)\geq ch(v)+\frac{1}{3}(d(v)-t)\geq 3$ by R1. Suppose that v is a 6^{3g} -vertex. If $f_{7^+}(v)=3$, then $ch'(v)\geq 2+\frac{3}{7}\times 3-\frac{23}{21}\times 3=0$ by R1 and R6. So $f_{7^+}(v)\leq 2$. That is, v is incident with at most one $(3^{(3)},3^{(3)},6)$ -face. Moreover, if v is incident with one $(3^{(3)},3^{(3)},6)$ -face, then v is not incident with any special 3-face. Therefore, ch'(v)=0 by R6. So assume that v is not incident with any $(3^{(3)},3^{(3)},6)$ -face. By Lemma 6(2) and the definition of special 3-face, we can show that v is incident with at most one special 3-face. So ch'(v)=0 by R6 and $\alpha(v)\geq 3$.

Suppose that v is not a 6^{3g} -vertex. Then $t \leq 2$. By Lemma 6(6), v is incident with at least one 7^+ -face, which sends at least $\frac{3}{7}$ to v. Hence, by R1 and R6, $ch'(v) \geq 2 + \frac{3}{7} + \frac{1}{3}(6-t-1) - \frac{8}{7}t - \frac{4}{7}m = \frac{2}{3} - \frac{1}{3}t \geq 0$.

Case 3. d(v) = 5. Then $t \le 2$ and ch(v) = 1. By R1, $\alpha(v) \ge 1 + \frac{1}{3}(d(v) - t)$ ≥ 2 .

Suppose that t=2. Suppose that v is a 5^{2g} -vertex, say $d(f_1)=d(f_4)=3$. If v is incident with two $(3^{(3)}, 3^{(3)}, 5^{2g})$ -faces, then $f_7(v) = 3$. Hence, by R1 and R5, $ch'(v) \ge 1 + \frac{3}{7} \times 3 - \frac{20}{21} \times 2 - \frac{8}{21} = 0$. Now assume that v is incident with at most one $(3^{(3)}, 3^{(3)}, 5^{2g})$ -face. Let $\mathcal{A} = \{f \mid f \text{ is a } (3^{(3)}, 3^{(3)}, 5^{2g})$ face, or a $(3^{(1)}, 3^{(1)}, 5^{2g})$ -face, or a special 3-face. If f_1 is a $(3^{(3)}, 3^{(3)}, 5^{2g})$ face, then $d(f_2) = d(f_5) = 7$, which implies that f_4 is not in \mathcal{A} . If f_1 is a $(3^{(1)},3^{(1)},5^{2g})$ -face or a special 3-face, then $d(f_5)=6$ by Lemma 6(3). Therefore, $d(f_2) = 6$, which implies that $d(f_3) \geq 7$ by Lemma 6(6). Hence, f_4 is not in \mathcal{A} . Thus, at most one of f_1 and f_4 belongs to \mathcal{A} . Hence, ch'(v) = 0 by R5 and $\alpha(v) \geq$ 2. If v is a 5^{2b} -vertex. Then $ch'(v) = \alpha(v) - \max\{2 \times \frac{\alpha(v)}{2}, \frac{35}{33} + (\alpha(v) - \frac{35}{33})\} = 0$ by R5.2 and v is incident with at most one special 3-face.

Suppose that t=1, say $d(f_1)=3$. Then $f_{7+}(v)\geq 2$ by Lemma 6(6). If $m \leq 2$, then $ch'(v) \geq 1 + \frac{3}{7} \times 2 + \frac{1}{3} \times 2 - 1 - \frac{4}{7} \times 2 = \frac{8}{21}$ by R1 and R5. Now assume that m = 3, say v_i is a triangular 3-vertex for all $i \in \{3, 4, 5\}$. Note that $f_6(v) \leq 2$ by Lemma 6(6). If $f_6(v) = 2$, then $f_{11+}(v) = 2$ by Lemma 6 and Lemma 8. Hence, $ch'(v) \ge 1 + \frac{1}{3} \times 2 + \frac{7}{11} \times 2 - \frac{8}{7} - \frac{4}{7} \times 3 = \frac{19}{231}$ by R1 and R5. If $f_6(v) = 1$, then $f_{11+}(v) \ge 1$. Hence, $ch'(v) \ge 1 + \frac{1}{3} + \frac{7}{11} + \frac{3}{7} \times 2 - 1 - \frac{4}{7} \times 3 = \frac{26}{231}$ when $f_7(v) = 2$ or $ch'(v) \ge 1 + \frac{1}{3} + \frac{7}{11} - \frac{8}{7} - \frac{4}{7} \times 3 = \frac{41}{231}$ when $f_7(v) = 4$, then $ch'(v) \ge 1 + \frac{3}{7} \times 4 - 1 - \frac{4}{7} \times 3 = 0$. Otherwise, $f_6(v) = 0$ and $f_7(v) \le 3$, then $ch'(v) \ge 1 + \frac{3}{7} \times 3 + \frac{7}{11} - \frac{8}{7} - \frac{4}{7} \times 3 = \frac{5}{77}$. Suppose that t = 0. Then $f_{7+}(v) \ge 3$ by Lemma 6(6). Hence, $ch'(v) \ge 1 + \frac{3}{7} \times 3 + \frac{1}{3} \times 2 - \frac{4}{7} \times 5 = \frac{2}{21}$ by R5.

Case 4. d(v) = 4. If v is not a 4^{2g} -vertex, then $\alpha(v) \ge \frac{1}{3} \times 3 \ge 1$. Hence, $ch'(v) \ge 0$ by R4. So we may assume that v is a 4^{2g} -vertex. If v is not incident with any $(3^{(3)}, 4^{2g_1}, 4^{2g_1})$ -face, then $ch'(v) \ge \alpha(v) - 2 \times \frac{\alpha(v)}{2} = 0$ by R4. If v is incident with a $(3^{(3)}, 4^{2g_1}, 4^{2g_1})$ -face, say f_1 is a $(3^{(3)}, 4^{2g_1}, 4^{2g_1})$ -face with v_1 is a $3^{(3)}$ -vertex and v_2 is a 4^{2g_1} -vertex, then $d(f_4) = 7$ and $d(f_2) = 6$. Now v_3 is not the 4^{2g_1} -vertex by Lemma 6(2), and v_3 is not the $3^{(3)}$ -vertex. So f_3 is not the $(3^{(3)}, 4^{2g_1}, 4^{2g_1})$ -face. Hence, $ch'(v) \ge ch(v) + \frac{1}{3} + \frac{3}{7} - \frac{10}{21} - \frac{2}{7} = 0$ by R4.

Case 5. d(v) = 3. Suppose v is a triangular 3-vertex, then $ch'(v) \ge 0$ by R1 and R2. Otherwise, $ch'(v) \ge ch(v) + \frac{1}{3} \times 3 = 0$ by R1.

By the rules R3–R7 and since G does not contain any $3^{(3,6,7)}$ -vertex, we can check that Observation 13 and Observation 14 hold. We use $\tau(x \to y)$ to denote the charge that x sends to y, where $x, y \in F(G) \cup V(G)$.

Observation 13. Let f be a 3-face and v be a vertex incident with f.

(1) Suppose that d(v) = 3. If v is a $3^{(5)}$ -vertex, then $\tau(v \to f) \ge \frac{5}{77}$. If v is $a\ 3^{(7)}$ -vertex, then $\tau(v \to f) \ge \frac{3}{22}$. If v is a $3^{(8)}$ -vertex, then $\tau(v \to f) \ge \frac{3}{11}$.

- (2) Suppose that v is a 4^{2g} -vertex and f is not the $(3^{(3)}, 4^{2g_1}, 4^{2g_1})$ -face. Let f' be the second face incident with v. By Lemma 9, $f_{7^+}(v) \ge 1$. First assume that v is a 4^{2g_1} -vertex. If f' is a $(3^{(3)}, 4^{2g_1}, 4^{2g_1})$ -face, then $\tau(v \to f) = \frac{2}{7}$; otherwise, $\tau(v \to f) = \frac{8}{21}$. Next assume that v is not a 4^{2g_1} -vertex, then $\tau(v \to f) \ge \frac{3}{7}$.
- (3) Suppose that v is a 2-triangular 5-vertex. Let f' be the second 3-face incident with v.
- (3.1) Suppose that v is a 5^{2g} -vertex and f is not the $(3^{(3)}, 3^{(3)}, 5^{2g})$ -face, nor the $(3^{(1)}, 3^{(3)}, 5^{2g})$ -face, nor the special 3-face. If f' is a special 3-face, then $f_6(v) = 2$ and $f_{11+}(v) \ge 1$ by Lemma 6. Therefore, $\tau(v \to f) \ge \frac{59}{77}$. If f' is a $(3^{(3)}, 3^{(3)}, 5^{2g})$ -face, then $f_7(v) \ge 2$ and $f_{7+}(v) \ge 3$. Therefore, $\tau(v \to f) \ge \frac{17}{21}$. If f' is a $(3^{(1)}, 3^{(1)}, 5^{2g})$ -face, then $f_6(v) = 2$ and $f_{11+}(v) \ge 1$ by Lemma 6. Therefore, $\tau(v \to f) \ge \frac{191}{231}$. For the other cases, $\tau(v \to f) \ge \frac{6}{7}$.
- (3.2) Suppose that v is a 5^{2b} -vertex. If f' is a special 3-face, then $f_6(v)=2$ and $f_{7+}(v) \geq 1$. Therefore, $\tau(v \to f) \geq \frac{239}{231}$. Otherwise, $\tau(v \to f) \geq \frac{22}{21}$.
- (4) Suppose that v is a 6^{3g} -vertex. Let f' and f'' be the 3-faces incident with v other than f. If f' or f'' is a special 3-face, say f', then f and f'' are not the the special 3-faces by Lemma 6. Therefore, $\tau(v \to f) \ge \frac{32}{33}$. If exactly one of f' and f'' is a $(3^{(3)}, 3^{(3)}, 6)$ -face, then $f_7(v) \ge 2$ and $\tau(v \to f) \ge \frac{22}{21}$. For the other cases, $\tau(v \to f) \ge 1$.

Observation 14. Let $v \in V(G)$ and f be the pendant 3-face of v.

- (1) Let v be a 3-vertex which is not incident with any 3-face.
- (1.1) Suppose that v has three pendant 3-faces. If v is a 3^w -vertex, then $\tau(v \to f) = \frac{2}{21}$. Otherwise, $\tau(v \to f) \ge \frac{38}{231}$.
- (1.2) Suppose that v has two pendant 3-faces. If v is a 3^m -vertex, then $\tau(v \to f) = \frac{1}{7}$. If v is a 3^s -vertex, then $\tau(v \to f) = \frac{1}{6}$. If $f_7(v) = 2$ and $f_8(v) = 1$, then $\tau(v \to f) = \frac{5}{28}$. Otherwise, $\tau(v \to f) \geq \frac{46}{231}$.
- (1.3) Suppose that v has one pendant 3-face. If $f_6(v) = 1$ and $f_7(v) = 2$, then $\tau(v \to f) = \frac{4}{21}$. Otherwise, $\tau(v \to f) \ge \frac{11}{42}$.
 - (2) Let v be a 4-vertex.
- (2.1) Suppose that v is a 4^{1g} -vertex. If $f_7(v) = 3$, then $\tau(v \to f) = \frac{5}{14}$; if $f_6(v) = 2$, then $f_{11+}(v) = 1$ and $\tau(v \to f) \ge \frac{169}{462}$. Otherwise, $\tau(v \to f) \ge \frac{191}{462}$.
- (2.2) Suppose that v is a 4^{1b} -vertex. If $f_6(v)=2$, then $f_{8^+}(v)=1$ and $\tau(v\to f)\geq \frac{1}{2}$. Otherwise, $\tau(v\to f)\geq \frac{11}{21}$.
- (2.3) Suppose that $f_3(v) = 0$. If v is a 4^w -vertex, then $\tau(v \to f) \ge \frac{3}{7}$. If v is not a 4^w -vertex, then $\tau(v \to f) \ge \frac{4}{7}$.

Now we are ready to show that $ch'(f) \ge 0$ for each face $f \in F$. Note that $d(f) \notin \{4, 5, 10\}$.

Claim 15. Let $f \in F$. Then $ch'(f) \ge 0$.

Proof. Suppose that $d(f) \geq 6$. Then $ch'(f) \geq ch(f) - \frac{ch(f)}{d(f)} \times d(f) = 0$ by R1. So we assume that d(f) = 3. That is $f = [v_1v_2v_3]$ with $d(v_1) \leq d(v_2) \leq d(v_3)$. Note that ch(f) = -1. Let v_i' be the outer neighbor of v_i when $d(v_i) = 3$.

Case 1. $d(v_1) \geq 4$. Suppose that f is a weak 3-face, say v_1 is a 4^{2g_1} -vertex, then v_2 and v_3 cannot be a 4^{2g} -vertex, a 4^{1g} -vertex or a 5^{2g} -vertex by Lemma 10. Hence, $ch'(f) \geq -1 + \frac{2}{7} + \frac{2}{3} \times 2 = \frac{13}{21}$ by R4–R7 and Observation 13. Otherwise, $\tau(v_i \to f) \geq \frac{8}{21}$ for each $i \in \{1, 2, 3\}$ by R4–R7 and Observation 13. Hence, $ch'(f) \geq -1 + \frac{8}{21} \times 3 = \frac{1}{7}$.

Case 2. $d(v_1) = 3$ and $d(v_2) \ge 5$. Note that $\tau(f \to v_1) \le \frac{1}{6}$ by R2, and $\tau(v_i \to f) \ge \frac{59}{77}$ for each $i \in \{2,3\}$ by R5–R7 and Observation 13. Hence, $ch'(f) \ge -1 - \frac{1}{6} + \frac{59}{77} \times 2 = \frac{169}{462}$.

Case 3. $d(v_1) = 3$, $d(v_2) = 4$ and $d(v_3) \ge 5$. Suppose that v_1 is a $3^{(1)}$ -vertex or a $3^{(4)}$ -vertex. Then $\tau(f \to v_1) \le \frac{1}{6}$ by R2 and because one of f_{12} and f_{13} is an 8-face. If $d(f_{12}) = 8$, then v_2 cannot be a 4^{2g} -vertex or a 4^{1g} -vertex by Lemma 6(4). Hence, $\tau(v_2 \to f) \ge \frac{2}{3}$ by R4 and $\tau(v_3 \to f) \ge \frac{59}{77}$ by R5-R7 and Observation 13. Hence, $ch'(f) \ge -1 - \frac{1}{6} + \frac{2}{3} + \frac{59}{77} = \frac{41}{154}$. If $d(f_{13}) = 8$, then v_3 is not a 5^{2g} -vertex by Lemma 6(4). Hence, $\tau(v_2 \to f) \ge \frac{2}{7}$ and $\tau(v_3 \to f) \ge \frac{32}{33}$ by R4-R7 and Observation 13. Hence, $ch'(f) \ge -1 - \frac{1}{6} + \frac{2}{7} + \frac{32}{33} = \frac{41}{462}$.

Suppose that v_1 is a $3^{(3)}$ -vertex, then $\tau(f \to v_1) = \frac{1}{7}$ by R2. If v_3 is a 5^{2g} -vertex, then v_2 is not incident with any $(3^{(3)}, 4^{2g_1}, 4^{2g_1})$ -face by Lemma 6. Hence, $\tau(v_2 \to f) \ge \frac{8}{21}$ and $\tau(v_3 \to f) \ge \frac{17}{21}$ by R4 and Observation 13. Thus, $ch'(f) \ge -1 - \frac{1}{7} + \frac{8}{21} + \frac{17}{21} = \frac{1}{21}$. If v_3 is not a 5^{2g} -vertex, then $ch'(f) \ge -1 - \frac{1}{7} + \frac{2}{7} + \frac{32}{33} = \frac{26}{231}$ by R5–R7 and Observation 13.

Otherwise, v_1 is a $3^{(i)}$ -vertex, $i \in \{2, 5, 6, 7, 8\}$, then $\tau(f \to v_1) \le \frac{1}{33}$ by R2, and $\tau(v_2 \to f) + \tau(v_3 \to f) \ge \frac{2}{7} + \frac{59}{77} = \frac{81}{77}$ by R4–R7 and Observation 13. Hence, $ch'(f) \ge -1 - \frac{1}{33} + \frac{81}{77} = \frac{5}{231}$.

Case 4. $d(v_1) = 3$ and $d(v_2) = d(v_3) = 4$.

Subcase 4.1. Both v_2 and v_3 are 4^{2g} -vertices. By symmetry, we may assume $d(f_{13}) \geq d(f_{12})$. By Lemma 6, $d(f_{13}) = 7$ or $d(f_{13}) \geq 11$, and $d(f_{23}) = 6$ or $d(f_{23}) \geq 11$.

Suppose that $d(f_{23})=6$. Then $d(f_{12}) \neq 6$ by Lemma 9. First suppose that $d(f_{13}) \geq 11$. By R4.1, $\tau(v_3 \to f) \geq \frac{1}{2} \times (\frac{1}{3} + \frac{7}{11}) = \frac{16}{33}$. If $d(f_{12})=7$, then f is not a weak 3-face by Lemma 6(2). Hence, $\tau(v_2 \to f) \geq \frac{8}{21}$ by Observation 13. Note that v_1' is not a triangular 3-vertex. Hence, $\tau(v_1' \to f) \geq \frac{2}{21}$ by Observation 14 and R5-R7. Therefore, $ch'(f) \geq -1 + \frac{8}{21} + \frac{16}{33} + \frac{2}{21} = \frac{5}{77}$. If $d(f_{12}) \geq 11$, then $\tau(v_2 \to f) \geq \frac{1}{2} \times (\frac{1}{3} + \frac{7}{11}) = \frac{16}{33}$ by R4.1 and $\tau(v_1 \to f) \geq \frac{3}{11}$ by Observation 13(1). Hence, $ch'(f) \geq -1 + \frac{16}{33} \times 2 + \frac{3}{11} = \frac{8}{33}$. Next suppose that $d(f_{13}) = 7$.

Then $d(f_{12})=7$ by G contains no $3^{(3,6,7)}$ -vertex. Hence, $\tau(f\to v_1)=\frac{1}{7}$ by R2 and $\tau(v_i\to f)\geq \frac{10}{21}$ $(i\in\{2,3\})$ by R4.1. Note that v_1' is not a triangular 3-vertex and has at most one pendant 3-face when $d(v_1')=3$. Hence, $\tau(v_1'\to f)\geq \frac{4}{21}$ by Observation 14 and R5–R7. Hence, $ch'(f)\geq -1-\frac{1}{7}+\frac{10}{21}\times 2+\frac{4}{21}=0$.

Suppose that $d(f_{23}) \geq 11$. If $d(f_{13}) \geq 11$, then $\tau(f \to v_1) \leq \frac{1}{33}$ by R2, $\tau(v_2 \to f) \geq \frac{1}{2} \times \left(\frac{1}{3} + \frac{7}{11}\right) = \frac{16}{33}$ and $\tau(v_3 \to f) \geq \frac{1}{2} \times \left(\frac{7}{11} + \frac{7}{11}\right) = \frac{7}{11}$ by R4.1. Hence, $ch'(f) \geq -1 - \frac{1}{33} + \frac{16}{33} + \frac{7}{11} = \frac{1}{11}$. So suppose that $d(f_{13}) = 7$. Then $d(f_{12}) = 7$ by G contains no $3^{(3,6,7)}$ -vertex. Hence, $\tau(f \to v_1) = \frac{1}{7}$ by R2 and $\tau(v_i \to f) \geq \frac{1}{2} \times \left(\frac{7}{11} + \frac{3}{7}\right) = \frac{41}{77}$ for each $i \in \{2,3\}$ by R4.1. By Lemma 6(3), v'_1 is not a triangular 3-vertex and at most has one pendant 3-face when $d(v'_1) = 3$. Hence, $\tau(v'_1 \to f) \geq \frac{4}{21}$ by Observation 14 and R5–R7. Thus, $ch'(f) \geq -1 - \frac{1}{7} + \frac{41}{77} \times 2 + \frac{4}{21} = \frac{26}{231}$.

Subcase 4.2. Exactly one of v_2 and v_3 is a 4^{2g} -vertex, say v_2 . Suppose that v_3 is a 4^{1g} -vertex. Then $\tau(v_3 \to f) = \frac{4}{7}$ by R4.2. By Lemma 6, $d(f_{12}) \notin \{8, 9\}$, $d(f_{13}) \notin \{8, 9\}$ and $d(f_{23}) \notin \{7, 8, 9\}$. If $d(f_{12}) \geq 11$, then $\tau(v_2 \to f) \geq \frac{1}{2} \times (\frac{1}{3} + \frac{7}{11}) = \frac{16}{33}$ by R4 and $\tau(f \to v_1) \leq \frac{1}{33}$ by R2. Hence, $ch'(f) \geq -1 - \frac{1}{33} + \frac{4}{7} + \frac{16}{33} = \frac{2}{77}$. If $d(f_{12}) = 7$, then $d(f_{13}) = 7$ or $d(f_{13}) \geq 11$, and $\tau(v_2 \to f) \geq \frac{8}{21}$ by Observation 13. When $d(f_{13}) = 7$, v'_1 is not a triangular 3-vertex and at most has one pendant 3-face when $d(v'_1) = 3$ by Lemma 6(3). Then $\tau(v'_1 \to f) \geq \frac{4}{21}$ by R5-R7 and Observation 14. Hence, $ch'(f) \geq -1 - \frac{1}{7} + \frac{8}{21} + \frac{4}{7} + \frac{4}{21} = 0$ by R2. When $d(f_{13}) \geq 11$, $\tau(v_1 \to f) \geq \frac{5}{77}$ by Observation 13. Hence, $ch'(f) \geq -1 + \frac{5}{77} + \frac{4}{7} + \frac{8}{21} = \frac{4}{231}$. If $d(f_{12}) = 6$, then $d(f_{23}) \geq 11$ and $d(f_{13}) \geq 11$ by Lemma 9 and G contains no $3^{(3,6,7)}$ -vertex. So $\tau(v_2 \to f) \geq \frac{1}{2} \times (\frac{1}{3} + \frac{7}{11}) = \frac{16}{33}$ by R4 and $\tau(f \to v_1) \leq \frac{1}{33}$ by R2. Hence, $ch'(f) \geq -1 - \frac{1}{33} + \frac{4}{7} + \frac{16}{33} = \frac{2}{77}$.

Suppose that v_3 is a 4^{1b} -vertex. Then, $\tau(v_3 \to f) = \frac{2}{3}$ by R4. If f is a weak 3-face, then $\tau(v_2 \to f) = \frac{2}{7}$ by R4. Now $d(f_{12}) = 7$ and f_{23} is a 6-face adjacent to three 3-faces, or $d(f_{23}) = 7$ and f_{12} is a 6-face adjacent to three 3-faces. Therefore, v_1' is not a triangular 3-vertex and f_{13} is adjacent to two 3-faces by v_3 is a 4^{1b} -vertex. Then $d(f_{13}) = 7$ or $d(f_{13}) \ge 11$, which implies that v_1 is not a $3^{(1)}$ -vertex or a $3^{(4)}$ -vertex. If v_1 is not a $3^{(3)}$ -vertex, then $\tau(f \to v_1) \le \frac{1}{33}$ by R2. Hence, $ch'(f) \ge -1 - \frac{1}{33} + \frac{2}{3} + \frac{2}{7} + \frac{2}{21} = \frac{4}{231}$ by Observation 14 and R5–R7. If v_1 is a $3^{(3)}$ -vertex, then v_1' has exactly one pendant 3-face when $d(v_1') = 3$, and $\tau(v_1' \to f) \ge \frac{4}{21}$ by Observation 14 and R5–R7. Hence, $ch'(f) \ge -1 - \frac{1}{7} + \frac{2}{3} + \frac{2}{7} + \frac{4}{21} = 0$ by R2. So assume that f is not a weak 3-face. Then $\tau(v_2 \to f) \ge \frac{8}{21}$ by Observation 13. If v_1 is not a $3^{(i)}$ -vertex, $i \in \{1,3,4\}$, then $\tau(f \to v_1) \le \frac{1}{33}$ by R2. Hence, $ch'(f) \ge -1 - \frac{1}{33} + \frac{2}{3} + \frac{8}{21} = \frac{4}{231}$. Otherwise, $d(f_{13}) = 8$ or $d(f_{12}) = 7$, which implies that v_1' is not a triangular 3-vertex or a 3^w -vertex. Then $\tau(v_1' \to f) \ge \frac{1}{7}$ by Observation 14. Hence, $ch'(f) \ge -1 - \frac{1}{6} + \frac{2}{3} + \frac{8}{21} + \frac{1}{7} = \frac{1}{42}$ by R2.

Suppose that v_3 is a 4^{1c} -vertex, then $\tau(f \to v_1) \le \frac{1}{6}$ by R2, $\tau(v_2 \to f) \ge \frac{2}{7}$ by Observation 13 and $\tau(v_3 \to f) = 1$ by R4. Hence, $ch'(f) \ge -1 - \frac{1}{6} + \frac{2}{7} + 1 = \frac{5}{42}$.

Subcase 4.3. Neither v_2 nor v_3 is a 4^{2g} -vertex. Then $\tau(v_i \to f) \ge \frac{4}{7}$ by R4 for each $i \in \{2,3\}$. If v_1 is a $3^{(1)}$ -vertex, then at most one of v_2 and v_3 is a 4^{1g} -vertex, say v_2 . Hence, $\tau(v_3 \to f) \ge \frac{2}{3}$ by R4. Thus, $ch'(f) \ge -1 - \frac{1}{6} + \frac{4}{7} + \frac{2}{3} = \frac{1}{14}$ by R2. Otherwise, $ch'(f) \ge -1 - \frac{1}{7} + \frac{4}{7} \times 2 = 0$ by R2 and R4.

Case 5. $d(v_1) = d(v_2) = 3$ and $d(v_3) \ge 7$. Suppose that both v_1 and v_2 are $3^{(1)}$ -vertices. Now v_i' is not a triangular 3-vertex for each $i \in \{1,2\}$. Hence, $\tau(v_i' \to f) \ge \frac{2}{21}$ for each $i \in \{1,2\}$ by Observation 14. Therefore, $ch'(f) \ge -1 - \frac{1}{6} \times 2 + \frac{8}{7} + \frac{2}{21} \times 2 = 0$ by R2 and R7.

Suppose that exactly one of v_1 and v_2 is a $3^{(1)}$ -vertex, say v_1 . Then v_2 is not a $3^{(3)}$ -vertex. Note that v_1' is not a triangular 3-vertex or a 3^w -vertex. Hence, $\tau(v_1' \to f) \ge \frac{1}{7}$ by Observation 14. Therefore, $ch'(f) \ge -1 - \frac{1}{6} - \frac{1}{14} + \frac{8}{7} + \frac{1}{7} = \frac{1}{21}$ by R2 and R7.

Suppose that neither v_1 nor v_2 is a $3^{(1)}$ -vertex. If at least one of v_1 and v_2 is a $3^{(3)}$ -vertex, then $d(f_{12})=7$. Now at most one of v_1' and v_2' is a triangular 3-vertex or a 3^w -vertex, say v_1' . Hence, $\tau(v_2'\to f)\geq \frac{1}{7}$ by Observation 14. Therefore, $ch'(f)\geq -1-\frac{1}{7}\times 2+\frac{8}{7}+\frac{1}{7}=0$ by R2 and R7. Suppose that neither v_1 nor v_2 is a $3^{(3)}$ -vertex. Then $ch'(f)\geq -1-\frac{1}{14}\times 2+\frac{8}{7}=0$ by R2 and R7.

Case 6. $d(v_1) = d(v_2) = 3$ and $d(v_3) = 6$. If v_3 is incident with at most two 3-faces, then $\tau(v_3 \to f) = \frac{8}{7}$ by R6. With the similar arguments as Case 5, we can show that $ch'(f) \geq 0$. So we may assume that v_3 is a 6^{3g} -vertex. Then $d(f_{13}) \notin \{8,9\}$ and $d(f_{23}) \notin \{8,9\}$. By symmetry, assume that $d(f_{23}) \geq d(f_{13})$.

Subcase 6.1. $d(f_{23}) \ge 11$. Suppose that $d(f_{13}) \ge 11$. Then $\tau(f \to v_i) \le \frac{1}{33}$ for each $i \in \{1, 2\}$ by R2. By R6, $\tau(v_3 \to f) \ge \frac{1}{3} \times (\frac{7}{11} \times 2 + \frac{1}{3} + 2) = \frac{119}{99}$. Hence, $ch'(f) \ge -1 - \frac{1}{33} \times 2 + \frac{119}{99} = \frac{14}{99}$.

Suppose that $d(f_{13})=7$. Then $d(f_{12})\geq 7$ by G contains no $3^{(3,6,7)}$ -vertex. Hence, $\tau(f\to v_1)\leq \frac{1}{7}$ by R2, $\tau(v_2\to f)\geq \frac{5}{77}$ by Observation 13, and $\tau(v_3\to f)\geq \frac{32}{33}$ by Observation 13. Note that v_1' is not a triangular 3-vertex or a 3^w -vertex by Lemma 6(3). Hence, $\tau(v_1'\to f)\geq \frac{1}{7}$ by Observation 14. Therefore, $ch'(f)\geq -1-\frac{1}{7}+\frac{32}{33}+\frac{1}{7}+\frac{5}{77}=\frac{8}{231}$. Suppose that $d(f_{13})=6$. Then $d(f_{12})=8$ or $d(f_{12})\geq 11$ by Lemma 6

Suppose that $d(f_{13}) = 6$. Then $d(f_{12}) = 8$ or $d(f_{12}) \ge 11$ by Lemma 6 and G contains no $3^{(3,6,7)}$ -vertex. By Observation 13(4), $\tau(v_3 \to f) \ge \frac{32}{33}$. If $d(f_{12}) = 8$, then $\tau(f \to v_1) = \frac{1}{6}$ by R2 and $\tau(v_2 \to f) \ge \frac{3}{22}$ by Observation 13. Note that v'_1 is not a triangular 3-vertex by Lemma 6(4). Hence, $\tau(v'_1 \to f) \ge \frac{2}{21}$ by Observation 14. Therefore, $ch'(f) \ge -1 - \frac{1}{6} + \frac{32}{33} + \frac{3}{22} + \frac{2}{21} = \frac{8}{231}$. Thus, $d(f_{12}) \ge 11$. Then $\tau(f \to v_1) \le \frac{1}{33}$ by R2 and $\tau(v_2 \to f) \ge \frac{3}{11}$ by Observation 13. Hence, $ch'(f) \ge -1 - \frac{1}{33} + \frac{32}{33} + \frac{3}{11} = \frac{7}{33}$.

Subcase 6.2. $d(f_{23})=7$. Suppose that $d(f_{13})=7$. Then $d(f_{12})\geq 7$ by G contains no $3^{(3,6,7)}$ -vertex. Note that v_i' $(i\in\{1,2\})$ is not a triangular 3-vertex by Lemma 6(3). Then $\tau(v_i'\to f)\geq \frac{2}{21}$ for each $i\in\{1,2\}$ by Observation 14. If

 $d(f_{12}) = 7$, then $\tau(f \to v_i) = \frac{1}{7}$ for each $i \in \{1, 2\}$ by R2, and $\tau(v_3 \to f) = \frac{23}{21}$ by R6.1. Hence, $ch'(f) \ge -1 - \frac{1}{7} \times 2 + \frac{23}{21} + \frac{2}{21} \times 2 = 0$. If $d(f_{12}) \ge 8$, then $\tau(f \to v_i) \le \frac{1}{14}$ for each $i \in \{1, 2\}$ by R2, and $\tau(v_3 \to f) \ge \frac{32}{33}$ by Observation 13(4). Hence, $ch'(f) \ge -1 - \frac{1}{14} \times 2 + \frac{32}{33} + \frac{2}{21} \times 2 = \frac{4}{231}$.

13(4). Hence, $ch'(f) \ge -1 - \frac{1}{14} \times 2 + \frac{32}{33} + \frac{2}{21} \times 2 = \frac{4}{231}$. Suppose that $d(f_{13}) = 6$. Then $d(f_{12}) = 8$ or $d(f_{12}) \ge 11$ by Lemma 6 and G contains no $3^{(3,6,7)}$ -vertex. By Observation 13(4), $\tau(v_3 \to f) \ge \frac{32}{33}$. If $d(f_{12}) = 8$, then v_i' ($i \in \{1,2\}$) is not a triangular 3-vertex or a 3^w -vertex by Lemma 6(4). Hence, $\tau(v_i' \to f) \ge \frac{1}{7}$ for each $i \in \{1,2\}$. Therefore, $ch'(f) \ge -1 - \frac{1}{6} - \frac{1}{14} + \frac{32}{33} + \frac{1}{7} \times 2 = \frac{4}{231}$ by R2. Thus, $d(f_{12}) \ge 11$, and $\tau(v_2 \to f) \ge \frac{5}{77}$ by Observation 13. Hence, $ch'(f) \ge -1 - \frac{1}{33} + \frac{32}{33} + \frac{5}{77} = \frac{5}{231}$ by R2.

Subcase 6.3. $d(f_{23}) = 6$. Then $d(f_{13}) = 6$. Note that $d(f_{12}) = 8$ or $d(f_{12}) \ge 11$ by Lemma 6 and G contains no $3^{(3,6,7)}$ -vertex. By Observation 13(4), $\tau(v_3 \to f) \ge \frac{32}{33}$.

Suppose that $d(f_{12})=8$. Note that v_i' $(i\in\{1,2\})$ is not a triangular 3-vertex by Lemma 6(4). Then $\tau(f\to v_i)\leq \frac{1}{6}$ and $\tau(v_i'\to f)\geq \frac{1}{6}$ for each $i\in\{1,2\}$ by R2–R7 and Observation 14. Suppose that v_3 is incident with at least one special 3-face. Note that one of v_1' and v_2' , say v_1' , has exactly one pendant 3-face f when $d(v_1')=d(v_2')=3$. Hence, $\tau(v_1'\to f)\geq \frac{11}{42}$ by Observation 14 and R5–R7. Thus, $ch'(f)\geq -1-\frac{1}{6}\times 2+\frac{32}{33}+\frac{11}{42}+\frac{1}{6}=\frac{5}{77}$. Suppose that v_3 is not incident with any special 3-face. Then $\tau(v_3\to f)\geq 1$ by Observation 13(4). Hence, $ch'(f)\geq -1-\frac{1}{6}\times 2+1+\frac{1}{6}\times 2=0$.

Suppose that $d(f_{12}) \geq 11$. Then $\tau(f \to v_i) \leq \frac{1}{33}$ for each $i \in \{1,2\}$ by R2. If f is a special 3-face, then $ch'(f) \geq -1 - \frac{1}{33} \times 2 + \frac{35}{33} = 0$ by R6 and Observation 13(4). Otherwise, at least one of v'_1 and v'_2 is not a triangular 3-vertex, say v'_1 , then $\tau(v'_1 \to f) \geq \frac{2}{21}$ by Observation 14 and R5–R7. Hence, $ch'(f) \geq -1 - \frac{1}{33} \times 2 + \frac{32}{33} + \frac{2}{21} = \frac{1}{231}$.

Case 7. $d(v_1) = d(v_2) = 3$ and $d(v_3) = 5$. If $\tau(v_3 \to f) \ge \frac{8}{7}$, then $ch'(f) \ge 0$ by the similar argument as Case 5. So we may assume that $\tau(v_3 \to f) < \frac{8}{7}$. That is, v_3 is a 5^{2g} -vertex, or a 5^{2b} -vertex, or a 5^{1c_1} -vertex, or a 5^{1c_2} -vertex. By symmetry, assume that $d(f_{23}) \ge d(f_{13})$.

Subcase 7.1. $d(f_{23}) \ge 11$. Suppose that $d(f_{13}) \ge 11$. Then $\tau(f \to v_i) \le \frac{1}{33}$ for each $i \in \{1, 2\}$ by R2, and v_3 is neither a 5^{1c_1} -vertex nor a 5^{1c_2} -vertex. Note that $\alpha(v_3) \ge 1 + \frac{7}{11} \times 2 + \frac{1}{3} = \frac{86}{33}$ by R1. If v_3 is a 5^{2g} -vertex, then $\tau(v_3 \to f) \ge \frac{1}{2}(\alpha(v_3) - \frac{10}{21}) \ge \frac{82}{77}$ by R5.1. If v_3 is a 5^{2b} -vertex, then $\tau(v_3 \to f) \ge \frac{1}{2}\alpha(v_3) \ge \frac{43}{33}$ by R5.2. Hence, $ch'(f) \ge -1 - \frac{1}{33} \times 2 + \min\{\frac{43}{33}, \frac{82}{77}\} = \frac{1}{231}$. Suppose that $d(f_{13}) = 8$. Then v_3 is not a 5^{2g} -vertex and v'_1 is not a triangular 2 vertex by Lemma f(A). So $\tau(v_1, v_2, f) \ge \frac{22}{77}$ by Observation 12(2) and R5.2, and

Suppose that $d(f_{13}) = 8$. Then v_3 is not a 5^{2g} -vertex and v_1' is not a triangular 3-vertex by Lemma 6(4). So $\tau(v_3 \to f) \ge \frac{22}{21}$ by Observation 13(3) and R5.3, and $\tau(v_1' \to f) \ge \frac{1}{6}$ by Observation 14 and R5–R7. Hence, $ch'(f) \ge -1 - \frac{1}{6} - \frac{1}{33} + \frac{22}{21} + \frac{1}{6} = \frac{4}{231}$ by R2.

Suppose that $d(f_{13}) = 7$. Then $d(f_{12}) \ge 7$ since G contains no $3^{(3,6,7)}$ -vertex.

By R2 and Observation 13, $\tau(f \to v_1) \leq \frac{1}{7}$ and $\tau(v_2 \to f) \geq \frac{5}{77}$. Note that $\alpha(v_3) \geq 1 + \frac{1}{3} + \frac{7}{11} + \frac{3}{7} = \frac{554}{231}$. Suppose that v_3 is a 5^{2g} -vertex. By Lemma 6(3), v_1' is not a triangular 3-vertex or a 3^w -vertex. So $\tau(v_1' \to f) \geq \frac{1}{7}$ by Observation 14 and R5–R7. If v_3 incident with a $(3^{(3)}, 3^{(3)}, 5^{2g})$ -face, then $f_7(v_3) = 2$ and $f_{11+}(v_3) = 1$. Thus, $\tau(v_3 \to f) \geq 1 + \frac{3}{7} + \frac{7}{11} + \frac{3}{7} - (1 + \frac{10}{21}) = \frac{235}{231}$ by R5.1. Hence, $ch'(f) \geq -1 - \frac{1}{7} + \frac{235}{231} + \frac{1}{7} + \frac{5}{77} = \frac{19}{231}$. Otherwise, $\tau(v_3 \to f) \geq \frac{1}{2}(\alpha(v_3) - \frac{10}{21}) \geq \frac{74}{77}$ by R5. Hence, $ch'(f) \geq -1 - \frac{1}{7} + \frac{74}{77} + \frac{1}{7} + \frac{5}{77} = \frac{2}{77}$. If v_3 is a 5^{1c_1} -vertex or a 5^{1c_2} -vertex, then $\tau(v_3 \to f) = 1$ by R5.3. Note that v_1' is not a triangular 3-vertex or a 3^w -vertex. Hence, $ch'(f) \geq -1 - \frac{1}{7} + 1 + \frac{1}{7} = 0$ by Observation 14 and R5–R7. If v_3 is a 5^{2b} -vertex, then $\tau(v_3 \to f) \geq \frac{1}{2}\alpha(v_3) > \frac{8}{7}$ by R5. Hence, $ch'(f) \geq -1 - \frac{1}{7} + \frac{8}{7} = 0$.

Suppose that $d(f_{13}) = 6$. Then $d(f_{12}) = 8$ or $d(f_{12}) \ge 11$ by Lemma 6 and G contains no $3^{(3,6,7)}$ -vertex. By Observation 13, $\tau(v_3 \to f) \ge \frac{59}{77}$. If $d(f_{12}) = 8$, then v_i' $(i \in \{1,2\})$ is not a triangular 3-vertex and has at most two pendant 3-faces when $d(v_i') = 3$ by Lemma 6(4). So $\tau(v_1' \to f) \ge \frac{1}{6}$ and $\tau(v_2' \to f) \ge \frac{46}{231}$ by Observation 14 and R5–R7. Hence, $ch'(f) \ge -1 - \frac{1}{6} + \frac{59}{77} + \frac{1}{6} + \frac{46}{231} + \frac{3}{22} = \frac{47}{462}$ by R3. Thus, $d(f_{12}) \ge 11$. Hence, $ch'(f) \ge -1 - \frac{1}{33} + \frac{59}{77} + \frac{3}{11} = \frac{2}{231}$ by R2 and Observation 13.

Subcase 7.2. $d(f_{23})=8$. Then v_3 is a 5^{2b} -vertex, and v_2' is not a triangular 3-vertex. Then $\tau(v_2'\to f)\geq \frac{1}{6}$ by Observation 14 and R5–R7, and $\tau(v_3\to f)\geq \frac{239}{231}$ by Observation 13(3). Hence, $ch'(f)\geq -1-\frac{1}{6}+\frac{239}{231}+\frac{1}{6}=\frac{8}{231}$ by R2.

Subcase 7.3. $d(f_{23}) = 7$.

Subcase 7.3.1. $d(f_{13})=7$. Then $d(f_{12})\geq 7$ since G contains no $3^{(3,6,7)}$ -vertex. Suppose that $d(f_{12})=7$. Then v_3 is not a 5^{1c_2} -vertex. Now $\tau(f\to v_i)=\frac{1}{7}$ for each $i\in\{1,2\}$ by R2 and $\tau(v_3\to f)\geq \frac{20}{21}$ by R5. If $d(v_1')\geq 4$ or $d(v_2')\geq 4$, say v_1' , then $\tau(v_1'\to f)\geq \frac{5}{14}$ by Observation 14. Hence, $ch'(f)\geq -1-\frac{1}{7}\times 2+\frac{20}{21}+\frac{5}{14}=\frac{1}{42}$. So suppose that $d(v_1')=d(v_2')=3$. If v_3 is a 5^{2b} -vertex, then $\tau(v_3\to f)\geq \frac{1}{2}\times (1+\frac{3}{7}\times 2+\frac{1}{3})=\frac{23}{21}$ by R5.2. If both v_1' and v_2' are not the triangular 3-vertices, then at most one of them has three pendant 3-faces, say v_1' . Hence, $\tau(v_1'\to f)\geq \frac{2}{21}$ and $\tau(v_2'\to f)\geq \frac{1}{7}$ by Observation 14. Thus, $ch'(f)\geq -1-\frac{1}{7}\times 2+\frac{23}{21}+\frac{1}{7}+\frac{2}{21}=\frac{1}{21}$. If one of v_1' and v_2' is a triangular 3-vertex, say v_1' , then v_2' is not a triangular 3-vertex and has exactly one pendant 3-face. So $\tau(v_2'\to f)\geq \frac{4}{21}$ by Observation 14. Hence, $ch'(f)\geq -1-\frac{1}{7}\times 2+\frac{23}{21}+\frac{4}{21}=0$. Now we may assume that v_3 is a 5^{2g} -vertex or a 5^{1c_1} -vertex. Then v_1' ($i\in\{1,2\}$) is not a triangular 3-vertex and at most one of them has two pendant 3-faces by Lemma 6(3), say v_1' . So $\tau(v_1'\to f)\geq \frac{1}{7}$ and $\tau(v_2'\to f)\geq \frac{4}{21}$ by Observation 14. Hence, $ch'(f)\geq -1-\frac{1}{7}\times 2+\frac{23}{21}+\frac{4}{7}+\frac{4}{21}=0$.

Suppose that $d(f_{12}) = 8$. Then v_i' is not a triangular 3-vertex by Lemma 6(4) and $\tau(f \to v_i) = \frac{1}{14}$ for each $i \in \{1, 2\}$ by R1. If v_3 is a 5^{2g} -vertex, then $\tau(v_3 \to f) \geq \frac{17}{21}$ by Observation 13. By Lemma 6(3) and 5(4), v_i' ($i \in \{1, 2\}$)

has at most one pendant 3-face when $d(v_i')=3$. Hence, $\tau(v_i'\to f)\geq \frac{4}{21}$ by Observation 14. Thus, $ch'(f)\geq -1-\frac{1}{14}\times 2+\frac{4}{21}\times 2+\frac{17}{21}=\frac{1}{21}$. Otherwise, $\tau(v_3\to f)\geq \min\{\frac{1}{2}\times (1+\frac{3}{7}\times 2+\frac{1}{3}),1\}=1$ by R5.2 and R5.3. Hence, $ch'(f)\geq -1-\frac{1}{14}\times 2+1+\frac{1}{7}=0$ by Observation 14.

Suppose that $d(f_{12}) \geq 11$. Then $\tau(v_i \to f) \geq \frac{5}{77}$ for each $i \in \{1,2\}$ by Observation 13(1), and $\tau(v_3 \to f) \geq \frac{17}{21}$ by Observation 14 and R5. Note that at most one of v_1' and v_2' is a triangular 3-vertex, say v_1' . So $\tau(v_2' \to f) \geq \frac{2}{21}$ by Observation 14 and R5–R7. Hence, $ch'(f) \geq -1 + \frac{5}{77} \times 2 + \frac{17}{21} + \frac{2}{21} = \frac{8}{231}$.

Subcase 7.3.2. $d(f_{13}) = 6$. Then $d(f_{12}) = 8$ or $d(f_{12}) \ge 11$ by Lemma 6 and G contains no $3^{(3,6,7)}$ -vertex. First suppose that $d(f_{12}) = 8$, then $\tau(f \to v_1) + \tau(f \to v_2) = \frac{1}{6} + \frac{1}{14} = \frac{5}{21}$ by R2. By Lemma 6(4), v_i' ($i \in \{1,2\}$) is not a triangular 3-vertex. If v_3 is a 5^{2g} -vertex, then $\tau(v_3 \to f) \ge \frac{6}{7}$ by Observation 13(3). Note that v_1' in not a 3^w -vertex or a 3^m -vertex and v_2' has exactly one pendant 3-face when $d(v_2') = 3$ by Lemma 6. Then $\tau(v_1' \to f) \ge \frac{1}{6}$ and $\tau(v_2' \to f) \ge \frac{11}{42}$ by Observation 14. Hence, $ch'(f) \ge -1 - \frac{5}{21} + \frac{6}{7} + \frac{1}{6} + \frac{11}{42} = \frac{1}{21}$. Otherwise, $\tau(v_3 \to f) \ge 1$ by Observation 13(3) and R5, and $\tau(v_i' \to f) \ge \frac{1}{7}$ for each $i \in \{1,2\}$ by Observation 14. Hence, $ch'(f) \ge -1 - \frac{5}{21} + 1 + \frac{1}{7} \times 2 = \frac{1}{21}$. Next suppose that $d(f_{12}) \ge 11$. Then $\tau(f \to v_1) \le \frac{1}{33}$ by R2 and $\tau(v_2 \to f) \ge \frac{5}{77}$ by Observation 13(1). If v_3 is a 5^{2g} -vertex, then $\tau(v_3 \to f) \ge \frac{6}{7}$ by Observation 13(3). Note that v_2' is not a triangular 3-vertex, or a 3^w -vertex, or a 3^m -vertex. Hence, $\tau(v_2' \to f) \ge \frac{1}{6}$. Thus, $ch'(f) \ge -1 - \frac{1}{33} + \frac{1}{6} + \frac{5}{77} + \frac{6}{7} = \frac{9}{154}$. Otherwise, $\tau(v_3 \to f) \ge 1$ by Observation 13(3), $ch'(f) \ge -1 - \frac{1}{33} + \frac{5}{77} + 1 = \frac{8}{231}$.

Subcase 7.4. $d(f_{23})=6$. Then $d(f_{13})=6$, and v_3 is neither a 5^{1c_1} -vertex nor a 5^{1c_2} -vertex. Note that $d(f_{12})=8$ or $d(f_{12})\geq 11$ by Lemma 6 and G contains no $3^{(3,6,7)}$ -vertex. First suppose that $d(f_{12})=8$. Then $\tau(v_3\to f)\geq \min\{1,\frac{239}{231}\}=1$ by R5 and Observation 13. By Lemma 6(4), v_i' ($i\in\{1,2\}$) is not a triangular 3-vertex, or a 3^w -vertex, or a 3^w -vertex. Hence, $\tau(v_i'\to f)\geq \frac{1}{6}$ for each $i\in\{1,2\}$ by Observation 14. Hence, $ch'(f)\geq -1-\frac{1}{6}\times 2+1+\frac{1}{6}\times 2=0$ by R2. Next suppose that $d(f_{12})\geq 11$. If f is a special 3-face, then $\tau(v_3\to f)\geq \frac{35}{33}$ by R5. Hence, $ch'(f)\geq -1-\frac{1}{33}\times 2+\frac{35}{33}=0$ by R2. Otherwise, at least one of v_i' ($i\in\{1,2\}$) is not a triangular 3-vertex, say v_1' . Hence, $\tau(v_1'\to f)\geq \frac{1}{6}$ by Observation 14. Note that $f_{11+}(v_3)\geq 11$ when v_3 is a 5^{2g} -vertex. So $\tau(v_3\to f)\geq \min\{\frac{1}{2}\times (1+\frac{1}{3}\times 2+\frac{7}{11}-\frac{10}{21}),\frac{239}{231})\}=\min\{\frac{211}{231},\frac{239}{231}\}=\frac{211}{231}$ by R5 and Observation 13. Hence, $ch'(f)\geq -1-\frac{1}{33}\times 2+\frac{1}{6}+\frac{211}{231}=\frac{3}{154}$ by R2.

Case 8. $d(v_1) = d(v_2) = 3$ and $d(v_3) = 4$. Then $d(v_i') \ge 4$ for each $i \in \{1, 2\}$ by Lemma 4. By Observation 14 and R5–R7, $\tau(v_i' \to f) \ge \frac{5}{14}$ for each $i \in \{1, 2\}$. By symmetry, assume that $d(f_{23}) \ge d(f_{13})$.

Subcase 8.1. $d(f_{23}) \ge 11$. Suppose that $d(f_{13}) \ge 8$. Then $\tau(f \to v_1) + \tau(f \to v_2) \le \frac{1}{6} + \frac{1}{33} = \frac{13}{66}$ by R2. Note that $\tau(v_i' \to f) \ge \frac{169}{462}$ for each $i \in \{1, 2\}$ by

Observation 14 and R5–R7. By R4, $\tau(v_3 \to f) \ge \min\{\frac{1}{2} \times (\frac{1}{2} + \frac{7}{11}), \frac{4}{7}, \frac{2}{3}, 1\} = \frac{25}{44}$. Hence, $ch'(f) \ge -1 - \frac{13}{66} + \frac{169}{462} \times 2 + \frac{25}{44} = \frac{95}{924}$. Suppose that $d(f_{13}) \le 7$. Then $d(f_{12}) \ge 7$ by Lemma 6 and G contains no $3^{(3,6,7)}$ -vertex. Hence, $\tau(f \to v_1) \le \frac{1}{6}$ by R2 and $\tau(v_2 \to f) \ge \frac{5}{77}$ by Observation 13. By Observation 13 and R4, $\tau(v_3 \to f) \ge \frac{3}{7}$. Hence, $ch'(f) \ge -1 - \frac{1}{6} + \frac{5}{77} + \frac{5}{77} + \frac{3}{77} + \frac{3}{77} = \frac{19}{77}$ $\frac{5}{14} \times 2 + \frac{3}{7} = \frac{19}{462}$.

Subcase 8.2. $d(f_{23}) = 8$. By Lemma 6(4), v_3 is not a 4^{2g} -vertex or a 4^{1g} vertex. Then $\tau(v_3 \to f) \ge \frac{2}{3}$ by R4. Hence, $ch'(f) \ge -1 - \frac{1}{6} \times 2 + \frac{2}{3} + \frac{5}{14} \times 2 = \frac{1}{21}$

Subcase 8.3. $d(f_{23}) = 7$. Suppose that $d(f_{13}) = 7$. Then $d(f_{12}) \geq 7$ by G contains no $3^{(3,6,7)}$ -vertex. If v_3 is a 4^{2g} -vertex, then $\tau(v_3 \to f) \geq \frac{3}{7}$ by Observation 13(2). By Lemma 6(3), v_i' ($i \in \{1,2\}$) is not a 4^{1g} -vertex or a 2-triangular 5-vertex. Hence, $\tau(v_i' \to f) \geq \frac{1}{2}$ for each $i \in \{1,2\}$ by Observation 14 and R5–R7. Therefore, $ch'(f) \geq -1 - \frac{1}{7} \times 2 + \frac{3}{7} + \frac{3}{7} \times 2 = 0$ by R2. Otherwise, $\tau(v_3 \to f) \geq \frac{4}{7}$ by R4. Hence, $ch'(f) \geq -1 - \frac{1}{7} \times 2 + \frac{4}{7} + \frac{5}{14} \times 2 = 0$ by R2.

Suppose that $d(f_{13})=6$. Then $d(f_{12})=8$ or $d(f_{12})\geq 11$ by Lemma 6 and G contains no $3^{(3,6,7)}$ -vertex. If $d(f_{12})=8$, then $\tau(f\to v_1)+\tau(f\to v_2)=\frac{1}{6}+\frac{1}{14}=\frac{5}{21}$ by R2. By Lemma 6(4), v_i' ($i\in\{1,2\}$) is not a 4^{1g} -vertex, a 4^w vertex or a 2-triangular 5-vertex. Then $\tau(v_i' \to f) \geq \frac{1}{2}$ for each $i \in \{1,2\}$ by Observation 14 and R5–R7. By Observation 13(2) and R4, $\tau(v_3 \to f) \geq \frac{2}{7}$. Hence, $ch'(f) \geq -1 - \frac{5}{21} + \frac{2}{7} + \frac{1}{2} \times 2 = \frac{1}{21}$. If $d(f_{12}) \geq 11$, then $\tau(f \to v_1) \leq \frac{1}{33}$ by R2 and $\tau(v_2 \to f) \geq \frac{5}{77}$ by Observation 13(1). Note that $\tau(v_3 \to f) \geq \frac{2}{7}$ by Observation 13(1) and R4. Hence, $ch'(f) \geq -1 - \frac{1}{33} + \frac{5}{77} + \frac{2}{7} + \frac{5}{14} \times 2 = \frac{8}{231}$.

Subcase 8.4. $d(f_{23}) = 6$. Note that $d(f_{13}) = 6$ and $d(f_{12}) = 8$ or $d(f_{12}) \ge 11$ by Lemma 6 and G contains no $3^{(3,6,7)}$ -vertex. By Lemma 9, v_3 is not a 4^{2g} -vertex, then $\tau(v_3 \to f) \geq \frac{4}{7}$ by R4. First suppose that $d(f_{12}) = 8$, then v_i' $(i \in \{1, 2\})$ is not a 4^{1g} -vertex by Lemma 6(4). Hence $\tau(v_i' \to f) \ge \frac{8}{21}$ for each $i \in \{1, 2\}$ by Observation 14(2) and R5–R7. Hence, $ch'(f) \ge -1 - \frac{1}{6} \times 2 + \frac{4}{7} + \frac{8}{21} \times 2 = 0$ by R2. Next suppose that $d(f_{12}) \ge 11$. Then $ch'(f) \ge -1 - \frac{1}{33} \times 2 + \frac{4}{7} + \frac{5}{14} \times 2 = \frac{52}{231}$ by R2.

Case 9. $d(v_1) = d(v_2) = d(v_3) = 3$. Then $d(v_i') \ge 4$ for each $i\{1,2,3\}$ by Lemma 4. So $\tau(v_i' \to f) \ge \frac{5}{14}$ for each $i \in \{1,2,3\}$ by Observation 14 and R5– R7. By symmetry, we may assume $d(f_{23}) \geq d(f_{13}) \geq d(f_{12})$ and $d(f_{13}) \geq 7$ by

Suppose that $d(f_{13}) \ge 11$. Then $ch'(f) \ge -1 - \frac{1}{33} \times 2 + \frac{3}{11} + \frac{5}{14} \times 3 = \frac{131}{462}$ by R2 and Observation 13.

Suppose that $d(f_{13}) = 8$. If $d(f_{23}) \ge 11$, then $ch'(f) \ge -1 - \frac{1}{6} - \frac{1}{33} + \frac{3}{22} + \frac{5}{14} \times 3 = \frac{5}{462}$ by R2 and Observation 13. If $d(f_{23}) = 8$, then v'_i $(i \in \{1, 2, 3\})$ is not a 4^{1g} -vertex, or a 4^{w} -vertex, or a 2-triangular 5-vertex by Lemma 6. Hence,

 $\tau(v_i' \to f) \ge \frac{1}{2}$ for each $i \in \{1,2,3\}$ by Observation 14 and R5–R7. Therefore, $ch'(f) \ge -1 - \frac{1}{6} \times 2 + \frac{1}{2} \times 3 = \frac{1}{6}$ by R2.

Suppose that $d(f_{13}) = 7$. Then $d(f_{12}) = 7$ since G contains no $3^{(3,6,7)}$ -vertex. If $d(f_{23}) \ge 11$, then $\tau(f \to v_1) = \frac{1}{7}$ by R2 and $\tau(v_i \to f) \ge \frac{5}{77}$ for each $i \in \{2,3\}$ by Observation 13(1). Hence, $ch'(f) \ge -1 - \frac{1}{7} + \frac{5}{77} \times 2 + \frac{5}{14} \times 3 = \frac{9}{154}$. If $d(f_{23}) = 8$, then v_i' ($i \in \{2,3\}$) is not a 4^{1g} -vertex, or a 4^w -vertex, or a 5^{2g} -vertex by Lemma 6(3). By Observation 14 and R5–R7, $\tau(v_i' \to f) \ge \frac{1}{2}$ for each $i \in \{2,3\}$. Hence, $ch'(f) \ge -1 - \frac{1}{14} \times 2 - \frac{1}{7} + \frac{5}{14} + \frac{1}{2} \times 2 = \frac{1}{14}$ by R2. If $d(f_{23}) = 7$, then $\tau(f \to v_i) = \frac{1}{7}$ for each $i \in \{1,2,3\}$ by R2. By Lemma 11, at most one of v_i' ($i \in \{1,2,3\}$) is a 4^{1g} -vertex, or a 4^w -vertex, or a 5^{2g} -vertex, say v_1' . Furthermore, if v_1' is a 4^{1g} -vertex, or a 4^w -vertex, or a 5^{2g} -vertex, then at most one of v_2' and v_3' is a 4^{1g} -vertex, say v_2' . Hence, $\tau(v_1' \to f) \ge \frac{5}{14}$, $\tau(v_2' \to f) \ge \frac{1}{2}$ and $\tau(v_3' \to f) \ge \frac{4}{7}$ by Observation 14 and R5–R7. Therefore, $ch'(f) \ge -1 - \frac{1}{7} \times 3 + \frac{5}{14} + \frac{1}{2} + \frac{4}{7} = 0$.

So far, it has been proved that if a 2-connected graph G is a minimal counterexample of Theorem 1, then G has at least a $3^{(3,6,7)}$ -vertex. By Lemma 8, G has a 2-connected subgraph H such that the outer boundary of H is a 3-cycle and H has no $3^{(3,6,7)}$ -vertex. Obviously, H is a planar graph. Let $f_0 = [v_1v_2v_3]$ be the non-interface of H. Now, we can proceed a discharging procedure in H = (V(H), E(H), F(H)). Call the edge in $E(H) \setminus E(f_0)$ as the inner edge. Let the initial function ch_H of $x \in V(H) \cup F(H)$ be $ch_H(x) = d_H(x) - 4$. Then $d_H(v) \geq 3$ for $v \in V(H) \setminus \{f_0\}$ and $d_H(v) \geq 2$ for $v \in V(f_0)$. We define the following discharging rules.

- **r1.** Let $v \in V(f_0)$. Then v sends $\frac{8}{7}$ to each incident 3-face $f, f \neq f_0, \frac{4}{7}$ to pendant 3-face.
- **r2.** For $x \in (V(H) \setminus V(f_0)) \cup (F(H) \setminus \{f_0\})$, we redistribute ch(x) according to the rules R1–R7 defined in the former.

Let the new charge function, obtained by the rules r1 and r2 after discharging be ch'_H . By Observation 13–14, a face $f \in F(H) \setminus V(f_0)$ gets at most $\frac{8}{7}$ from its incident vertices and at most $\frac{4}{7}$ from its outer neighbors. Obviously, following the proofs of Claim 12 and Claim 15, we have $ch'(x) \geq 0$ for all $x \in (V(H) \setminus V(f_0)) \cup (F(H) \setminus \{f_0\})$ after rules r1–r2. That is $\sum_{v \in V(H) \setminus V(f_0)} (d_H(v) - 4) + \sum_{f \in F(H) \setminus \{f_0\}} (d_H(f) - 4) \geq 0$.

Then we consider the new charge of $v_i \in V(f_0)$. Let t denote the number of incident 3-faces of v_i (except f_0) and m denote the number of pendant 3-faces of v_i . Since H does not contain adjacent 3-faces, we have $t \leq \left\lfloor \frac{d_H(v_i)-2}{2} \right\rfloor$ and $m \leq d(v_i) - 2t - 2$. Since $G \in \mathcal{G}$, $f_{6+}(v_i) \geq d_H(v_i) - (t+1)$. Let f be the 6⁺-face incident with v_i . By R1, $\tau(f \to v_i) \geq \frac{1}{3}$. If $d_H(v_i) = 2$, then t = m = 0 and $f_{6+}(v_i) \geq 1$. So $ch'_H(v_i) \geq d_H(v_i) - 4 + \frac{1}{3} = -\frac{5}{3}$. If $d_H(v_i) = 3$, then t = 0, $m \leq 1$ and $f_{6+}(v_i) \geq 2$. By Lemma 6(6), $f_{7+}(v_i) \geq 1$. So $ch'_H(v_i) \geq 1$

 $d_H(v_i) - 4 - \frac{4}{7}m + \frac{1}{3} + \frac{3}{7} \ge -\frac{17}{21}$. If $ch'_H(v_i) \ge 4$, then by r1-r2, we can get

$$ch'_{H}(v_{i}) \geq d_{H}(v_{i}) - 4 + \frac{1}{3}(d_{H}(v_{i}) - 1 - t) - \frac{8}{7}t - \frac{4}{7}m$$

$$\geq \frac{4}{3}d_{H}(v_{i}) - \frac{13}{3} - \frac{1}{3}t - \frac{8}{7}t - \frac{4}{7}(d_{H}(v_{i}) - 2t - 2)$$

$$= \frac{16}{21}d_{H}(v_{i}) - \frac{1}{3}t - \frac{67}{21} \geq \frac{16}{21}d_{H}(v_{i}) - \frac{1}{3}\left(\frac{d_{H}(v_{i}) - 2}{2}\right) - \frac{67}{21}$$

$$= \frac{25}{42}d_{H}(v_{i}) - \frac{20}{7} \geq -\frac{10}{21}.$$

Therefore,

$$-8 = \sum_{v \in V(H)} (d_H(v) - 4) + \sum_{f \in F(H)} (d_H(f) - 4)$$

$$= \sum_{v \in V(H)} ch'(v) + \sum_{f \in F(H)} ch'(f)$$

$$= \sum_{v \in V(H) \setminus V\{f_0\}} ch'(v) + \sum_{f \in F(H) \setminus \{f_0\}} ch'(f) + \sum_{v \in V(f_0)} ch'(v) + ch'(f_0)$$

$$\geq \sum_{v \in V(f_0)} ch'(v) + ch'(f_0) \geq 3 \times \left(-\frac{5}{3}\right) - 1 = -6.$$

The proof of Theorem 1 is completed when the minimal counterexample Gis 2-connected. Now we assume that G is not 2-connected, i.e., G has some cut vertices. Let B be an end block of G. That is, B contains an unique cut vertex t^* . By Lemma 2, B is 2-connected. Thus the boundary of every face of B is a cycle, and every vertex v of B is incident with $d_B(v)$ distinct faces. Clearly, B has no 4-face, 5-face or 10-face. If B contains a $3^{(3,6,7)}$ -vertex, then B has a 2-connected subgraph H' such that the outer boundary of H' is a 3-cycle and H'contains no $3^{(3,6,7)}$ -vertex by Lemma 8. In H', we can use the same discharging rules as in H to deduce a contradiction. Suppose B has no $3^{(3,6,7)}$ -vertices. Let f_0 be the exterior face of B. Moreover, each structural property established for G in Section 2 and Section 3 fails for B only when t^* is involved. For any $x \in V(B) \cup F(B)$, the initial charge function ch_B in the discharging procedure is defined as $ch_B(x) = d_B(x) - 4$. We proceed the discharging rules R1–R7 in B. For $x \in V(B) \cup F(B) \setminus \{t^*\}$, we can get $ch'_B(x) \geq 0$ after R1-R7. Let t denote the number of incident 3-faces of t^* and m denote the number of pendant 3faces of t^* . Since B does not contain adjacent 3-faces, we have $t \leq \left| \frac{d_B(t^*)}{2} \right|$ and $m \leq d_B(t^*) - 2t$. Thus,

$$ch'_{B}(t^{*}) \geq d_{B}(t^{*}) - 4 - \frac{8}{7}t - \frac{4}{7}m + \frac{1}{3}(d_{B}(t^{*}) - t)$$

$$\geq \frac{4}{3}d_{B}(t^{*}) - 4 - \frac{1}{3}t - \frac{8}{7}t - \frac{4}{7}(d_{B}(t^{*}) - 2t)$$

$$= \frac{16}{21}d_{B}(t^{*}) - \frac{1}{3}t - 4 \geq \frac{16}{21}d_{B}(t^{*}) - \frac{1}{3} \cdot \frac{d_{B}(t^{*})}{2} - 4$$

$$= \frac{25}{42}d_{B}(t^{*}) - 4 > -4.$$

Therefore,

$$-8 = \sum_{v \in V(B)} (d_B(v) - 4) + \sum_{f \in F(B)} (d_B(f) - 4)$$

$$= \sum_{v \in V(B)} ch'_B(v) + \sum_{f \in F(B)} ch'_B(f)$$

$$= \sum_{v \in V(B) \setminus \{t^*\}} ch'_B(v) + \sum_{f \in F(B)} ch'_B(f) + ch'_B(t^*)$$

$$\geq ch'_B(t^*) > -4.$$

A contradiction completing the proof of Theorem 1 when G is not 2-connected. Hence, we show that every planar graph in \mathcal{G} is (1,0,0)-colorable. That is, Theorem 1 holds.

Acknowledgment

We would like to thank the anonymous referees for their careful reading and comments. This work was supported by the Natural Science Foundations of China No. 12171436 and No. 12371360, and jointly supported by Natural Science Foundation of Zhejiang Province No. LZ23A010004.

References

- V. Cohen-Addad, M. Hebdige, D. Král, Z. Li and E. Salgado, Steinberg's Conjecture is false, J. Combin. Theory Ser. B 122 (2017) 452–456.
 https://doi.org/10.1016/j.jctb.2016.07.006
- K. Appel and W. Haken, Every planar map is four colorable, Part I. Discharging, Illinois J. Math. 21 (1977) 429–490. https://doi.org/10.1215/ijm/1256049011
- K. Appel, W. Haken and J. Koch, Every planar map is four colorable, Part II. Reducibility, Illinois J. Math. 21 (1977) 491–567. https://doi.org/10.1215/ijm/1256049012

- [4] J.A. Bondy and U.S.R. Murty, Graph Theory, Grad. Texts in Math. 244 (Springer-Verlag, London, 2008). https://doi.org/10.1007/978-1-84628-970-5
- Y. Bu, J. Xu and Y. Wang, (1,0,0)-colorability of planar graphs without prescribed short cycles, J. Comb. Optim. 30 (2015) 627–646. https://doi.org//10.1007/s10878-013-9653-5
- [6] M. Chen, Y. Wang, P. Liu and J. Xu, Planar graphs without cycles of length 4 or 5 are (2,0,0)-colorable, Discrete Math. 339 (2016) 886–905.
 https://doi.org//10.1016/j.disc.2015.10.029
- Y. Kang, L. Jin, P. Liu and Y. Wang, (1,0,0)-colorability of planar graphs without cycles of length 4 or 6, Discrete Math. 345 (2022) 112758.
 https://doi.org//10.1016/j.disc.2021.112758
- [8] H. Lu, Y. Wang, W. Wang, Y. Bu, M. Montassier and A. Raspaud, On the 3-colorability of planar graphs without 4-, 7- and 9-cycles, Discrete Math. 309 (2009) 4596–4607. https://doi.org//10.1016/j.disc.2009.02.030
- [9] S.A. Mondal, Planar graphs without 4-, 5- and 8-cycles are 3-colorable, Discuss. Math. Graph Theory 31 (2011) 775–789.
 https://doi.org/10.7151/dmgt.1579
- [10] W.-F. Wang and M. Chen, Planar graphs without 4, 6, 8-cycles are 3-colorable, Sci. China Math. 50 (2007) 1552–1562. https://doi.org/10.1007/s11425-007-0106-4
- [11] Y. Wang and Y. Yang, (1,0,0)-colorability of planar graphs without cycles of length 4, 5 or 9, Discrete Math. 326 (2014) 44–49. https://doi.org//10.1016/j.disc.2014.03.001
- [12] B. Xu, On 3-colorable plane graphs without 5- and 7-cycles, J. Combin. Theory Ser. B 96 (2006) 958–963. https://doi.org//10.1016/j.jctb.2006.02.005

Received 5 June 2024 Revised 14 January 2025 Accepted 14 January 2025 Available online 29 January 2025

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License https://creativecommons.org/licenses/by-nc-nd/4.0/

_