DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2023): 0.5

5-year Journal Impact Factor (2023): 0.6

CiteScore (2023): 2.2

SNIP (2023): 0.681

Discussiones Mathematicae Graph Theory

Article in press


Authors:

G. Bacsó

Gábor Bacsó

Institute for Computer Science and Control

email: tud23sci@gmail.com

Cs. Bujtás

Csilla Bujtás

Department of Mathematics, University of Ljubljana,
Jadranska 19,
Ljubljana 1000, Slovenia

email: csilla.bujtas@fmf.uni-lj.si

0000-0002-0511-5291

Mr. Patkós

Balázs Patkós

Alfréd Rényi Institute of Mathematics

email: patkos.balazs@renyi.hu

Zs. Tuza

Zsolt Tuza

Alfréd Rényi Institute of Mathematics, Budapest

email: tuza@dcs.uni-pannon.hu

M. Vizer

Máté Vizer

Department of Computer Science, Budapest University of Technology and Economics

email: vizermate@gmail.com

Title:

The robust chromatic number of certain graph classes

PDF

Source:

Discussiones Mathematicae Graph Theory

Received: 2023-05-08 , Revised: 2024-12-28 , Accepted: 2024-12-28 , Available online: 2025-01-29 , https://doi.org/10.7151/dmgt.2576

Abstract:

A 1-selection $f$ of a graph $G$ is a partial function $f: V(G)\rightarrow E(G)$ such that $f(v)$ is incident to $v$ for every vertex $v$, where $f$ is defined. The 1-removed $G_f$ is the graph $(V(G),E(G)\setminus f[V(G)])$. The (1-)robust chromatic number $\chi_1(G)$ is the minimum of $\chi(G_f)$ over all 1-selections $f$ of $G$. We determine the robust chromatic number of complete multipartite graphs and Kneser graphs and prove tight lower and upper bounds on the robust chromatic number of chordal graphs and some of their extensively studied subclasses, with respect to their ordinary chromatic number.

Keywords:

graph coloring, robust coloring

References:

  1. G. Bacsó, B. Patkós, Zs. Tuza and M. Vizer, The robust chromatic number of graphs, Graphs Combin. 40 (2024) 89.
    https://doi.org/10.1007/s00373-024-02817-1
  2. P. Erdős, C. Ko and R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford 12 (1961) 313–320.
    https://doi.org/10.1093/qmath/12.1.313
  3. N.J. Fine and R. Harrop, Uniformization of linear arrays, J. Symb. Log. 22 (1957) 130–140.
    https://doi.org/10.2307/2964174
  4. A.J.W. Hilton and E.C. Milner, Some intersection theorems for systems of finite sets, Quart. J. Math. Oxford 18 (1967) 369–384.
    https://doi.org/10.1093/qmath/18.1.369
  5. B. Patkós, Zs. Tuza and M. Vizer, Extremal graph theoretic questions for q-ary vectors, Graphs Combin. 40 (2024) 57.
    https://doi.org/10.1007/s00373-024-02787-4
  6. F. Soulignac, Bounded, minimal, and short representations of unit interval and unit circular-arc graphs. Chapter I: theory, J. Graph Algorithms Appl. 21 (2017) 455–489.
    https://doi.org/10.7155/jgaa.00425

Close