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Abstract

A 1-selection f of a graph G is a partial function f : V(G) — E(G) such
that f(v) is incident to v for every vertex v, where f is defined. The 1-
removed G is the graph (V(G), E(G)\ f[V(G)]). The (1-)robust chromatic
number x;(G) is the minimum of x(Gy) over all 1-selections f of G.

We determine the robust chromatic number of complete multipartite
graphs and Kneser graphs and prove tight lower and upper bounds on the
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robust chromatic number of chordal graphs and some of their extensively
studied subclasses, with respect to their ordinary chromatic number.

Keywords: graph coloring, robust coloring.
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1. INTRODUCTION

Graph colorings and independent sets are central notions in graph theory. Various
versions of graph colorings have been studied in the past decades. The focus of
this paper is on the following recent variant.

Definition 1. For every nonnegative integer s, an s-selection on G = (V, E)
is an assignment f : V — 2F such that f(v) C E(v) and |f(v)| < s, where
E(v) denotes the set of edges incident with v. The graph Gy with vertex set
V(Gy¢) = V(G) and edge set

EGy) =E@G)\ |J f)

veV(G)

is termed an s-removed subgraph of G. Then
e the s-robust chromatic number of G is xs(G) = miny x(Gy),
e the s-robust independence number of G' is as(G) = maxy a(Gy),

e the s-robust clique number of G is ws(G) = minyw(Gy),

where min and max are taken over all s-selections of G.

Observe that the ordinary chromatic, independence, and clique numbers of
G are xo(G), ap(G), and wy(G), respectively. The notion of 1-robust chromatic
number was introduced in [5] as a tool to investigate specific Turdn-type prob-
lems. The systematic study of 1-robust parameters was initiated in [1]. In this
paper, we still concentrate on the s = 1 case and say robust instead of 1-robust.
Analogously, a coloring ¢ of V(G) is robust if there exists a 1-selection f such
that ¢ is proper on Gy, and a subset U C V(G) is robust independent if there
exists a 1-selection f such that U is independent in G'y.

We now turn to the graph classes that our paper addresses. A graph is
chordal if it does not contain any induced cycles longer than 3. Two famous
subclasses (incomparable to each other) are the classes of interval graphs and split
graphs, the latter includes the proper subclass of threshold graphs (see definition
in Section 2). Here we establish tight inequalities for these graph classes.
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The next theorem shows that the general lower bound x1(G) > [@W , which

is valid for all graphs [1], is actually tight for an infinite subclass of threshold
graphs, and a slightly weaker upper bound is valid for the more general class of
split graphs. We say that G is w-unique if it contains only one clique of order

w(@).
Theorem 1. For every threshold graph G,

@ +1, if x(G) =0 (mod 3) and G is not w-unique,
x1(G) = {M

3 —‘ , otherwise.

For split graphs, the upper bound x1(G) < [%1 + 1 is valid and tight,

except for bipartite G. In particular, if G is a split graph with x(G) =1 (mod 3)

then x1(G) = @

It is not true for the more general class of chordal graphs that x(G)/3 is an
asymptotically tight upper bound. Instead, the following holds.

Theorem 2. (i) If G is a chordal graph, then

wi(G) < x1(G) < [X(Gﬂ |

2

(ii) For every k > 2 there exists an interval graph Gy, such that w(Gy) = x(Gg) =
B and wi(Gi) = xa(Ge) = [¥§2] = T5].

On the other hand, a further restriction on interval graphs drops x; down
near x/3.

Theorem 3. There exists a constant ¢ such that for every unit interval graph G
we have

In Section 3 we solve the problem of determining y; for complete multipartite
graphs Ky, . n,. Throughout, we denote the number of vertex classes by ¢ and
write n; for the size of class V; for all 1 <7 < t. It will be assumed that the classes
are in increasing order of their size, i.e., ny <ng < -+ < ny. Then x1(Kp, . n,)
can be computed on the basis of the following two results, which complement
each other.

Theorem 4. Ifny <2, assume thatny = ---=n, =1 and npi1 = -+ =Ny g =
2, where p+q=1t. Then

X1 (Kny,ny) = [p+(3q/2w .

3
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Theorem 5. Ifny; > 3, then an optimal 1-selection for determining x1 ts obtained
by enlarging Vi to an independent set with a vertex of V. That is,

Xl(Km,---,nz) =1+x1 (Kn1—17---7nt71)’

In particular, if ny =1 and ny > 3, then

Xl(Km,---,nt) =1+ Xl(Km ----- mf1)'

In Section 4 we analyze the behavior of a; and x; in Kneser graphs. Let
k > 2 and n > 2k be integers. The Kneser graph KG(n,k) has ([Z]) ={S C
{1,2...,n} : |S| = k} as its vertex set and two vertices are adjacent if and only if
the corresponding k-element sets are disjoint. Hence the intersecting subsystems
of ([Z]) (those F C ([Z]) for which any F, F’ € F have non-empty intersection)
are in one-to-one correspondence with the independent sets of KG(n, k).

Theorem 6. For any k > 2 there exists no(k) such that if n > ng(k), then we
have

o (KG(n, k) = <Z: 1) 1,

and no(k) can be chosen to be 8k*. Furthermore, if F is a robust independent
family in V(KG(n,k)) such that for every x € [n| there exist at least two sets
Fy,Gy € F with x ¢ Fy, Gy, then |F| < 8k(}73) holds.

Theorem 7. For any fixed k > 2, we have
xi (KG(n, k) =n - © (n'/*)
as n — 00.

We finish the introduction by stating two propositions from [1] that we will
use in our proofs. A graph is quasi-unicyclic if each of its components contains
at most one cycle.

Proposition 8 [1]. (i) The value x1(G) of a graph G = (V, E) is equal to the
minimum number k of vertex classes in a partition V. = Vi U--- U Vy such
that each V; induces a quasi-unicyclic subgraph in G.

(ii) A graph G satisfies x1(G) = 1 if and only if it is quasi-unicyclic. In partic-
ular, every tree has x1(G) = 1.

Proposition 9 [1]. For every graph G we have

M {X(‘fﬂ < 31(G) < X(G).

Both the bounds are tight, for all possible values of x(G).
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2. CLASSES OF CHORDAL GRAPHS

In this section, we prove Theorem 1, Theorem 2, and Theorem 3. First, we need
to define the graph classes in Theorem 1.

A graph is called a split graph if its vertex set can be partitioned into two sets,
say A and B, such that A induces a complete subgraph and B is independent.

A graph G is called a threshold graph if there exists a threshold h and a
function g : V(G) — R such that z,y € V(G) are adjacent if and only if g(z) +
g(y) > h. It follows from the definition (in fact, it is equivalent to the definition)
that the vertex set of a threshold graph GG can be partitioned into two sets A and
B (one of them might be empty) which satisfy the following conditions.

(i) A = {ai1,...,aq} induces a maximum clique in G and its vertices can be
ordered such that N(ai) 2 N(az2) D -+ 2 N(aq);
(i) B = {b1,...,bs} is an independent set in G and its vertices can be ordered

such that N(b1) D N(bg) 2D --- D N(bs);
(iii) N(aq) N B =0.

A partition (A, B) of V(G) will be called a threshold partition of G if it

satisfies (1)—(iii).
Proof of Theorem 1. We consider the threshold partition (A, B) of G with the
notation introduced in (i)—(iii). By definition, A is a clique, B is an independent
set, and there is no clique that contains both a4 and a vertex from B. It follows
that w(G) = ¢ and, as every threshold graph is perfect, x(G) = q. Observe that
G is w-unique if and only if a;—1b; is not an edge in G. Let k = [¢/3] — 1.

Suppose first that ¢ # 0 (mod 3), and define V; = {as;j_2, agj_1,as;} vertex
classes for every j € [k] (={1,2,...,k}). The remaining vertices form the class
Virr = V(G) \ Ujepy V- Observe that G[V;] is a unicyclic graph (in fact a 3-
cycle) for every j € Ek] If ¢ =1 (mod 3), then Vi1 = {aq} U B which is an
independent set. If ¢ = 2 (mod 3), then Viy; = {ag—1,a4} U B which induces a
cycle-free graph as every edge of G[Vj41] is incident to a,—1. By Proposition 8(i),
the partition Vi,..., V41 defines a robust coloring for G in both cases. This
implies x1(G) < k+ 1 = [x(G)/3] and, by the lower bound in (1), we may
conclude x1(G) = [x(G)/3].

Suppose now that ¢ = 0 (mod 3) and G is w-unique. For this case, we define
Vg1 = {aq,g, Ag—1, aq}UB and keep the notation V} = {agj,Q, aszj—1, agj} for j €
[k]. Property (iii) from the definition ensures N(aqy) N B = . The w-uniqueness
implies aq—1b1 ¢ E(G) that, together with property (ii) gives N(aqs—1) N B = 0.
As B is independent, every edge in G[Vj11] except ag—1a4 is incident to aq—2 and
therefore, V41 induces a unicyclic graph. Since G[V}] is also unicyclic for every
j € [k], we infer that Vi,..., Vi1 gives a robust coloring for G and x1(G) <
[x(G)/3]. By inequality (1), we conclude x1(G) = [x(G)/3].
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Finally, consider the case, ¢ = 0 (mod 3) and G is not w-unique. Observe
first that V; = {asj_2,a3j-1,a3;} for j € [k + 1] together with V1o = B de-
fines a robust coloring for G and therefore, x1(G) < k + 2. Assume now for
a contradiction that Wy, ..., Wgiq is a partition of V(G) concerning the color
classes of the robust coloring. As W; induces a quasi-unicyclic graph and A is
a clique, |W; N A] < 3 holds for every j € [k + 1]. In fact, |A| = 3k + 3 implies
|W; N A| = 3 for every color class. Since G is not w-unique, a,—1b; is an edge
and by is adjacent to all vertices but a4 from A. Therefore, if by is contained in
the color class W;, then by is adjacent to at least two vertices from W; N A and
G[(W; N A) U {b1}] is either a complete graph K4 or a K4 — e. In either case,
G[W;] is not quasi-unicyclic, which is a contradiction. Thus, x1(G) > k+1 holds

and we conclude x1(G) =k +2 = @ + 1.

Split graphs also enjoy the property x(G) = w(G). Assume that A C V(G)
induces a complete subgraph of cardinality x(G), and B = V(G) \ A is an in-
dependent set. Then we can have a robust coloring on G[A] with [@W colors,

and make B monochromatic with a new color. This [@—‘ + 1 is the same as

%—‘ + 1 unless x(G) = 3k + 1 for some integer k. In that case we can have

a robust k-coloring on G[A] —v for a v € A, and since BU {v} induces a star, all
edges from B to v can be omitted by a 1-selection.

The formula [@w + 1 is not tight if G is a bipartite split graph, because

in that case G must be a double star, i.e., a particular tree, hence x1(G) = 1.
For larger x = t > 3, however, we can obtain a tight construction by taking
|A| = |B| = t and putting K;; — tKs (i.e., all the edges except a complete
matching) between A and B. For t = 3k + 1, we have seen that a robust coloring
with k + 1 colors is possible, and already the set A requires that many colors.
For t = 3k and t = 3k — 1, the verified upper bound is k + 1, and we argue that
k colors do not suffice (except if 3k — 1 = 2).

If t = 3k, the only way for a robust k-coloring on A is to select the edges of
k disjoint triangles in G[A]. This cannot be extended to a robust k-coloring of
G, because every v € B has at least two neighbors in each selected triangle in A,
while only one incident edge can be deleted from wv.

If t = 3k — 1, where k > 2, then a robust k-coloring on A has k — 1 classes
of size 3 (omitted triangles) and one class of size 2, say omitting the edge zy by
selecting f(z) = xy. As in the previous case, the triangle classes do not admit
any extension with vertices from B. The 2-element class {x,y} can be extended
with the non-neighbor of x, with the non-neighbor of y, and with one further
vertex v € B by defining f(v) = xv and f(y) = yv. But there are at least two
more vertices in B, hence a further color will necessarily be used. [
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Proof of Theorem 2. (i) Let G = (V, E) be a chordal graph with x(G) =
w(G) = k > 2. Consider a proper vertex k-coloring of G, with color classes
Vi,...,Vi. Since G is chordal, the union of any two color classes induces a forest
in G. Thus, there exists a 1-selection f such that in the 1-removal G all the sets
ViuVs, VU Vy, ..., Vi_1 UV, are independent. Hence the chromatic number has
been decreased by |k/2], as needed.

(ii) The assertion is trivial for k = 2 as shown by K>, and for k = 3 we can
take e.g. K4 — e, one edge deleted from the complete graph of order 4, which is
an interval graph with x = 3 and w; = 2 because |E(K4 —e)| >4 = |V (K4 —€)].

Let R{"*" = Ky and R{% = K, — e. Define Gy = R{**" and G3 = R$%. For
k =2t > 2, we define G}, = R{**" and for k = 2t + 1 > 3 we define G = Ry as
the graph obtained by taking three vertex-disjoint copies of R{US" (R994) together

with two universal vertices. Formally this means
R{"" =3R{"" & K2,  R{™ =3R{" & Ky

where @ is the complete join operation. As R{"*" and R?dd are interval graphs,
and disjoint union of such graphs retains the w, x and the structure of an interval
graph, while adding a new universal vertex increases w and x by one, but keeps
the property of being an interval graph, we obtain by induction that R{"“" and
R9% are interval graphs with w(R§"") = k = 2t and w(RY¥?) = k = 2t + 1. We
need to prove that wy(R{V*") > t and wi(R$?) >t + 1 hold. As the proofs are
almost identical, we only consider the case of kK = 2t + 1 and omit the superscript
odd mentioned in R°%,

We set Vi = V(Ry) and V; = {z4,y:}, the latter being the set of the two
universal vertices in R;. Consider an arbitrary 1-selection f in R;. This f defines
only two edges in f(V;), hence there is a copy of R;_; toward which no edge is
selected for x; and y;. Let Vi1 = {x4—1,y—1} denote the set of the two universal
vertices in this copy of R;—1. Inside this R;_; subgraph, there is a copy of R;_o
toward which no edge is selected for x;—1 and y;—1. And so on, finally we obtain ¢
sets V1, Va, ..., Vi such that V; = {z;,y;} for all 2 <i <t and the set V1U---UV}
induces a subgraph, say H, in R; which is isomorphic to Kot yo — e. Further, for
every ¢ with 2 < i < ¢, the selected edges f(x;) and f(y;) are either contained
in ]"(UézZ Vj) or do not belong to E(H). The proof will be done if we show
w(H f) >t+4 1.

Consider the graph F' with
V(F)=ViuU---UV; and E(F)=f(Viu---UV)NEH).

Choose three distinct vertices x1,y1, 21 € V4 such that
® T1Y1 ¢ E(F)a and
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o z121 # f(21).
Such z1,¥y1, 21 exist because f can select at most four of the five edges induced
by V1.
We let F’ be the induced subgraph of F' obtained by the deletion of the vertex
in V1 \ {z1,y1,21}. The following procedure implies o(F") >t + 1.

e We put VO = V(F’) and I° = (). As long as the set V7 is not empty, select
a vertex v from V7 of degree 0 or 1 in F[V/], add v to I/ to obtain I'*! and
delete v from V7 together with its neighbor if it has one to obtain VJT!. It
is easy to see that a vertex v of degree 0 or 1 always exists in V,,, N V7 where
m is the minimum 7 for which V; N V7 # (.

The selected vertices obviously form an independent set in F’, hence they induce
a complete graph in Hy. F’ has 2t 4 1 vertices, and in each step, we delete at
most two vertices, therefore at least ¢ + 1 vertices are selected at the end. Vertex
x1 can be selected first, and there is a feasible choice for the next selection until
the entire F’ is eliminated. |

We finish this section by proving Theorem 3. A unit interval graph is a graph
of which the vertices vy, vs, ..., v, are labelled with reals rq,7s,...,r, such that
v; is joined to vj if and only |r; — r;| < 1. The p'"' power GP of graph G has the
same vertex set as (G, and two vertices are connected by an edge if and only if
their distance in G is at most p.

We shall apply the following result proved first in [3]. Later developments
and further references are reported in the Introduction of [6].

Theorem 10 (Fine, Harrop [3]). An n-vertex graph G is a unit interval graph
if and only if there exist n’ > n and p > 1 such that G is an induced subgraph of
P?.

n

As a matter of fact, the exponent p can be chosen to be w(G) — 1, which is
the same as x(G) — 1.

Proof of Theorem 3. The lower bound follows from Proposition 9. For the
upper bound assume that G C H = P?, where p = x(G) — 1. If p =1, then G is
a linear forest and x1(G) = 1. Let x(G) =p+1 =3k —r > 3 with r € {0, 1,2},
and assume without loss of generality that n’ = 3t, P being the path vivs - - - v3;.
Then each triplet S; = {v3;_2,v3;—-1,v3;} (1 < i < t) induces a K3 in H, whose
edges can be taken as a l-selection f. This decomposes Hy into the 3-element
independent sets Si,...,S;. Moreover, if |i — j| > k, then there is no edge
between S; and S;. Consequently, the sets UiEr(mod k1) S; are independent for
each r = 0,1,...,k, so that x1(G) < k + 1 holds. Since k < %(X(G) + 2), the
theorem follows. [
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3. COMPLETE MULTIPARTITE GRAPHS

In this section, we prove Theorem 4 and Theorem 5. Before the proofs of these
results let us mention some of their consequences. Recall that we assume nq <

- < ny; when we use the notation Ky, . n,.

Corollary 11. Ifn; > t, then x1(Kp, .. n,) =t.

Corollary 12. Ifn; <t, let j denote the largest integer such that ni+---+n; <
t—3j. Then x1(Kn,,..n,) <t —J.

As shown, for instance, by the complete graph K, (where it is known that
X1(Kn) < § +2), the upper bound ¢ — j is far from being tight.

Before the proofs of Theorems 4 and 5 we observe that in a complete multi-
partite graph three types of independent sets (and their subsets) can be created
by the removal of a 1-selection. These are formed from

(a) three vertices v;, , v;,, Vi, from three distinct classes V;,, Vi, , Vi,, hence deleting
the edges of a Cs;

" /

(b) four vertices v ivs Uiy Vigs U 22 " from two distinct classes Vj,, Vi,, hence deleting

the edges of a Cy;
(c) one vertex v;, from vertex class V;, together with another class V;,, hence
deleting the edges of a star.

Proof of Theorem 4. Let us denote by f(p,q) the value of x; under the
assumptions of the theorem. It is obvious that f(p,q) = {M—‘ is indeed
valid if p+ ¢ < 2, and also if p = 3 and ¢ = 0. For the remaining cases, we apply
induction on the number of vertices. In the next cases, we check how the selection
of an independent set S of type (a), (b), or (c) modifies f(p,q) depending on the
sizes of vertex classes met by S. Assuming that f correctly expresses the value
of x1 for all combinations of p', ¢’ with p’ + 2¢' < p+ 2q (as we have p sets of size
1 and g sets of size 2), we obtain the following recursions.

(a.1) (1,1,1) — 1+ f(p—3,9);
(a.2) (1,1,2) — 14+ f(p—1,q—1);
(a.3) (1,2,2) — 1+ f(p+ 1,9 —2);
(a.4) (2,2,2) — 1+ f(p+3,9—3);
(b.1) (2,2) — 1+ f(p,q—2);
(c.1) (1,1) — 1+ f(p—2,9);

(c2) (1,2) — 1+ f(p—1,q—1);
(c3) (2,2) — 1+ f(p+1,q—2).
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From these formulas the following ones are relevant

In this list (a.3), (c.3), and (c.1) do not appear because they are superseded by
(b.1) and (a.1), respectively, which are also their alternatives structurally. Note
further that

and the reduction (c.3) or (a.1) can always be applied, hence f(p,q) is a general
upper bound on x;. But it is also a lower bound because, in the other two cases,
we have

flp+3,¢=3)+1>flp—1,q-1)+12> f(p,q).

This can be verified by comparing the numerators, namely
(P+3)+3(g=3)/21 =(p-1)+4+[3(¢—-1)/2] =3>(p—1) +[3(¢ - 1)/2],

and
(=1 +13(g—-1)/21+3=p+[(Bq+1)/2] > p+ [3q/2]. m

Before proving Theorem 5, let us state results from [5] on bipartite and
complete tripartite graphs.

Theorem 13. (i) [5, Proposition 2.6.] The complete tripartite graph K, s+ with
1 <r<s<tandt>2 satisfies x1(K,st) = 2 if and only if r < 2; otherwise
Xl(Kr,s,t) = X(Kr,s,t) =3.

(i1) [5] A bipartite graph F has x1(F) = 2 (i.e., x1(F) = x(F)) if and only if it
contains a component with more edges than vertices.

Proof of Theorem 5. The assertion is obvious for ¢t = 2, and its validity is
easily derived from Theorem 13 for t = 3. Assuming ¢t > 4, let m = x1(Kp,,...n,)
and consider a partition (X1, ..., X,,) of the vertex set V.=V, U---UV; into the
minimum number of subsets X; that all become independent after the removal
of a suitably chosen 1-selection. The statement of the theorem is X, = {v1} UV,
for a v; € V;. If this is not the case, then we modify (Xi,...,X,,) to another
partition (X7,..., X/ ) where X, = {v1} UV, will hold.
There can be five types of X; in the partition.

(a) X; CVjforsomel<j<t

(b) | XsnVj=|Xsn V| =|X;NnV)| =1forsomel<j<k<l<t
(c) | XinVj| =|X;NVi| =2 for some 1 <j <k <t;

(d)

d) [ X;NVj|=1and (X;\V;) CVj for some 1 <j < k<t
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() (Xi\ Vi) CVjand | X;N Vg =1forsomel<j<k<t

There are several possible immediate simplifications in these types. If (X;\
Vj) # Vi in (d), we can extend X; to contain the entire set Vj and omit the
vertices of Vi, \ X; from the other sets X/ that meet V. A similar step applies
to (e), and also to (a) that yields then X] = Vj. In fact, option (e) can be
eliminated because (d) removes V}, while (e) removes V;—plus one element from
each—and we have |V;| < |V, hence the optimum with (d) is at least as good
as the optimum with (e). In the sequel, we analyze further ways of simplifying a
partition.

(1) Assume first that X,, = V; that is of type (a). If j # ¢, we modify X,
to V4, and replace |VJ| vertices in the sets X; meeting V; with the vertices of V;
in a way that their sizes remain unchanged. After that, a vertex v; € V4 can be
added to the modified X, and the proof is done.

(2) Assume next that X,, NV; = {v;} and X,,, \ {v;} =V} (that is, type (d)
occurs). If k # t, we modify X, to (X, \ Vi) U Vi(= {v;} UV}), and replace |Vj]
vertices in the sets X; meeting V; with the vertices of Vj, as in case (1). This
finishes the proof if |Vj| = 1, because in that case V; can play the role of V.
Hence suppose that |V;| > 2 holds.

(2.1) If an Xy of type (b) or (d) exists that contains a single vertex v; from
Vi, we switch the positions of v1 and v;; then X, is successfully modified to
X, ={v1} UV, and the proof is done.

(2.2) Otherwise, all X;s meeting V; are of type (c). Say, one of them is
X; = {v1,v],v;, v}, where vy, v} € Vi and v;,v) € Vi. All the following subcases
will lead to vertex partitions containing a class {v;} UV} with v; € V.

(2.2.1) If there is a further v} € Vj and X = {v}} UV}, of type (d), we replace
Xom, Xiy and Xy with {v1} U V4, {vs, 05, 05,05}, and {v]} U Vi, respectively.

(2.2.2) If a v} € Vj is covered with X = {v}, v, v} of type (b), we replace
Xom, Xi, and Xy with {v1} U Vi, {vs, v}, 05,05}, and {v], vg, v}, respectively.

(2.2.3) If Vj meets an X = {v}, v}, v, v} of type (c), we replace X, Xj,
and X with {v1} UV}, {v;, v}, vk, v}, }, and {v] } UV}, respectively. This completes
the proof in case (2).

From now on we can assume that the entire V' is partitioned into sets of types
(b) and (c) only.

(3) If some V;; meets more than one set of type (c), we can reduce the situation
to case (1). Indeed, say.Xi = {v;, v}, vk, vy} and Xy = {v7, v, v, v7}. Then we
can replace these sets with X/ = V; and X/, = {vg, v}, v, 1) }.

(4) If V; meets a set X; = {vj, vy, v¢} of type (b) and a set Xy = {vy, v}, vg, vi }
of type (c), we can replace them with X/ = {v;} UV, of type (b) and X =
{v.} UV}, hence reducing to case (2.2.1).
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(5) If V; only meets sets of type (b), we take three of those sets say X,,—2,
Xm—1, Xm. Then we set X! =V, and split (X,,—2 U X1 U Xpp,) \ V into two
vertex triplets. This reduces case (5) to case (1) and completes the proof of the
theorem. [

Corollary 14. The graph invariant x1 is computable in polynomial time in the
class of complete multipartite graphs.

4. KNESER GRAPHS

In this section, we prove Theorem 6 and Theorem 7. Before presenting our results,
we quote two fundamental theorems from extremal set theory that will serve as
tools in our proofs.

Theorem 15 (Erdés, Ko, Rado [2]). For any integer k > 2 and any n > 2k, we
have a(KG(n,k)) = (Zj)

Theorem 16 (Hilton, Milner [4]). For anyn > 2k+1, if F C ([z}) is intersecting
with Nper F =0, then |F| < (77) — ("5 + 1.

Proof of Theorem 6. Let F be a 1-independent family of sets in V(K G(n, k)),
where K G(n, k) denotes the Kneser graph. Recall that in KG(n, k), the vertices
correspond to all k-subsets of [n], and two vertices are adjacent if and only if the
corresponding subsets are disjoint.

Let us consider a 1-independent family F. Note that KG(n,k)[F] is Kj 3-
free. This is true by the fact that the graph K>3 has 5 vertices and 6 edges,
and by removing one edge per vertex, it is impossible to make the graph inde-
pendent. However, since KG(n, k)[F] must already be an independent set after
such deletions, this ensures that F cannot have certain configurations that induce

Kg,g.

Step 1. Degree Constraints in F.

First, suppose there exists an element = € [n] such that at most one set
F € F satisfies © ¢ F'. In this case, the size of F is bounded by

n—1
F| < 1
7= () +1
since all sets except possibly one must contain .
Now, assume that for every x € [n], there exist at least two sets F,,G, € F
such that ¢ F, and = ¢ G,. Under this assumption, consider the degree of z

in F, denoted by
dr(z) :=|{F € F:x € F}|.
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Note that all but two sets containing x must intersect F, U G, using the
previously mentioned K3 3-freeness. This yields the bound

dr(z) < (Z:i) - <”‘sz1_1> 2,

For k > 3, we can use the following inequality for this upper bound

dr(z) < 2k <Z B ;) .

Step 2. Existence of a large intersecting subfamily.

We claim that F must contain an intersecting subfamily of size at least i\]—" |
This can be established as follows.

1. Since F is 1-independent, the degree sum in KG(n, k)[F] satisfies

3 dr(x) < 217,
]

z€n

2. Remove sets from F iteratively while ensuring that the maximum degree of
any set in the remaining subfamily is at most 1. Specifically, remove a maximum-
degree set at each step. Every removal decreases the degree sum by at least 4
because each removed set has degree at least 2, and its removal affects at least
two other sets.

3. This process stops when all sets in the remaining subfamily, denoted by
F', have degree at most 1. At this stage, at least half of the sets from F remain
(as we decreased the sum of the degrees bf 4 at each step), so

1
712 517

4. Within F’, further select a subset such that no two sets are adjacent (i.e.,
no two sets are disjoint). This forms an intersecting family, F”, where

1 1
F'' > =|F'| > =|F|.
7| > SIF| > 517
Let F* be a maximum-size intersecting subfamily of F. To complete the

proof, we distinguish the following cases.

Case 1. (\per« F' = 0. If the intersection of all sets in F* is empty, then by
Theorem 16, we have

| F| < 4]F7].



1152 G. BAcsO, Cs. BuiTAs, B. PATKOS, Zs. TuzA AND M. VIZER

From earlier estimates, we know that
n—2
F <k .
#1=i(;5)

—9
7| <4k<Z_2> +4.

Thus

Now, compare this with (Zj) + 1. For n > 4k?, we observe that

n—2 n—1
(1) e (27

Hence, the inequality holds.

Case 2. (pep- F # 0 and k > 3. If the intersection of all sets in F* is
non-empty, then the size of F* is bounded above by the maximum degree of F,
which was shown earlier to satisfy

-2
7| < 2k<2_ 2) (k > 3).

Thus

n—2
< A4|F*| < 8k .
Fl<ar < s} 2))

Now, compare this with (Zj) For n > 8k?, we observe that

()= ()

Case 3. k= 2. For k = 2, recall from the initial analysis that
n—1 n—2k—1
< — = 0.
df(f)_(k_1> < k1 >+2 6

IF| < 4|F*| < 24.

Thus

Finally, compare this with (Zj) For n > 8- 22 = 32, we have

n—1
< .
24_<k_1)

In all cases, the upper bounds on |F| hold, completing the proof. [
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Remark 1. We note that the threshold ng(k) mentioned in Theorem 6 is at least
3k + 1.

To get his statement we prove that oy (KG(3k, k)) > (Skk__ll) +2 holds. Indeed,
F:={F ¢ ([3]5}) :1 e FYU{[k+1,2k],[2k + 1,2k]} is 1-independent, as all sets
in {F € ([3:}) : 1 € F} but [k] intersect at least one of [k + 1,2k], [2k + 1, 3k],
and so KG(3k, k)[F] is a triangle with pendant edges from two vertices of the
triangle.

Furthermore, if n = 2k+m with 1 <m < k and f(m) denotes the maximum
size of an intersecting family G C ([2k+;”_1]) with |GUG’| > k+mforall G,G’ € G,
then a1 (KG(2k + m,k)) > (*/™71) + f(m). Indeed, F = {F e (B&/m) .
2k+m € F}UG is 1-independent if G is as above. As {F € ([%Zm}) :2k+m € F}
and G are intersecting, KG(2k +m, k)[F] is bipartite and for any G, G’ € G there
does not exist any k-subset of [2k 4+ m] that is disjoint from both G, G’ and so
KG(3k,k)[F] is a star forest.

Proof of Theorem 7. For the upper bound, observe that if for some integer
¢ we have n — ¢ > () — (2:), then x1(KG(n,k)) < n —c+ 1 holds. Indeed, if
we enumerate ([;}) \ ([2:]) as G1,Go,...,G with h < n — ¢, then the families
G ={G e ([Z]) :maxjeqj =n+1—i} U{G;} are 1-independent as they induce
a star in KG(n, k) and they cover the vertices ([Z]) \ ([2:]). So adding ([2:}) to
the G;s, we obtain a partition of ([Z]) into n — ¢ + 1 1-independent families. As
k is fixed, we have (j) — (2k,k) = O(c¥), and so the largest value of ¢ for which
n—c> (z) — (2:) holds is @(nl/k). This finishes the proof of the upper bound.

To prove the lower bound, we need the following definition. We say that a
family F of sets is star-like with center x if x is contained in all but at most one set
F of F. (So all G;s in the previous paragraph are star-like.) Suppose that a robust
coloring of K G(n, k) contains a star-like and b non-star-like color classes. Observe
that if F is star-like with center x, then we can add any set F' containing z to still
have a star-like and therefore 1-independent family. Therefore, if x1,z9,..., 24
are the centers of the star-like color classes, then we can assume that all non-
star-like color classes F are subfamilies of (["]\{:”1’?’“'@“}).

By Theorem 6, all non-star-like color classes have size at most 8k(";f;2)
Therefore, we must have

n—a—2 n—a
. > .
S I

If a >n—2-k!'-n'/% then there is nothing to prove. Otherwise, a < 5(") (as
l(nfa) becomes much larger than n), and thus we must have

2\ k

16k (053 T 32k? (n—a)’,
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if n is large enough compared to k£ and . (We used also the (n —a)(n —a—1) >
(n — a)?/2 inequality holds, if n — a > 2.) Therefore, the number a + b of
color classes is at least a + ﬁ(n — a)?. This expression takes its minimum at
a =n — 16k3 with value n — 8k3 > n — nl/k, [}

CONCLUDING REMARKS

In this article, we introduced some s-robust parameters of graphs for any non-
negative integer s. However, our research primarily focused on the s = 1 case for
certain specific graph classes. A natural progression of this investigation would
be to extend the results to larger values of s and other graph classes.
Additionally, we present two problems related to the s = 1 case.

Problem 1. Charaterize those graph classes, where parameter y; is around §.

Problem 2. Bound x; with other 1-robust parameters.
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