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Abstract

A 1-selection f of a graph G is a partial function f : V (G) → E(G) such
that f(v) is incident to v for every vertex v, where f is defined. The 1-
removed Gf is the graph (V (G), E(G)\f [V (G)]). The (1-)robust chromatic
number χ1(G) is the minimum of χ(Gf ) over all 1-selections f of G.

We determine the robust chromatic number of complete multipartite
graphs and Kneser graphs and prove tight lower and upper bounds on the
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robust chromatic number of chordal graphs and some of their extensively
studied subclasses, with respect to their ordinary chromatic number.

Keywords: graph coloring, robust coloring.
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1. Introduction

Graph colorings and independent sets are central notions in graph theory. Various
versions of graph colorings have been studied in the past decades. The focus of
this paper is on the following recent variant.

Definition 1. For every nonnegative integer s, an s-selection on G = (V,E)
is an assignment f : V → 2E such that f(v) ⊆ E(v) and |f(v)| ≤ s, where
E(v) denotes the set of edges incident with v. The graph Gf with vertex set
V (Gf ) = V (G) and edge set

E(Gf ) := E(G) \
⋃

v∈V (G)

f(v)

is termed an s-removed subgraph of G. Then

• the s-robust chromatic number of G is χs(G) = minf χ(Gf ),

• the s-robust independence number of G is αs(G) = maxf α(Gf ),

• the s-robust clique number of G is ωs(G) = minf ω(Gf ),

where min and max are taken over all s-selections of G.

Observe that the ordinary chromatic, independence, and clique numbers of
G are χ0(G), α0(G), and ω0(G), respectively. The notion of 1-robust chromatic
number was introduced in [5] as a tool to investigate specific Turán-type prob-
lems. The systematic study of 1-robust parameters was initiated in [1]. In this
paper, we still concentrate on the s = 1 case and say robust instead of 1-robust.
Analogously, a coloring c of V (G) is robust if there exists a 1-selection f such
that c is proper on Gf , and a subset U ⊂ V (G) is robust independent if there
exists a 1-selection f such that U is independent in Gf .

We now turn to the graph classes that our paper addresses. A graph is
chordal if it does not contain any induced cycles longer than 3. Two famous
subclasses (incomparable to each other) are the classes of interval graphs and split
graphs, the latter includes the proper subclass of threshold graphs (see definition
in Section 2). Here we establish tight inequalities for these graph classes.
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The next theorem shows that the general lower bound χ1(G) ≥
⌈

χ(G)
3

⌉

, which

is valid for all graphs [1], is actually tight for an infinite subclass of threshold
graphs, and a slightly weaker upper bound is valid for the more general class of
split graphs. We say that G is ω-unique if it contains only one clique of order
ω(G).

Theorem 1. For every threshold graph G,

χ1(G) =

{

χ(G)
3 + 1, if χ(G) ≡ 0 (mod 3) and G is not ω-unique,

⌈

χ(G)
3

⌉

, otherwise.

For split graphs, the upper bound χ1(G) ≤
⌈

χ(G)−1
3

⌉

+ 1 is valid and tight,

except for bipartite G. In particular, if G is a split graph with χ(G) ≡ 1 (mod 3)

then χ1(G) = χ(G)+2
3 .

It is not true for the more general class of chordal graphs that χ(G)/3 is an
asymptotically tight upper bound. Instead, the following holds.

Theorem 2. (i) If G is a chordal graph, then

ω1(G) ≤ χ1(G) ≤

⌈

χ(G)

2

⌉

.

(ii) For every k ≥ 2 there exists an interval graph Gk such that ω(Gk) = χ(Gk) =

k and ω1(Gk) = χ1(Gk) =
⌈

χ(Gk)
2

⌉

=
⌈

k
2

⌉

.

On the other hand, a further restriction on interval graphs drops χ1 down
near χ/3.

Theorem 3. There exists a constant c such that for every unit interval graph G
we have

χ(G)

3
≤ χ1(G) ≤

χ(G)

3
+ c.

In Section 3 we solve the problem of determining χ1 for complete multipartite
graphs Kn1,...,nt

. Throughout, we denote the number of vertex classes by t and
write ni for the size of class Vi for all 1 ≤ i ≤ t. It will be assumed that the classes
are in increasing order of their size, i.e., n1 ≤ n2 ≤ · · · ≤ nt. Then χ1(Kn1,...,nt

)
can be computed on the basis of the following two results, which complement
each other.

Theorem 4. If nt ≤ 2, assume that n1 = · · · = np = 1 and np+1 = · · · = np+q =
2, where p+ q = t. Then

χ1(Kn1,...,nt
) =

⌈

p+ ⌈3q/2⌉

3

⌉

.



1142 G. Bacsó, Cs. Bujtás, B. Patkós, Zs. Tuza and M. Vizer

Theorem 5. If nt ≥ 3, then an optimal 1-selection for determining χ1 is obtained

by enlarging Vt to an independent set with a vertex of V1. That is,

χ1(Kn1,...,nt
) = 1 + χ1(Kn1−1,...,nt−1

).

In particular, if n1 = 1 and nt ≥ 3, then

χ1(Kn1,...,nt
) = 1 + χ1(Kn2,...,nt−1

).

In Section 4 we analyze the behavior of α1 and χ1 in Kneser graphs. Let
k ≥ 2 and n ≥ 2k be integers. The Kneser graph KG(n, k) has

([n]
k

)

= {S ⊆
{1, 2 . . . , n} : |S| = k} as its vertex set and two vertices are adjacent if and only if
the corresponding k-element sets are disjoint. Hence the intersecting subsystems

of
([n]
k

)

(those F ⊆
([n]
k

)

for which any F, F ′ ∈ F have non-empty intersection)
are in one-to-one correspondence with the independent sets of KG(n, k).

Theorem 6. For any k ≥ 2 there exists n0(k) such that if n ≥ n0(k), then we

have

α1(KG(n, k)) =

(

n− 1

k − 1

)

+ 1,

and n0(k) can be chosen to be 8k2. Furthermore, if F is a robust independent

family in V (KG(n, k)) such that for every x ∈ [n] there exist at least two sets

Fx, Gx ∈ F with x /∈ Fx, Gx, then |F| ≤ 8k
(

n−2
k−2

)

holds.

Theorem 7. For any fixed k ≥ 2, we have

χ1(KG(n, k)) = n−Θ
(

n1/k
)

as n → ∞.

We finish the introduction by stating two propositions from [1] that we will
use in our proofs. A graph is quasi-unicyclic if each of its components contains
at most one cycle.

Proposition 8 [1]. (i) The value χ1(G) of a graph G = (V,E) is equal to the

minimum number k of vertex classes in a partition V = V1 ∪ · · · ∪ Vk such

that each Vi induces a quasi-unicyclic subgraph in G.

(ii) A graph G satisfies χ1(G) = 1 if and only if it is quasi-unicyclic. In partic-

ular, every tree has χ1(G) = 1.

Proposition 9 [1]. For every graph G we have

(1)

⌈

χ(G)

3

⌉

≤ χ1(G) ≤ χ(G).

Both the bounds are tight, for all possible values of χ(G).
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2. Classes of Chordal Graphs

In this section, we prove Theorem 1, Theorem 2, and Theorem 3. First, we need
to define the graph classes in Theorem 1.

A graph is called a split graph if its vertex set can be partitioned into two sets,
say A and B, such that A induces a complete subgraph and B is independent.

A graph G is called a threshold graph if there exists a threshold h and a
function g : V (G) → R such that x, y ∈ V (G) are adjacent if and only if g(x) +
g(y) > h. It follows from the definition (in fact, it is equivalent to the definition)
that the vertex set of a threshold graph G can be partitioned into two sets A and
B (one of them might be empty) which satisfy the following conditions.

(i) A = {a1, . . . , aq} induces a maximum clique in G and its vertices can be
ordered such that N(a1) ⊇ N(a2) ⊇ · · · ⊇ N(aq);

(ii) B = {b1, . . . , bs} is an independent set in G and its vertices can be ordered
such that N(b1) ⊇ N(b2) ⊇ · · · ⊇ N(bs);

(iii) N(aq) ∩B = ∅.

A partition (A,B) of V (G) will be called a threshold partition of G if it
satisfies (i)–(iii).

Proof of Theorem 1. We consider the threshold partition (A,B) of G with the
notation introduced in (i)–(iii). By definition, A is a clique, B is an independent
set, and there is no clique that contains both aq and a vertex from B. It follows
that ω(G) = q and, as every threshold graph is perfect, χ(G) = q. Observe that
G is ω-unique if and only if aq−1b1 is not an edge in G. Let k = ⌈q/3⌉ − 1.

Suppose first that q 6≡ 0 (mod 3), and define Vj = {a3j−2, a3j−1, a3j} vertex
classes for every j ∈ [k] (= {1, 2, . . . , k}). The remaining vertices form the class
Vk+1 = V (G) \

⋃

j∈[k] Vj . Observe that G[Vj ] is a unicyclic graph (in fact a 3-
cycle) for every j ∈ [k]. If q ≡ 1 (mod 3), then Vk+1 = {aq} ∪ B which is an
independent set. If q ≡ 2 (mod 3), then Vk+1 = {aq−1, aq} ∪ B which induces a
cycle-free graph as every edge of G[Vk+1] is incident to aq−1. By Proposition 8(i),
the partition V1, . . . , Vk+1 defines a robust coloring for G in both cases. This
implies χ1(G) ≤ k + 1 = ⌈χ(G)/3⌉ and, by the lower bound in (1), we may
conclude χ1(G) = ⌈χ(G)/3⌉.

Suppose now that q ≡ 0 (mod 3) and G is ω-unique. For this case, we define
Vk+1 = {aq−2, aq−1, aq}∪B and keep the notation Vj = {a3j−2, a3j−1, a3j} for j ∈
[k]. Property (iii) from the definition ensures N(aq) ∩ B = ∅. The ω-uniqueness
implies aq−1b1 /∈ E(G) that, together with property (ii) gives N(aq−1) ∩ B = ∅.
As B is independent, every edge in G[Vk+1] except aq−1aq is incident to aq−2 and
therefore, Vk+1 induces a unicyclic graph. Since G[Vj ] is also unicyclic for every
j ∈ [k], we infer that V1, . . . , Vk+1 gives a robust coloring for G and χ1(G) ≤
⌈χ(G)/3⌉. By inequality (1), we conclude χ1(G) = ⌈χ(G)/3⌉.
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Finally, consider the case, q ≡ 0 (mod 3) and G is not ω-unique. Observe
first that Vj = {a3j−2, a3j−1, a3j} for j ∈ [k + 1] together with Vk+2 = B de-
fines a robust coloring for G and therefore, χ1(G) ≤ k + 2. Assume now for
a contradiction that W1, . . . ,Wk+1 is a partition of V (G) concerning the color
classes of the robust coloring. As Wj induces a quasi-unicyclic graph and A is
a clique, |Wj ∩ A| ≤ 3 holds for every j ∈ [k + 1]. In fact, |A| = 3k + 3 implies
|Wj ∩ A| = 3 for every color class. Since G is not ω-unique, aq−1b1 is an edge
and b1 is adjacent to all vertices but aq from A. Therefore, if b1 is contained in
the color class Wi, then b1 is adjacent to at least two vertices from Wi ∩ A and
G[(Wi ∩ A) ∪ {b1}] is either a complete graph K4 or a K4 − e. In either case,
G[Wi] is not quasi-unicyclic, which is a contradiction. Thus, χ1(G) > k+1 holds

and we conclude χ1(G) = k + 2 = χ(G)
3 + 1.

Split graphs also enjoy the property χ(G) = ω(G). Assume that A ⊂ V (G)
induces a complete subgraph of cardinality χ(G), and B = V (G) \ A is an in-

dependent set. Then we can have a robust coloring on G[A] with
⌈

χ(G)
3

⌉

colors,

and make B monochromatic with a new color. This
⌈

χ(G)
3

⌉

+ 1 is the same as
⌈

χ(G)−1
3

⌉

+ 1 unless χ(G) = 3k + 1 for some integer k. In that case we can have

a robust k-coloring on G[A]− v for a v ∈ A, and since B ∪ {v} induces a star, all
edges from B to v can be omitted by a 1-selection.

The formula
⌈

χ(G)−1
3

⌉

+1 is not tight if G is a bipartite split graph, because

in that case G must be a double star, i.e., a particular tree, hence χ1(G) = 1.
For larger χ = t ≥ 3, however, we can obtain a tight construction by taking
|A| = |B| = t and putting Kt,t − tK2 (i.e., all the edges except a complete
matching) between A and B. For t = 3k+1, we have seen that a robust coloring
with k + 1 colors is possible, and already the set A requires that many colors.
For t = 3k and t = 3k − 1, the verified upper bound is k + 1, and we argue that
k colors do not suffice (except if 3k − 1 = 2).

If t = 3k, the only way for a robust k-coloring on A is to select the edges of
k disjoint triangles in G[A]. This cannot be extended to a robust k-coloring of
G, because every v ∈ B has at least two neighbors in each selected triangle in A,
while only one incident edge can be deleted from v.

If t = 3k − 1, where k ≥ 2, then a robust k-coloring on A has k − 1 classes
of size 3 (omitted triangles) and one class of size 2, say omitting the edge xy by
selecting f(x) = xy. As in the previous case, the triangle classes do not admit
any extension with vertices from B. The 2-element class {x, y} can be extended
with the non-neighbor of x, with the non-neighbor of y, and with one further
vertex v ∈ B by defining f(v) = xv and f(y) = yv. But there are at least two
more vertices in B, hence a further color will necessarily be used.
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Proof of Theorem 2. (i) Let G = (V,E) be a chordal graph with χ(G) =
ω(G) = k ≥ 2. Consider a proper vertex k-coloring of G, with color classes
V1, . . . , Vk. Since G is chordal, the union of any two color classes induces a forest
in G. Thus, there exists a 1-selection f such that in the 1-removal Gf all the sets
V1∪V2, V3∪V4, . . . , Vk−1∪Vk are independent. Hence the chromatic number has
been decreased by ⌊k/2⌋, as needed.

(ii) The assertion is trivial for k = 2 as shown by K2, and for k = 3 we can
take e.g. K4 − e, one edge deleted from the complete graph of order 4, which is
an interval graph with χ = 3 and ω1 = 2 because |E(K4 − e)| > 4 = |V (K4 − e)|.

Let Reven
1 = K2 and Rodd

1 = K4 − e. Define G2 = Reven
1 and G3 = Rodd

1 . For
k = 2t > 2, we define Gk = Reven

t and for k = 2t+ 1 > 3 we define Gk = Rodd
t as

the graph obtained by taking three vertex-disjoint copies of Reven
t−1 (Rodd

t−1) together
with two universal vertices. Formally this means

Reven
t = 3Reven

t−1 ⊕K2, Rodd
t = 3Rodd

t−1 ⊕K2 ,

where ⊕ is the complete join operation. As Reven
1 and Rodd

1 are interval graphs,
and disjoint union of such graphs retains the ω, χ and the structure of an interval
graph, while adding a new universal vertex increases ω and χ by one, but keeps
the property of being an interval graph, we obtain by induction that Reven

t and
Rodd

t are interval graphs with ω(Reven
t ) = k = 2t and ω(Rodd

t ) = k = 2t + 1. We
need to prove that ω1(R

even
t ) ≥ t and ω1(R

odd
t ) ≥ t + 1 hold. As the proofs are

almost identical, we only consider the case of k = 2t+1 and omit the superscript
odd mentioned in Rodd.

We set V1 = V (R1) and Vt = {xt, yt}, the latter being the set of the two
universal vertices in Rt. Consider an arbitrary 1-selection f in Rt. This f defines
only two edges in f(Vt), hence there is a copy of Rt−1 toward which no edge is
selected for xt and yt. Let Vt−1 = {xt−1, yt−1} denote the set of the two universal
vertices in this copy of Rt−1. Inside this Rt−1 subgraph, there is a copy of Rt−2

toward which no edge is selected for xt−1 and yt−1. And so on, finally we obtain t
sets V1, V2, . . . , Vt such that Vi = {xi, yi} for all 2 ≤ i ≤ t and the set V1 ∪ · · · ∪Vt

induces a subgraph, say H, in Rt which is isomorphic to K2t+2 − e. Further, for
every i with 2 ≤ i ≤ t, the selected edges f(xi) and f(yi) are either contained
in f

(
⋃t

j=i Vj

)

or do not belong to E(H). The proof will be done if we show
ω(Hf ) ≥ t+ 1.

Consider the graph F with

V (F ) = V1 ∪ · · · ∪ Vt and E(F ) = f(V1 ∪ · · · ∪ Vt) ∩ E(H).

Choose three distinct vertices x1, y1, z1 ∈ V1 such that

• x1y1 /∈ E(F ), and
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• x1z1 6= f(z1).

Such x1, y1, z1 exist because f can select at most four of the five edges induced
by V1.

We let F ′ be the induced subgraph of F obtained by the deletion of the vertex
in V1 \ {x1, y1, z1}. The following procedure implies α(F ′) ≥ t+ 1.

• We put V 0 = V (F ′) and I0 = ∅. As long as the set V j is not empty, select
a vertex v from V j of degree 0 or 1 in F [V j ], add v to Ij to obtain Ii+1 and
delete v from V j together with its neighbor if it has one to obtain V j+1. It
is easy to see that a vertex v of degree 0 or 1 always exists in Vm ∩ V j where
m is the minimum i for which Vi ∩ V j 6= ∅.

The selected vertices obviously form an independent set in F ′, hence they induce
a complete graph in Hf . F ′ has 2t + 1 vertices, and in each step, we delete at
most two vertices, therefore at least t+1 vertices are selected at the end. Vertex
x1 can be selected first, and there is a feasible choice for the next selection until
the entire F ′ is eliminated.

We finish this section by proving Theorem 3. A unit interval graph is a graph
of which the vertices v1, v2, . . . , vn are labelled with reals r1, r2, . . . , rn such that
vi is joined to vj if and only |ri − rj | < 1. The pth power Gp of graph G has the
same vertex set as G, and two vertices are connected by an edge if and only if
their distance in G is at most p.

We shall apply the following result proved first in [3]. Later developments
and further references are reported in the Introduction of [6].

Theorem 10 (Fine, Harrop [3]). An n-vertex graph G is a unit interval graph

if and only if there exist n′ ≥ n and p ≥ 1 such that G is an induced subgraph of

P p
n′.

As a matter of fact, the exponent p can be chosen to be ω(G) − 1, which is
the same as χ(G)− 1.

Proof of Theorem 3. The lower bound follows from Proposition 9. For the
upper bound assume that G ⊆ H = P p

n′ where p = χ(G)− 1. If p = 1, then G is
a linear forest and χ1(G) = 1. Let χ(G) = p+ 1 = 3k − r ≥ 3 with r ∈ {0, 1, 2},
and assume without loss of generality that n′ = 3t, P being the path v1v2 · · · v3t.
Then each triplet Si = {v3i−2, v3i−1, v3i} (1 ≤ i ≤ t) induces a K3 in H, whose
edges can be taken as a 1-selection f . This decomposes Hf into the 3-element
independent sets S1, . . . , St. Moreover, if |i − j| > k, then there is no edge
between Si and Sj . Consequently, the sets

⋃

i≡r(mod k+1) Si are independent for

each r = 0, 1, . . . , k, so that χ1(G) ≤ k + 1 holds. Since k ≤ 1
3(χ(G) + 2), the

theorem follows.
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3. Complete Multipartite Graphs

In this section, we prove Theorem 4 and Theorem 5. Before the proofs of these
results let us mention some of their consequences. Recall that we assume n1 ≤
· · · ≤ nt when we use the notation Kn1,...,nt

.

Corollary 11. If n1 ≥ t, then χ1(Kn1,...,nt
) = t.

Corollary 12. If n1 < t, let j denote the largest integer such that n1+ · · ·+nj ≤
t− j. Then χ1(Kn1,...,nt

) ≤ t− j.

As shown, for instance, by the complete graph Kn (where it is known that
χ1(Kn) ≤

n
3 + 2), the upper bound t− j is far from being tight.

Before the proofs of Theorems 4 and 5 we observe that in a complete multi-
partite graph three types of independent sets (and their subsets) can be created
by the removal of a 1-selection. These are formed from

(a) three vertices vi1 , vi2 , vi3 from three distinct classes Vi1 , Vi2 , Vi3 , hence deleting
the edges of a C3;

(b) four vertices v′i1 , v
′′
i1
, v′i2 , v

′′
i2

from two distinct classes Vi1 , Vi2 , hence deleting
the edges of a C4;

(c) one vertex vi1 from vertex class Vi1 together with another class Vi2 , hence
deleting the edges of a star.

Proof of Theorem 4. Let us denote by f(p, q) the value of χ1 under the

assumptions of the theorem. It is obvious that f(p, q) =
⌈

p+⌈3q/2⌉
3

⌉

is indeed

valid if p+ q ≤ 2, and also if p = 3 and q = 0. For the remaining cases, we apply
induction on the number of vertices. In the next cases, we check how the selection
of an independent set S of type (a), (b), or (c) modifies f(p, q) depending on the
sizes of vertex classes met by S. Assuming that f correctly expresses the value
of χ1 for all combinations of p′, q′ with p′+2q′ < p+2q (as we have p sets of size
1 and q sets of size 2), we obtain the following recursions.

(a.1) (1, 1, 1) −→ 1 + f(p− 3, q);

(a.2) (1, 1, 2) −→ 1 + f(p− 1, q − 1);

(a.3) (1, 2, 2) −→ 1 + f(p+ 1, q − 2);

(a.4) (2, 2, 2) −→ 1 + f(p+ 3, q − 3);

(b.1) (2, 2) −→ 1 + f(p, q − 2);

(c.1) (1, 1) −→ 1 + f(p− 2, q);

(c.2) (1, 2) −→ 1 + f(p− 1, q − 1);

(c.3) (2, 2) −→ 1 + f(p+ 1, q − 2).
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From these formulas the following ones are relevant

1 + f(p− 3, q) , 1 + f(p− 1, q − 1) , 1 + f(p, q − 2) , 1 + f(p+ 3, q − 3) .

In this list (a.3), (c.3), and (c.1) do not appear because they are superseded by
(b.1) and (a.1), respectively, which are also their alternatives structurally. Note
further that

f(p− 3, q) + 1 = f(p, q) = f(p, q − 2) + 1

and the reduction (c.3) or (a.1) can always be applied, hence f(p, q) is a general
upper bound on χ1. But it is also a lower bound because, in the other two cases,
we have

f(p+ 3, q − 3) + 1 ≥ f(p− 1, q − 1) + 1 ≥ f(p, q) .

This can be verified by comparing the numerators, namely

(p+ 3) + ⌈3(q − 3)/2⌉ = (p− 1) + 4 + ⌈3(q − 1)/2⌉ − 3 > (p− 1) + ⌈3(q − 1)/2⌉,

and

(p− 1) + ⌈3(q − 1)/2⌉+ 3 = p+ ⌈(3q + 1)/2⌉ ≥ p+ ⌈3q/2⌉.

Before proving Theorem 5, let us state results from [5] on bipartite and
complete tripartite graphs.

Theorem 13. (i) [5, Proposition 2.6.] The complete tripartite graph Kr,s,t with

1 ≤ r ≤ s ≤ t and t ≥ 2 satisfies χ1(Kr,s,t) = 2 if and only if r ≤ 2; otherwise
χ1(Kr,s,t) = χ(Kr,s,t) = 3.

(ii) [5] A bipartite graph F has χ1(F ) = 2 (i.e., χ1(F ) = χ(F )) if and only if it

contains a component with more edges than vertices.

Proof of Theorem 5. The assertion is obvious for t = 2, and its validity is
easily derived from Theorem 13 for t = 3. Assuming t ≥ 4, let m = χ1(Kn1,...,nt

)
and consider a partition (X1, . . . , Xm) of the vertex set V = V1 ∪ · · · ∪Vt into the
minimum number of subsets Xi that all become independent after the removal
of a suitably chosen 1-selection. The statement of the theorem is Xm = {v1}∪Vt

for a v1 ∈ V1. If this is not the case, then we modify (X1, . . . , Xm) to another
partition (X ′

1, . . . , X
′
m) where X ′

m = {v1} ∪ Vt will hold.

There can be five types of Xi in the partition.

(a) Xi ⊆ Vj for some 1 ≤ j ≤ t;

(b) |Xi ∩ Vj | = |Xi ∩ Vk| = |Xi ∩ Vl| = 1 for some 1 ≤ j < k < l ≤ t;

(c) |Xi ∩ Vj | = |Xi ∩ Vk| = 2 for some 1 ≤ j < k ≤ t;

(d) |Xi ∩ Vj | = 1 and (Xi \ Vj) ⊆ Vk for some 1 ≤ j < k ≤ t;
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(e) (Xi \ Vk) ⊆ Vj and |Xi ∩ Vk| = 1 for some 1 ≤ j < k ≤ t.

There are several possible immediate simplifications in these types. If (Xi \
Vj) 6= Vk in (d), we can extend Xi to contain the entire set Vk and omit the
vertices of Vk \Xi from the other sets Xi′ that meet Vk. A similar step applies
to (e), and also to (a) that yields then X ′

i = Vj . In fact, option (e) can be
eliminated because (d) removes Vk while (e) removes Vj—plus one element from
each—and we have |Vj | ≤ |Vk|, hence the optimum with (d) is at least as good
as the optimum with (e). In the sequel, we analyze further ways of simplifying a
partition.

(1) Assume first that Xm = Vj that is of type (a). If j 6= t, we modify Xm

to Vt, and replace |Vj | vertices in the sets Xi meeting Vt with the vertices of Vj

in a way that their sizes remain unchanged. After that, a vertex v1 ∈ V1 can be
added to the modified Xm and the proof is done.

(2) Assume next that Xm ∩ Vj = {vj} and Xm \ {vj} = Vk (that is, type (d)
occurs). If k 6= t, we modify Xm to (Xm \ Vk)∪ Vt(= {vj} ∪ Vt), and replace |Vk|
vertices in the sets Xi meeting Vt with the vertices of Vk, as in case (1). This
finishes the proof if |Vj | = 1, because in that case Vj can play the role of V1.
Hence suppose that |Vj | ≥ 2 holds.

(2.1) If an Xi′ of type (b) or (d) exists that contains a single vertex v1 from
V1, we switch the positions of v1 and vj ; then Xm is successfully modified to
X ′

m = {v1} ∪ Vt, and the proof is done.

(2.2) Otherwise, all Xis meeting V1 are of type (c). Say, one of them is
Xi = {v1, v

′
1, vi, v

′
i}, where v1, v

′
1 ∈ V1 and vi, v

′
i ∈ Vi. All the following subcases

will lead to vertex partitions containing a class {v1} ∪ Vt with v1 ∈ V1.

(2.2.1) If there is a further v′j ∈ Vj and Xj′ = {v′j}∪Vk of type (d), we replace
Xm, Xi, and Xj′ with {v1} ∪ Vt, {vi, v

′
i, vj , v

′
j}, and {v′1} ∪ Vk, respectively.

(2.2.2) If a v′j ∈ Vj is covered with Xj′ = {v′j , vk, vl} of type (b), we replace
Xm, Xi, and Xj′ with {v1} ∪ Vt, {vi, v

′
i, vj , v

′
j}, and {v′1, vk, vl}, respectively.

(2.2.3) If Vj meets an Xj′ = {v′j , v
′′
j , vk, v

′
k} of type (c), we replace Xm, Xi,

and Xj′ with {v1}∪Vt, {vi, v
′
i, vk, v

′
k}, and {v′1}∪Vj , respectively. This completes

the proof in case (2).

From now on we can assume that the entire V is partitioned into sets of types
(b) and (c) only.

(3) If some Vj meets more than one set of type (c), we can reduce the situation
to case (1). Indeed, say Xi = {vj , v

′
j , vk, v

′
k} and Xi′ = {v′′j , v

′′′
j , vl, v

′
l}. Then we

can replace these sets with X ′
i = Vj and X ′

i′ = {vk, v
′
k, vl, v

′
l}.

(4) If Vt meets a set Xi = {vj , vk, vt} of type (b) and a set Xi′ = {vl, v
′
l, vt, v

′
t}

of type (c), we can replace them with X ′
i = {vj} ∪ Vt of type (b) and X ′

i′ =
{vk} ∪ Vl, hence reducing to case (2.2.1).
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(5) If Vt only meets sets of type (b), we take three of those sets say Xm−2,
Xm−1, Xm. Then we set X ′

m = Vt, and split (Xm−2 ∪Xm−1 ∪Xm) \ Vt into two
vertex triplets. This reduces case (5) to case (1) and completes the proof of the
theorem.

Corollary 14. The graph invariant χ1 is computable in polynomial time in the

class of complete multipartite graphs.

4. Kneser Graphs

In this section, we prove Theorem 6 and Theorem 7. Before presenting our results,
we quote two fundamental theorems from extremal set theory that will serve as
tools in our proofs.

Theorem 15 (Erdős, Ko, Rado [2]). For any integer k ≥ 2 and any n ≥ 2k, we
have α(KG(n, k)) =

(

n−1
k−1

)

.

Theorem 16 (Hilton, Milner [4]). For any n ≥ 2k+1, if F ⊆
([n]
k

)

is intersecting

with
⋂

F∈F F = ∅, then |F| ≤
(

n−1
k−1

)

−
(

n−k−1
k−1

)

+ 1.

Proof of Theorem 6. Let F be a 1-independent family of sets in V (KG(n, k)),
where KG(n, k) denotes the Kneser graph. Recall that in KG(n, k), the vertices
correspond to all k-subsets of [n], and two vertices are adjacent if and only if the
corresponding subsets are disjoint.

Let us consider a 1-independent family F . Note that KG(n, k)[F ] is K2,3-
free. This is true by the fact that the graph K2,3 has 5 vertices and 6 edges,
and by removing one edge per vertex, it is impossible to make the graph inde-
pendent. However, since KG(n, k)[F ] must already be an independent set after
such deletions, this ensures that F cannot have certain configurations that induce
K2,3.

Step 1. Degree Constraints in F .

First, suppose there exists an element x ∈ [n] such that at most one set
F ∈ F satisfies x /∈ F . In this case, the size of F is bounded by

|F| ≤

(

n− 1

k − 1

)

+ 1,

since all sets except possibly one must contain x.
Now, assume that for every x ∈ [n], there exist at least two sets Fx, Gx ∈ F

such that x /∈ Fx and x /∈ Gx. Under this assumption, consider the degree of x
in F , denoted by

dF (x) := |{F ∈ F : x ∈ F}|.
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Note that all but two sets containing x must intersect Fx ∪ Gx using the
previously mentioned K2,3-freeness. This yields the bound

dF (x) ≤

(

n− 1

k − 1

)

−

(

n− 2k − 1

k − 1

)

+ 2.

For k ≥ 3, we can use the following inequality for this upper bound

dF (x) ≤ 2k

(

n− 2

k − 2

)

.

Step 2. Existence of a large intersecting subfamily.

We claim that F must contain an intersecting subfamily of size at least 1
4 |F|.

This can be established as follows.

1. Since F is 1-independent, the degree sum in KG(n, k)[F ] satisfies

∑

x∈[n]

dF (x) ≤ 2|F|.

2. Remove sets from F iteratively while ensuring that the maximum degree of
any set in the remaining subfamily is at most 1. Specifically, remove a maximum-
degree set at each step. Every removal decreases the degree sum by at least 4
because each removed set has degree at least 2, and its removal affects at least
two other sets.

3. This process stops when all sets in the remaining subfamily, denoted by
F ′, have degree at most 1. At this stage, at least half of the sets from F remain
(as we decreased the sum of the degrees bf 4 at each step), so

|F ′| ≥
1

2
|F|.

4. Within F ′, further select a subset such that no two sets are adjacent (i.e.,
no two sets are disjoint). This forms an intersecting family, F ′′, where

|F ′′| ≥
1

2
|F ′| ≥

1

4
|F|.

Let F∗ be a maximum-size intersecting subfamily of F . To complete the
proof, we distinguish the following cases.

Case 1.
⋂

F∈F∗ F = ∅. If the intersection of all sets in F∗ is empty, then by
Theorem 16, we have

|F| ≤ 4|F∗|.
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From earlier estimates, we know that

|F∗| ≤ k

(

n− 2

k − 2

)

.

Thus

|F| ≤ 4k

(

n− 2

k − 2

)

+ 4.

Now, compare this with
(

n−1
k−1

)

+ 1. For n ≥ 4k2, we observe that

4k

(

n− 2

k − 2

)

+ 4 <

(

n− 1

k − 1

)

+ 1.

Hence, the inequality holds.

Case 2.
⋂

F∈F∗ F 6= ∅ and k ≥ 3. If the intersection of all sets in F∗ is
non-empty, then the size of F∗ is bounded above by the maximum degree of F ,
which was shown earlier to satisfy

|F∗| ≤ 2k

(

n− 2

k − 2

)

(k ≥ 3).

Thus

|F| ≤ 4|F∗| ≤ 8k

(

n− 2

k − 2

)

.

Now, compare this with
(

n−1
k−1

)

. For n ≥ 8k2, we observe that

8k

(

n− 2

k − 2

)

≤

(

n− 1

k − 1

)

.

Case 3. k = 2. For k = 2, recall from the initial analysis that

dF (x) ≤

(

n− 1

k − 1

)

−

(

n− 2k − 1

k − 1

)

+ 2 = 6.

Thus

|F| ≤ 4|F∗| ≤ 24.

Finally, compare this with
(

n−1
k−1

)

. For n ≥ 8 · 22 = 32, we have

24 ≤

(

n− 1

k − 1

)

.

In all cases, the upper bounds on |F| hold, completing the proof.
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Remark 1. We note that the threshold n0(k) mentioned in Theorem 6 is at least
3k + 1.

To get his statement we prove that α1(KG(3k, k)) ≥
(

3k−1
k−1

)

+2 holds. Indeed,

F := {F ∈
([3k]

k

)

: 1 ∈ F} ∪ {[k + 1, 2k], [2k + 1, 2k]} is 1-independent, as all sets

in {F ∈
([3k]

k

)

: 1 ∈ F} but [k] intersect at least one of [k + 1, 2k], [2k + 1, 3k],
and so KG(3k, k)[F ] is a triangle with pendant edges from two vertices of the
triangle.

Furthermore, if n = 2k+m with 1 ≤ m < k and f(m) denotes the maximum

size of an intersecting family G ⊆
([2k+m−1]

k

)

with |G∪G′| > k+m for allG,G′ ∈ G,

then α1(KG(2k + m, k)) ≥
(

2k+m−1
k−1

)

+ f(m). Indeed, F = {F ∈
([2k+m]

k

)

:

2k+m ∈ F}∪G is 1-independent if G is as above. As {F ∈
([2k+m]

k

)

: 2k+m ∈ F}
and G are intersecting, KG(2k+m, k)[F ] is bipartite and for any G,G′ ∈ G there
does not exist any k-subset of [2k + m] that is disjoint from both G,G′ and so
KG(3k, k)[F ] is a star forest.

Proof of Theorem 7. For the upper bound, observe that if for some integer
c we have n − c ≥

(

c
k

)

−
(

2k
k

)

, then χ1(KG(n, k)) ≤ n − c + 1 holds. Indeed, if

we enumerate
([c]
k

)

\
([2k]

k

)

as G1, G2, . . . , Gh with h ≤ n − c, then the families

Gi = {G ∈
([n]
k

)

: maxj∈G j = n+ 1− i} ∪ {Gi} are 1-independent as they induce

a star in KG(n, k) and they cover the vertices
([n]
k

)

\
([2k]

k

)

. So adding
([2k]

k

)

to

the Gis, we obtain a partition of
([n]
k

)

into n − c + 1 1-independent families. As

k is fixed, we have
(

c
k

)

−
(

2k
k

)

= Θ(ck), and so the largest value of c for which

n− c ≥
(

c
k

)

−
(

2k
k

)

holds is Θ(n1/k). This finishes the proof of the upper bound.
To prove the lower bound, we need the following definition. We say that a

family F of sets is star-like with center x if x is contained in all but at most one set
F of F . (So all Gis in the previous paragraph are star-like.) Suppose that a robust
coloring ofKG(n, k) contains a star-like and b non-star-like color classes. Observe
that if F is star-like with center x, then we can add any set F containing x to still
have a star-like and therefore 1-independent family. Therefore, if x1, x2, . . . , xa
are the centers of the star-like color classes, then we can assume that all non-
star-like color classes F are subfamilies of

([n]\{x1,x2,...,xa}
k

)

.

By Theorem 6, all non-star-like color classes have size at most 8k
(

n−a−2
k−2

)

.
Therefore, we must have

b · 8k

(

n− a− 2

k − 2

)

+ a ≥

(

n− a

k

)

.

If a ≥ n− 2 · k! · n1/k, then there is nothing to prove. Otherwise, a ≤ 1
2

(

n−a
k

)

(as
1
2

(

n−a
k

)

becomes much larger than n), and thus we must have

b ≥
1

16k

(

n−a
k

)

(

n−a−2
k−2

) ≥
1

32k3
(n− a)2,
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if n is large enough compared to k and . (We used also the (n− a)(n− a− 1) ≥
(n − a)2/2 inequality holds, if n − a ≥ 2.) Therefore, the number a + b of
color classes is at least a + 1

32k3
(n − a)2. This expression takes its minimum at

a = n− 16k3 with value n− 8k3 ≥ n− n1/k.

Concluding Remarks

In this article, we introduced some s-robust parameters of graphs for any non-
negative integer s. However, our research primarily focused on the s = 1 case for
certain specific graph classes. A natural progression of this investigation would
be to extend the results to larger values of s and other graph classes.

Additionally, we present two problems related to the s = 1 case.

Problem 1. Charaterize those graph classes, where parameter χ1 is around χ
3 .

Problem 2. Bound χ1 with other 1-robust parameters.
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