DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2023): 0.5

5-year Journal Impact Factor (2023): 0.6

CiteScore (2023): 2.2

SNIP (2023): 0.681

Discussiones Mathematicae Graph Theory

Article in press


Authors:

J. Jasińska

Joanna Jasińska

Eötvös Loránd University

email: joanna.jasinska1998@gmail.com

0009-0001-4150-4139

G.O.H. Katona

Gyula O.H. Katona

MTA MKIReáltanoda u. 13-15Budapest H-1053HUNGARY

email: ohkatona@renyi.hu

0000-0002-0188-0391

Title:

The number of disjoint pairs in families of $k$-element subsets

PDF

Source:

Discussiones Mathematicae Graph Theory

Received: 2024-05-24 , Revised: 2024-11-07 , Accepted: 2024-11-07 , Available online: 2024-11-27 , https://doi.org/10.7151/dmgt.2571

Abstract:

We call a family $\mathcal{F}$ of subsets of $[n]$ intersecting if for every $A, B \in \mathcal{F}$ it holds that $A \cap B \neq \emptyset$. The famous theorem of Erdős-Ko-Rado states that the maximal size of an intersecting family of $k$-element subsets of $[n]$ is $\binom{n-1}{k-1}$, if $k \leqslant \frac{n}{2}$. In this paper, we study the number of disjoint pairs of sets in a family of size greater than this. We provide a bound on the number of disjoint pairs depending on the size of minimum vertex cover of the graph representation of the family. Moreover, we obtained a new, elementary proof for a special case of a theorem of Dan, Gas and Sudakov, which claims that the minimal number of disjoint pairs of sets in set systems of size greater than $\binom{n-1}{k-1}$ can be obtained by considering families consisting of the initial segment of lexicographical order. We prove it only for very small families of size $\binom{n-1}{k-1}+r$, where $r \leqslant \frac{1}{3k!}n^{k-1}$.

Keywords:

family of subsets, Erdős-Ko-Rado theorem, disjoint pairs

References:

  1. R. Ahlswede and G.O.H. Katona, Graphs with maximal number of adjacent pairs of edges, Acta Math. Acad. Sci. Hungar. 32 (1978) 97–120.
    https://doi.org/10.1007/BF01902206
  2. S. Das, W. Gan and B. Sudakov, The minimum number of disjoint pairs in set systems and related problems, Combinatorica 36 (2016) 623–660.
    https://doi.org/10.1007/s00493-014-3133-0
  3. P. Erdős, C. Ko and R. Rado, Intersection theorems for systems of finite sets, Q. J. Math. Oxford Ser. 2 12 (1961) 313–320.
    https://doi.org/10.1093/qmath/12.1.313
  4. A. Hilton and E.C. Milner, Some intersection theorems for systems of finite sets, Q. J. Math. Oxford Ser. 2 18 (1967) 369–384.
    https://doi.org/10.1093/qmath/18.1.369
  5. G.O.H. Katona, G.Y. Katona and Zs. Katona, Most probably intersecting families of subsets, Combin. Probab. Comput. 21 (2012) 219–227.
    https://doi.org/10.1017/S0963548311000587

Close