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Abstract

We call a family F of subsets of [n] intersecting if for every A,B ∈ F
it holds that A ∩ B ̸= ∅. The famous theorem of Erdős-Ko-Rado states
that the maximal size of an intersecting family of k-element subsets of [n] is(
n−1
k−1

)
, if k ⩽ n

2 . In this paper, we study the number of disjoint pairs of sets
in a family of size greater than this. We provide a bound on the number of
disjoint pairs depending on the size of minimum vertex cover of the graph
representation of the family. Moreover, we obtained a new, elementary proof
for a special case of a theorem of Dan, Gas and Sudakov, which claims that
the minimal number of disjoint pairs of sets in set systems of size greater
than

(
n−1
k−1

)
can be obtained by considering families consisting of the initial

segment of lexicographical order. We prove it only for very small families of
size

(
n−1
k−1

)
+ r, where r ⩽ 1

3k!n
k−1.
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1. Introduction

Let [n] = {1, 2, . . . , n} be an n-element set.
([n]
k

)
denotes the family of all k-

element subsets of [n]. A family F ⊂
([n]
k

)
is called intersecting if any two members

of F have a non-empty intersection. Let us start with the classic theorem of
Erdős, Ko and Rado.

Theorem 1.1 [3]. If 2k ≤ n and F ⊂
([n]
k

)
is intersecting, then

|F| ≤
(
n− 1

k − 1

)
.

The upper bound in this theorem is sharp: choose all k-element sets contain-
ing the element 1. We call a family trivially intersecting if the intersection of all
members of the family has a non-empty intersection. Otherwise, if this intersec-
tion is empty then the family is called non-trivially intersecting. The following
theorem determines the largest size of the non-trivially intersecting family.

Theorem 1.2 [4]. If 2k ≤ n and F ⊂
([n]
k

)
is non-trivially intersecting, then

|F| ≤
(
n− 1

k − 1

)
−
(
n− k − 1

k − 1

)
+ 1

which is smaller than
(
n−1
k−1

)
if 2k < n.

A trivial consequence of Theorem 1.1 is that if

|F| =
(
n− 1

k − 1

)
+ r(1)

for r > 0, then F contains a pair of disjoint members. Define the disjoint-pair
graph DP(F) on the vertex set F where two vertices are adjacent if and only if
the corresponding members of F are disjoint. The number of edges in DP(F)
is denoted by dp(F). This is the number of disjoint pairs in F . The above
mentioned consequence of the Erdős-Ko-Rado theorem is that if F satisfies (1)
then dp(F) ≥ 1. However this is not sharp. Take the largest intersecting family,
e.g., all the k-element sets containing the element 1 and add one more set, say
{2, 3, . . . , k + 1}. In this family there are

(
n−k−1
k−1

)
disjoint pairs. It was observed

that this is the minimum.

Theorem 1.3 [5]. If F satisfies (1) with r = 1, then

dp(F) ≥
(
n− k − 1

k − 1

)
.



The Number of Disjoint Pairs in Families of k-Element Subsets 3

For arbitrary r in (1) we need to introduce an ordering in
([n]
k

)
to be able

to formulate the relevant statements. Take the characteristic vectors of the k-
element sets and order them lexicographically. In other words, order them by
their binary values. Then the first set will be {n− k + 1, . . . , n}. Let Ln,k(t) be
the family of initial t sets of the lexicographical order while L̄n,k(t) the family
of the last t sets. Ahlswede and Katona [1] solved the case k = 2 showing that
dp(F) is minimized either for Ln,2(|F|) or for L̄n,2(|F|).

A major step toward the full solution for general k was made by Das, Gan and
Sudakov who proved that dp(F) is minimized for Ln,k(|F|) if n is large enough.
They gave an explicit lower bound for n ensuring their result.

Theorem 1.4 [2]. Suppose that n > 108k2ℓ(k + ℓ) and |F| = t ≤
(
n
k

)
−
(
n−ℓ
k

)
.

Then dp(F) is minimized for Ln,k(t).

The main purpose of the present paper is to investigate how does dp(F)
increase if certain configurations are excluded. There is an equality in Theorem
1.3 when one k-element set is added to the optimal construction for the Erdős-
Ko-Rado theorem. But then this new set is involved in all disjoint pairs. What
happens if this is excluded? Does this condition increase dp(F)? Our answer will
be positive.

But we will prove a more general statement. In general, let τ(G) be the
minimum vertex cover of the graph G, that is the smallest number of vertices
covering at least one vertex of all edges. We will determine the lower bound for
dp(F) for families of size (1) with r = 1 and satisfying the condition τ(DP(F)) ≥
s for some positive integer s. This bound will be almost a linear function of s for
small values.

In the more general case when the size of the family satisfies (1), notice that
the members of the family not covered by the vertex cover are mutually inter-
secting, therefore their number is at most

(
n−1
k−1

)
by the Erdős-Ko-Rado theorem,

the total size of the family is at most
(
n−1
k−1

)
+ τ(G). Hence we have

τ(G) ≥ r.(2)

We noticed that our method also works in the case of Theorem 1.4, but only
for relatively small t. Therefore our related theorem below is a small special case
of Theorem 1.4, but it is worth showing since its proof is much simpler.

2. Results

Theorem 2.1. For every k there exists n0 such that for all n, r, s with n > n0

and r ⩽ s ⩽ nk−1

3k! the following holds. If F ⊂
([n]
k

)
, |F| =

(
n−1
k−1

)
+ r and
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τ(DP(F)) ≥ s, then

dp(F) ≥ s

((
n− k − 1

k − 1

)
+ r − s

)
.(3)

If we take r = s = 1 we get back Theorem 1.3. However if τ(DP(F)) is 1
then

(
n−1
k−1

)
members are pairwise intersecting. By Theorem 1.2 it is clear that in

the case 2k < n this implies that the members of F form a trivially intersecting
family and one more set. Otherwise τ(DP(F)) ≥ 2. We obtained the following
corollary for “the second best value” of dp(F).

Corollary 2.2. Suppose that F ⊂
([n]
k

)
, |F| =

(
n−1
k−1

)
+ 1. Then either F is a

trivially intersecting family plus one more k-element set, or

dp(F) ≥ 2

(
n− k − 1

k − 1

)
− 2

if n is large enough.

We will see that the following theorem is a special case of Theorem 2.1.

Theorem 2.3. For every k there exists n0 such that for all n, r with n > n0 and
r ⩽ nk−1

3k! the following holds. Suppose that F ⊂
([n]
k

)
and |F| =

(
n−1
k−1

)
+ r. Then

dp(F) ≥ r

(
n− k − 1

k − 1

)
.

3. Tools

In order to prove our main results, we will state and prove some useful lemmas.
Firstly, let us define the degree of an element in a family F . For every x ∈ [n]
let F(x) be the family of sets from F that contain x. Then |F(x)| is the degree
of x in F . Define ∆ := maxx∈[n] |F(x)|.

Lemma 3.1. If F ⊂
([n]
k

)
, |F| =

(
n−1
k−1

)
+ r for r ∈ Z⩾1 then

dp
(
F
)
⩾

(
∆−

(
n− 1

k − 1

)
+

(
n− k − 1

k − 1

))((
n− 1

k − 1

)
+ r −∆

)
.(4)

Proof. Without loss of generality, we can assume that 1 is an element of the
greatest degree, i.e., ∆ = |F(1)|, and let us define

F1 = {F ∈ F | 1 ∈ F},
F0 = {F ∈ F | 1 /∈ F}.
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From the definition, it holds that F1 = F(1). Then, |F0| =
(
n−1
k−1

)
+ r − ∆.

Fix a G ∈ F0. We will calculate the number of sets from F1 having a non-
empty intersection with G. The number of all possible k-element subsets of [n]
containing 1, but not containing any element of G is

(
n−k−1
k−1

)
. Thus the total

number of all possible k-element subsets of [n] which contain 1 and have a non-
empty intersection with G is

(
n−1
k−1

)
−
(
n−k−1
k−1

)
. It follows then that

∣∣{F ∈ F1 | F ∩G ̸= ∅}
∣∣ ⩽ (n− 1

k − 1

)
−
(
n− k − 1

k − 1

)
,

∣∣{F ∈ F1 | F ∩G = ∅}
∣∣ ⩾ ∆−

(
n− 1

k − 1

)
+

(
n− k − 1

k − 1

)
.

Moreover, the number of all possible choices of G is
(
n−1
k−1

)
+ r −∆. Thus

dp(F) ⩾

(
∆−

(
n− 1

k − 1

)
+

(
n− k − 1

k − 1

))((
n− 1

k − 1

)
+ r −∆

)
.

To make use of the above lemma, let us introduce the following notation.

Definition. For fixed positive integers n, k and r define

fr(∆) =

(
∆−

(
n− 1

k − 1

)
+

(
n− k − 1

k − 1

))((
n− 1

k − 1

)
+ r −∆

)
.

For fixed n, k and r, fr(∆) is a parabola as a function of ∆. We will use it
near to its “right hand root” where it will give sharp estimates for us. However
it is very weak near the “left hand root”. This is why we need another estimate
for the small values of ∆.

Lemma 3.2.

dp(F) ⩾

(
|F|
2

)
− k(∆− 1)|F|

2
.(5)

Proof. Let us first prove the following estimate on the number ip(F) of inter-
secting pairs in F .

ip(F) ⩽
n∑

i=1

(
|F(i)|
2

)
.(6)

Fix i ∈ [n]. Every pair of sets containing i form an intersecting pair of sets,
so we have exactly

(|F(i)|
2

)
pairs of sets containing i. Some pairs of sets have
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more than one common element, so summing all
(|F(i)|

2

)
, we count certain pairs

of intersecting sets more than once. Thus (6) is proved.

Now, to prove (5), observe that

n∑
i=1

(
|F(i)|
2

)
=

n∑
i=1

|F(i)| ·
(
|F(i)| − 1

)
2

⩽
∆− 1

2
·

n∑
i=1

|F(i)|

=
k(∆− 1)|F|

2
,

where the last equality comes from the fact that adding the degrees of all elements
gives the same result as counting every set of F exactly k times.

The number of disjoint pairs can be bounded from below by subtracting the
upper bound for ip(F) from the total number of pairs of sets from F , thus

dp(F) ⩾

(
|F|
2

)
− k(∆− 1)|F|

2
,

which ends the proof of (5).

The right hand side of (5) is a linear function of ∆. Let us introduce the
following notation.

Definition. For fixed positive integers n, k and r, define

gr(∆) =

(
|F|
2

)
− k(∆− 1)|F|

2
,

where |F| =
(
n−1
k−1

)
+ r.

Lemma 3.3. Suppose that 1 ≤ r ≤ s and let

∆1(r, s) =

(
n− 1

k − 1

)
+ r − s

and

∆2(s) =

(
n− 1

k − 1

)
−
(
n− k − 1

k − 1

)
+ s.

Suppose that r = r(n) ≤ s = s(n) ⩽ c(k)nk−1 = 1
3k!n

k−1 holds for large n. Then

fr(∆1(r, s)) ≤ gr(∆2(s))

also holds for large n.



The Number of Disjoint Pairs in Families of k-Element Subsets 7

Proof. We actually have to prove((
n− k − 1

k − 1

)
+ r − s

)
s

+
k

2

((
n− 1

k − 1

)
−
(
n− k − 1

k − 1

)
+ s− 1

)((
n− 1

k − 1

)
+ r

)
≤
((n−1

k−1

)
+ r

2

)
.

Since r ≤ s, we may consider the following stronger inequality:(
n− k − 1

k − 1

)
s

+
k

2

((
n− 1

k − 1

)
−
(
n− k − 1

k − 1

)
+ s

)((
n− 1

k − 1

)
+ s

)
≤
((n−1

k−1

)
2

)
.

Take only the terms which can reach the order of magnitude of n2k−2. It is
easy to see that

(
n−1
k−1

)
−
(
n−k−1
k−1

)
= O(nk−2) and hence this term can be deleted.

Supposing that s(n) ≤ c(k)nk−1 we obtain

nk−1

(k − 1)!
c(k)nk−1 +

k

2
c(k)nk−1 nk−1

(k − 1)!
+

k

2
c2(k)n2k−2 ≤ n2k−2

2(k − 1)!2

or

c2(k) +
k + 2

k!
c(k)− 1

k!(k − 1)!
≤ 0.

Indeed c(k) = 1
3k! satisfies this inequality.

4. The Proofs of the Theorems

Proof. Without loss of generality one can suppose that the element 1 has the
maximum degree ∆. Choosing all members of F not containing 1 will be a vertex
cover of DP(F). Hence we have(

n− 1

k − 1

)
+ r ≥ ∆+ τ(DP(F)) ≥ ∆+ s.

In other words, ∆ is less than the right hand root of the quadratic function fr(∆)
by at least s:

∆ ≤
(
n− 1

k − 1

)
+ r − s.

If we substitute this maximum value of ∆ into fr(∆) then the desired right hand
side of (3) is obtained as a lower bound for dp(F ). Note that

(
n−k−1
k−1

)
> s. The
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value of fr is greater or equal to this lower bound for the arguments in the interval[(
n−1
k−1

)
−
(
n−k−1
k−1

)
+ s,

(
n−1
k−1

)
+ r − s

]
, namely it holds that

fr(x) ≥ s ·
((

n− k − 1

k − 1

)
+ r − s

)
.

When ∆ is smaller than the numbers from this interval, then Lemmas 3.2
and 3.3 help us out. Namely, from the first of those lemmas, we know that the
number of disjoint pairs can be estimated from below by gr(∆). From the second
one it follows that

fr

((
n− 1

k − 1

)
−
(
n− k − 1

k − 1

)
+ s

)
= fr

((
n− 1

k − 1

)
+ r − s

)
≤ gr

((
n− 1

k − 1

)
−
(
n− k − 1

k − 1

)
+ s

)
.

Since the linear function gr is decreasing, we deduce that the inequality

dp(F) ≥ gr(∆) ≥ gr

((
n− 1

k − 1

)
−
(
n− k − 1

k − 1

)
+ s

)
≥ fr

((
n− 1

k − 1

)
−
(
n− k − 1

k − 1

)
+ s

)
= s ·

((
n− k − 1

k − 1

)
+ r − s

)
holds for the values of ∆ smaller than

(
n−1
k−1

)
−
(
n−k−1
k−1

)
+s. The proof of Theorem

2.1 is completed.
In Theorem 2.3 there is no condition on τ(DP(F)). By (2) this is equivalent

to the assumption s = r, therefore we do not have to do anything else just to
replace s by r in Theorem 2.1 to obtain the statement of Theorem 2.3

Finally let us consider the following construction. Choose all the k-element
subsets of [n] containing the element 1 and r k-element subsets containing the
element 2 but not 1. Here DP(F) is a bipartite graph with degree

(
n−k−1
k−1

)
in the

second class. Hence we have τ(DP(F)) ≤ r
(
n−k−1
k−1

)
showing that the estimate of

Theorem 2.3 is sharp in our range.
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