DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2023): 0.5

5-year Journal Impact Factor (2023): 0.6

CiteScore (2023): 2.2

SNIP (2023): 0.681

Discussiones Mathematicae Graph Theory

Article in press


Authors:

M. Anholcer

Marcin Anholcer

Poznań University of Economics and Business

email: m.anholcer@ue.poznan.pl

0000-0001-7322-7095

A.S. Emadi
D.A. Mojdeh

Doost Ali Mojdeh

Department of MathematicsUniversity of MazandaranBabolsar P.O. Box 47416-1467IRAN

email: damojdeh@umz.ac.ir

0000-0001-9373-3390

Title:

Majority dominator colorings of graphs

PDF

Source:

Discussiones Mathematicae Graph Theory

Received: 2023-08-09 , Revised: 2024-10-27 , Accepted: 2024-10-27 , Available online: 2024-11-20 , https://doi.org/10.7151/dmgt.2570

Abstract:

Let $G$ be a simple graph of order $n$. A majority dominator coloring of a graph $G$ is proper coloring in which each vertex of the graph dominates at least half of one color class. The majority dominator chromatic number $\chi_{md}(G)$ is the minimum number of color classes in a majority dominator coloring of $G$. In this paper we study properties of the majority dominator coloring of a graph. We obtain tight upper and lower bounds in terms of chromatic number, dominator chromatic number, maximum degree, domination and independence number. We also study the majority dominator coloring number of selected families of graphs.

Keywords:

majority dominator chromatic number, majority dominator coloring, chromatic number, independence number, domination number

References:

  1. A. Abdolghafurian, S. Akbari, S. Hossein Ghorban and S. Qajar, Dominating coloring number of claw-free graphs, Electron. Notes Discrete Math. 45 (2014) 91–97.
    https://doi.org/10.1016/j.endm.2013.11.018
  2. R. Aharoni, E.C. Milner and K. Prikry, Unfriendly partitions of a graph, J. Combin. Theory Ser. B 50 (1990) 1–10.
    https://doi.org/10.1016/0095-8956(90)90092-E
  3. M. Anholcer, B. Bosek and J. Grytczuk, Majority choosability of digraphs, Electron. J. Combin. 24 (2017) #P3.57.
    https://doi.org/10.37236/6923
  4. M. Anholcer, B. Bosek and J. Grytczuk, Majority coloring of infinite digraphs, Acta Math. Univ. Comenian. (N.S.) 88(3) (2019) 371–376.
  5. S. Arumugam, J. Bagga and K.R. Chandrasekar, On dominator colorings in graphs, Proc. Indian Acad. Sci. Math. Sci. 122 (2012) 561–571.
    https://doi.org/10.1007/s12044-012-0092-5
  6. S. Askari, D.A. Mojdeh and E. Nazari, Total global dominator chromatic number of graphs, TWMS J. Appl. and Eng. Math. 12 (2022) 650–661.
  7. G. Bagan, H. Boumediene-Merouane, M. Haddad and H. Kheddouci, On some domination colorings of graphs, Discrete Appl. Math. 230 (2017) 34–50.
    https://doi.org/10.1016/j.dam.2017.06.013
  8. M. Chellali and F. Maffray, Dominator colorings in some classes of graphs, Graphs Combin. 28 (2012) 97–107.
    https://doi.org/10.1007/s00373-010-1012-z
  9. R. Gera, On the dominator colorings in bipartite graphs, in: Fourth International Conference on Information Technology (ITNG'07) (2007) 947–952.
    https://doi.org/10.1109/ITNG.2007.142
  10. R. Gera, On the dominator colorings in graphs, Graph Theory Notes N.Y. 52 (2007) 25–30.
  11. R. Gera, C. Rasmussen and S. Horton, Dominator colorings and safe clique partition, Congr. Numer. 181 (2006) 19–32.
  12. R. Hammack, W. Imrich and S. Klavžar, Handbook of Product Graphs, Second Edition (CRC Press, Boca Raton, 2011).
    https://doi.org/10.1201/b10959
  13. T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (CRC Press, Boca Raton, 1998).
    https://doi.org/10.1201/9781482246582
  14. M.A. Henning and A. Yeo, Total Domination in Graphs, Springer Monogr. Math. (Springer, New York, 2013).
    https://doi.org/10.1007/978-1-4614-6525-6
  15. K. Kavitha and N.G. David, Dominator coloring of central graphs, Int. J. Comput. Appl. 51 (2012) 11–14.
    https://doi.org/10.5120/8093-1673
  16. A.P. Kazemi, Total dominator chromatic number of a graph, Trans. Comb. 4(2) (2015) 57–68.
    https://doi.org/10.22108/toc.2015.6171
  17. S. Kreutzer, S. Oum, P. Seymour, D. van der Zypen and D.R. Wood, Majority colourings of digraphs, Electron. J. Combin 24 (2017) #P2.25.
    https://doi.org/10.37236/6410
  18. L. Lovász, On decomposition of graphs, Studia Sci. Math. Hungar. 41 (1966) 237–238.
  19. H.B. Merouane and M. Chellali, On the dominator coloring in trees, Discuss. Math. Graph Theory 32 (2012) 677–683.
    https://doi.org/10.7151/dmgt.1635
  20. D.A. Mojdeh, S. Askari and E. Nazari, Approach to the central graphs and trees via strong dominator coloring, Ars Combin. to appear.
  21. T. Ramachandran, D. Udayakumar and A. Naseer Ahmad, Dominator coloring number of some graphs, Int. J. Sci. Res. Publ. 5(10) (2018) 1–4.
    http://www.ijsrp.org/research-paper-1015.php?rp=P464625
  22. S. Shelah and E.C. Milner, Graphs with no unfriendly partitions, in: A Tribute to Paul Erdős, A.Baker, B. Bollobás and A. Hajnal (Ed(s)), (Cambridge Univ. Press, Cambridge 1990) 373–384.
    https://doi.org/10.1017/CBO9780511983917.031
  23. D.B. West, Introduction to Graph Theory, Second Edition (Prentice Hall, 2001).
  24. R.J. Wilson, Introduction to Graph Theory, Fourth Edition (Prentice Hall, 1996).

Close