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Abstract

Let G be a simple graph of order n. A majority dominator coloring of
a graph G is proper coloring in which each vertex of the graph dominates
at least half of one color class. The majority dominator chromatic number
Xmd(G) is the minimum number of color classes in a majority dominator
coloring of GG. In this paper we study properties of the majority dominator
coloring of a graph. We obtain tight upper and lower bounds in terms of
chromatic number, dominator chromatic number, maximum degree, domi-
nation and independence number. We also study the majority dominator
coloring number of selected families of graphs.
Keywords: majority dominator chromatic number, majority dominator col-
oring, chromatic number, independence number, domination number.
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1. INTRODUCTION

Let G = (V, E) be a simple graph. For any vertex v € V, the open neighborhood
of v is the set N(v) = {u € V : wv € E} and the closed neighborhood of v is
the set N[v] = N(v) U {v}. For a set S C V, the open neighborhood of S is
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N(S) = Uyeg N (v) and the closed neighborhood of S'is N[S] = N(S)US. A set
S C V is a dominating set if N[S] = V, or equivalently, every vertex in V' \ S is
adjacent to at least one vertex in S. The domination number v(G) is the minimum
cardinality of a dominating set in G. A dominating set with cardinality v(G) is
called a v(G)-set, for more information of these parameters, refer to [13, 14]. A set
I C V(G) is called an independent set if the induced subgraph G[I] has no edge.
The size of maximum independent set in G is called the independence number
and is denoted by a(G) [23]. Finally, the size of any maximum matching in G is
called the matching number and denoted by v(G).

Further in this paper we are going to consider some graph products. Let G
and H be two graphs. The strong product G X H is a graph with the vertex set
V(G) x V(H). Two vertices (g,h) and (¢’,h") are adjacent in G X H if either
g = ¢ and h is adjacent with A’/ in H, or h = b’ and g is adjacent with ¢’ in G,
or g is adjacent with ¢’ in G and h is adjacent with A’ in H (see e.g. [12, p. 36]).
The corona product G o H is in turn a graph consisting of G and |V(G)| copies
of H, where each copy H; corresponds with a different vertex v; € V(G) and all
its vertices are adjacent with v;.

A proper coloring of a graph G is an assignment of colors to its vertices, such
that no two adjacent vertices receive the same color. The chromatic number x(G)
is the minimum number of colors required for a proper coloring of G. A dominator
coloring is a proper coloring in which each vertex v of the graph dominates every
vertex of some color class, i.e., there is a color class being a subset of the closed
neighborhood of v. In particular, this can be the color class of v in the special
case when it consists only of v itself. The dominator chromatic number y4(G) is
the minimum number of color classes in a dominator coloring of G ([11]). The
dominator colorings were introduced by Gera et al. [11| and later studied by
several authors. In particular, Kavitha and David [15] found dominator chromatic
number of central graph of various graph families such as cycles, paths or wheel
graphs. They also compared these parameters with the dominator chromatic
number of the respective base graph families. Arumugam and Bagga [5] obtained
several result on graphs such that x4(G) = x(G) and x4(G) = v(G). In particular,
they proved that if 4(G) is the Mycielskian of G, then x4(G) + 1 < xq(u(GQ)) <
Xd(G) + 2. Other results on the dominator coloring in graphs can be found in the
works of Abdolghafurian et al. [1] (claw-free graphs), Bagan et al. [7]| (arbitrary
graphs, Pj-sparse graphs, Ps-free graphs, claw-free graphs, graphs with bounded
treewidth), Chellali and Maffray [8] (trees, chordal graphs, Ps-free graphs and
graphs with dominator coloring number at most 3), Gera [9, 10] (various classes
of graphs, in particular bipartite graphs), Merouane and Chellali [19] (trees),
Kazemi [16] (total version of the problem) and Ramachandran et al. [21] (e.g.
windmill graphs). Askari et al. [6] studied total global dominator coloring, where
every vertex needs not only to dominate some color class other than its own, but
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also to be not adjacent to any vertex from another color class. Mojdeh et al. [20]
in turn considered strong dominator colorings, i.e., dominator colorings with an
additional degree constraint, of central graphs and trees.

Instead of studying proper colorings, where all the neighbors of every vertex
v have color different than the color of v, one can focus on other kinds of coloring,
e.g. majority coloring, where only half of the neighbors of every vertex need to
have different color (or, which is equivalent in the case of finite graphs, at most
half of the neighbors of any vertex v can have the same color as v). It was proved
a long time ago by Lovasz that the majority coloring for any simple graph requires
at most 2 colors [18]. The problem was then considered for infinite graphs (see
e.g. [2, 22]). Recently the problem was investigated also for digraphs, where
the out-neighbors were taken under consideration instead of all the neighbors.
Also the list version was analyzed, where every vertex can have a different list of
available colors. The best known results here say that four colors are enough for
finite digraphs and five for infinite ones (see e.g. [3, 4, 17]).

Motivated by the above concepts, we decided to combine them. One could do
this in several ways, by relaxing the condition of proper coloring or the condition
of dominating the entire color class. Thus, one could require e.g. a majority
coloring where every vertex dominates some color class. In this paper, however,
we are interested in somehow opposite problem, where the coloring is supposed
to be proper, but only half of some color class is supposed to be dominated by
every vertex. Recall that v domimates u if w is v itself or a neighbor of v.

Definition 1.1. Majority dominator coloring of a graph G is a proper coloring in
which each vertex of G dominates at least half of some color class. The majority
dominator chromatic number x;,4(G) is the minimum number of color classes in
a majority dominator coloring of G.

Note that, according to the above definition, the domination condition is
satisfied also if some vertex v dominates half of its own color class. Of course,
in such case this color class can consist of at most two vertices (v and some
u & N(v)).

The structure of the paper is as follows. In the next section we present some
general results. In particular we characterize graphs G for which x,,q4(G) takes
some specific values. In Section 3 we derive the values of x,,4(G) for graphs G
from several families. We conclude the paper in the last section with some final
remarks, conjectures and open problems.

2. GENERAL RESULTS

Since every majority dominator coloring is proper by definition, and on the other
hand every dominator coloring is also a majority dominator coloring, we have that
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X(G) < xma(G) < xa(G) <n
for every graph G. Moreover, these bounds are sharp, as the example of the

complete graph K, shows. The above implies in particular, that for every graph
G we have

Xmd(G) < X(G) +7(G),
since the inequality x4(G) < x(G) + v(G) follows from [10, Theorem 3.3|.

A well-known fact (see e.g. [23, Lemma 3.1.33|) is that a set of vertices S is
an independent dominating set of G if and only if it is a maximal independent
set. This fact immediately implies that x,,4(G) < x(G) + a(G), but we can use
it to prove a stronger inequality.

Theorem 1. Let G be a connected graph. Then xmqe(G) < x(G) + {@—‘ -1

and the bound is sharp.

Proof. Let ¢: V(G) — {1,...,k}, where k = x(G), be a proper k-coloring of G
and let V; = {v € V(G) : ¢(v) = i}. Observe that there must be a proper coloring
¢ in which Vj is maximal (not necessarily maximum) independent set (otherwise
we can extend it by adding new vertices and recolor them with color k). Since V
is maximal independent, it is also a dominating set in G. In particular, we have
that |Vi| < a(G), x(GIV(G)\ Vi]) = x(G) — 1 (in fact, G[V(G) \ Vi] has a proper
coloring with colors 1,. ..,k — 1 which is a restriction of ¢) and every vertex from
V(G) \ Vi is adjacent to at least one vertex from Vj. Now, we leave two vertices
from Vj colored with k, and recolor the remaining |Vi| — 2 of them arbitrarily
with [(|Vk]| —2)/2] new colors so that each color appears at most twice. Since we
are recoloring only vertices of one color class of GG, the new coloring is a proper
coloring with k + [(|Vi| —2)/2] < x(G) + [(«(G))/2] — 1 colors. Every vertex of
Vi has itself in its own closed neighborhood. Similarly, as we already observed,
every vertex of V(G)\ Vi has a neighbor in V. Since every color class in Vi has at
most two members, the obtained coloring is a majority dominator coloring. The
sharpness of the bound can be observed e.g. for G = C,, o K1, where n > 4 is
even (i.e., G consists of an even n-cycle, with n extra pendant vertices, each of
them adjacent to another cycle vertex). In these graphs x(G) = 2, a(G) = n, and
Xmd(G) = [n/2] + 1 (see Proposition 3.1 for details and note that this property
does not hold for odd n). |

Gera, Rasmussen and Horton [11, Proposition 2.4] proved that for every con-
nected G of order n > 3, x4(G) < n+1—a(G) holds, which implies in particular
that x;md(G) < n+1— a(G). Also this inequality can be strengthened. Recall
that G denotes the complement of G, that is the graph for which V(G) = V(G)

and e € E(G) < e ¢ E(G). G[X] in turn denotes the induced subgraph of G
with vertex set X.
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Theorem 2. Let G be a connected graph of order n > 2, where I is an independent
set in G and M is a matching in G[V(G)\ I]. Then xma(G) <n—|M|—|I|+1
and the bound is sharp.

Proof. Define the coloring ¢ : V(G) — {1,...,n—|M|—|I|+1} as follows. Color
all the vertices in I with color 1, the pairs of vertices in M with distinct colors
2,...,|M|+1 and the remaining n —|I| —2| M| vertices of V(G)\ (IUV(M)) with
distinct colors from the set |M|+2,...,n—|I|—|M|+1. This coloring is a majority
dominator coloring. It is proper, since the two-element color classes in M are
independent sets in G, I is independent by definition and all the remaining color
classes are singletons. Moreover, every vertex in the graph dominates some vertex
from M (that is, half of the 2-element color class) or a vertex in V/(G)\ (IUV (M))
(that is, the entire 1-element class). Indeed, every vertex in V(G) \ I dominates
itself, while every vertex in I is adjacent to some vertex in V(G)\ . The sharpness
of the bound can be observed e.g. for G = K,, with any nonempty I, where |I| =1,
|M| =0 and xmi(G) = n. |

This immediately implies the following (recall that v(G) denotes the size of
a maximum matching in G).

Corollary 2.1. Let G be a connected graph of order n > 2, where I is a mazimum
independent set. Then xma(G) <n+1—a(G) —v(G\I).

If A(G) =n—1, then y(G) = 1 and since x(G) = x4(G) by [10, Lemma 3.4,
we get the following.

Observation 2.2. Let G be a connected graph with A(G) =n — 1. Then
Xmd(G) = x(G).
We can show that the latter holds for a wider family of graphs.

Proposition 2.3. Let G be a connected graph with A(G) > n—2. Then xmq(G) =
X(G).

Proof. Since by Observation 2.2 we can assume that there is a vertex of degree
n — 2, say v1, there is also exactly one vertex non-adjacent to vy, say ve. Consider
any proper coloring ¢ of G with x(G) colors. The class of ¢(v1) has one or two
members (in the latter case c¢(v1) = ¢(v2)). Define the coloring ¢’ (possibly equal
to ¢) as /(v2) = ¢(v1) and (v) = ¢(v) for v # vy. Obviously ¢ is proper, the
class of ¢/(v1) has exactly two members and every vertex v € V(G) \ {v1, v2} is
adjacent to v1. Thus ¢ is a majority dominator coloring. [

Let us present a result for disconnected graphs.
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Proposition 2.4. If G is a disconnected graph with components G1,Goa, ..., Gy
(k > 2), then

k
ma. G;) <
j€{1,2,.}.(.,k} de( ) de J; de

The bounds are sharp.

Proof. For every j, j € {1,2,...,k}, let ¢; : V(G;) — {C],CJ +1,..., ? =
0]1- + de(Gj) — 1} be a majority dominator coloring of the component G, j =
1,. k If the color sets of components are pairwise disjoint, we can assume that
c]1 = c 1+ 1for j=2,... k. Then obviously U§:1{Cj} is a majority dominator
colorlng of G and xpm4(G ) < Z;?:l(xmd(Gj)). To see that the bound is sharp,
consider Gj = Cg for 1 < j < k. Here we have x;nq(G;) = 2 forevery j =1,... k.
Indeed, we have x(G;) = 2 and there is exactly one proper coloring with 2 colors,
up the obvious renaming of vertices. Every color appears exactly four times in
the coloring and each vertex dominates exactly one vertex of its own color class
(itself) and exactly two vertices of the other color class. We claim that repeating
this pattern for every component G; with disjoint sets of colors is optimal (even
if not unique optimal). Indeed, given any vertex v in any of the components and
any proper coloring of it, at most 2 vertices in the closed neighborhood of v can
be colored with the same color. This means that any vertex v can dominate at
most 2 colors from one color class and so any color class can consist of at most 4
colors.

To prove the lower bound note the following. By definition, for any majority
dominator coloring ¢ of G, the restriction of ¢ to G; is a majority dominator
coloring of G, since the adjacency relations in any G are exactly the same as in
G. This implies that xma(G;) < Xma(G) for every j =1,... k.

To see that the bound is sharp, let G1 = K, for n > 2 and G; = K> for every
Jj=2,...,n. Here we have xna(G) = xmd(G1) =n > 2 = xmi(G,), 1 =2,...,n
(to see that xq(G) < n, consider coloring ¢ : V(G) — {1,...,n} in which for
J > 1, the vertices of G; are colored with 1 and j.). ]

Note that in order to prove the lower bound in the above theorem, we used
the fact that the restriction of a majority dominator coloring c of G to Gj is a
majority dominator coloring of G, because the adjacency relations are preserved.
As one can see, it is not true for arbitrary subgraphs. To see it, note that for
example Xma(C14) = 5 (see Theorem 5, Lemma 6 and Corollary 3.5 for details).
An example of the respective coloring is the one with the colors of consecutive
vertices being 1,2,1,2,1,2,5,4,3,4,3,4,3,5. On the other hand, if we add the
edges v1vg and v7v14, then we obtain a majority dominator coloring with 4 colors
by recoloring v; with color 1 and vy4 with color 4. This allows us to state the
following.
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Observation 2.5. The majority dominator colorability is not a hereditary prop-
erty, that is, it is not preserved by subgraphs in the general case.

In the remainder of this section we discuss the graphs G such that x,nq(G) < 2
or xmd(G) > n — 1. Below we use dg(v) = |N(v) NS| to denote the number of
neighbors of v being members of a set S. Let us start with graphs G, for which
Xmd(G) is close to its minimum possible value.

Observation 2.6. Let G be a graph. Then xma(G) = 1 if and only if G = K,
1<n<2.

Proof. 1f E(G) = 0, then obviously xma(G) = [%]. If E(G) # 0, then X;na(G) >
X(G) > 2. |

Note that trivially x(G) = 1 if and only if G = K, for any n > 1, while
xa(G) = 1 if and only if G = K; = K;.

Proposition 2.7. A graph G ¢ {K1, K2} satisfies Xma(G) = 2 if and only if it is
bipartite, where X andY are partition sets such that at least one of the following
holds.

() 1<[X[<[Y]<2,
(il) 1 < |X| <2< Y| and for everyy €Y, d(y) > 1,

(i) 3 < |X| < Y], and for every x € X andy € Y, d(z) > |Y|/2 and d(y) >
| X|/2, respectively.

Proof. By Observation 2.6, for every graph G from the described families we
have X;md(G) > 2. On the other hand, it is straightforward to check that in every
case the coloring assigning color 1 to the vertices of X and color 2 to the vertices
of Y is a majority dominator coloring and thus x,,q(G) < 2.

Now assume that x;,q(G) = 2. Obviously G ¢ {K;, K2} by Observation 2.6
and G is bipartite since x(G) < 2. Let X and Y be the partition sets. Each
vertex must dominate half of the vertices in at least one partition set: its own
(but then the order of this set must be at most 2) or the other one (with at least
half of the vertices of this set being its neighbors in this case). Thus, three cases
are possible: |X| < |Y| < 2 (covered by (i)), |X| < 2 and |Y| > 3, while every
vertex in Y dominates at least half of the vertices in X (covered by (ii)) and
both | X, |Y| > 3, while every vertex in X (and YY) dominates at least half of the
vertices in Y (X, respectively). |

The following is immediate.

Corollary 2.8. For every 1 < m < n, we have Xmd(Kmn) = 2.
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The analogous statements for proper and dominator colorings are well-known:
Xx(G) = 2 if and only if G is bipartite, while x4(G) = 2 if and only if G is complete
bipartite.

Now we switch to the graphs G, for which x;,,4(G) takes maximum possible
values.

Proposition 2.9. A graph G satisfies xma(G) = n if and only if G = K.

Proof. The only proper coloring of K, is also its majority dominator coloring.
Thus xma(Kyn) = x(K,) = n. On the other hand, assume that for some graph
G, every vertex is colored with a different color. If some two vertices x and y are
not adjacent, one can recolor y with the color of x and obtain this way a majority
dominator coloring (where each vertex dominates at least half of its own color
class) with n — 1 colors, thus x,,q¢(G) < n — 1. This means that if x,,4(G) = n,
then there are no non-adjacent vertices and so G = K,,. [

Note that x(G) = n if and only if G = K,,, which is also equivalent with
Xd(G) =n.
Let E(v) denote the set of edges incident with given vertex v € G.

Proposition 2.10. Let G be a connected graph of order n > 3. Then xma(G) =
n—11if and only if G = K,,— E'(v) for some set E'(v) C E(v) such thatv € V(QG)
and 1 < |E'(v)| <n—2.

Proof. Let G = K,, — E'(v). Observe that G is exactly K,_1 with one extra v,
where 1 < d(v) < n — 2. It means that A(G) =n — 1 and x(G) =n — 1, so by
Proposition 2.3, xqa(G) =n — 1.

Now, assume that there is a connected graph G such that x,,¢(G) = n—1. We
claim that A(G) = n—1. Indeed, if d(u) < n—2 for every u € V(G), then there are
at least two non-adjacent vertices ug, ug of degree at most n—2in G. If G[V(G) \
{u1,us}] is not a complete graph, then by Proposition 2.9 there exists a majority
dominator (n — 3)-coloring ¢ of it and we can extend it to a majority dominator
(n — 2)-coloring ¢ of G by putting /(u;) = (uz) = n — 2, a contradiction.
On the other hand, if G[V(G) \ {u1,us}] = K,—2, then N(uj) N N(uz) = 0,
because d(v) < n — 2 implies dgy, 4,}(v) < 1 for every v € V(G \ {u1,u2}).
For any (majority dominator) (n — 2)-coloring ¢ of G[V(G) \ {u1,u2}], and for
any v; € N(up), va € N(u2) we can extend it to a majority dominator (n — 2)-
coloring ¢ of G by setting ¢/(u1) = ¢(v2) and ¢/(u2) = ¢(v1), a contradiction. By
Observation 2.2, A(G) = n — 1 implies x(G) = xmd(G) =n — 1.

If there are two disjoint edges ujvy, ugva € E(G), then x(G) < n — 2, since
one can set c(uy) = ¢(v1) # c¢(uz) = ¢(vz) and color the remaining n — 4 vertices
with other n—4 colors. Also, there is no triangle in G since in such a case all three
of its vertices could get the same color and we would obtain again x(G) < n — 2.



MAJORITY DOMINATOR COLORINGS OF GRAPHS 1063

Thus the edges in G must form a star having at least one and at most n—2 edges.
This ends the proof. |

Note that if G is connected, then x(G) = n —1 if and only if x,,4(G) =n—1,
since x(G) = n — 1 inplies that its clique number w(G) = n — 1. A reasoning
similar to the one in the proof of Proposition 2.10 shows that also x4(G) =n—1
if and only if xn4(G) =n — 1.

3. MAJORITY DOMINATOR COLORING OF CHOSEN GRAPHS

In this section we are going to present the exact values of x;,4(G) for chosen graphs
G. From the previous section we already know that, in particular x,,q¢(K,) =n
and Xmd(Kmn) = 2. We also referred to the following fact.

Proposition 3.1. Forn > 3, xmqe(Cn o K1) = {%1 + 1.

Proof. Let n > 3 and let G = C,, o K. From Theorem 1 it comes that for even
n, Xmd(G) < [n/2] + 1, since x(G) = 2 and a(G) = n. When n is odd, we
have x(G) = 3. The inequality x(G) > 3 follows from the fact that x(C,) = 3
in this case, while any proper 3-coloring of C), can be extended by using any of
two admissible colors on every pendant vertex. From Theorem 1 it follows that
Xmd(G) < [n/2]+2, but one can reduce this bound by 1. Denote the consecutive
vertices of Cy, by vy,..., v, (so that v;v;41 € E(G) fori=1,...,n—1 and vjv, €
E(QG)) and their neighbors by uy,...,u, (so that v;u; € E(G) for i = 1,...,n).
Let us define the coloring ¢ as: c(vgiy1) = c(ug;) =i fori = 1,...,(n —1)/2,
c(v1) = c(un) = (n+1)/2 and c(vy;) = c¢(ugi—1) = (n+3)/2 = [n/2] + 1 for
i=1,...,(n—1)/2. Clearly, ¢ is an ([n/2] 4+ 1)-majority dominator coloring
of G.

Now we are going to show that at least [n/2]|41 colors are necessary for every
n. Consider the pendant vertices. Each of them can (majority) dominate at most
one color class — either its own or the one of its only neighbor. In both cases it
comes out that at most 2 vertices can be colored with the dominated color. Since
there are n pendant vertices and each of them dominates a color class consisting
of at most 2 vertices, it follows that at least [n/2] colors must be dominated by
the pendant vertices. If there are more color classes dominated by the pendant
vertices, then we are done. So assume that the pendant vertices dominate exactly
[n/2] color classes. Then at most 2[n/2] < n + 1 vertices can be colored. The
remaining 2n — 2[n/2| > n — 1 > 2 vertices need at least one extra color. |

In the case of wheel W,,, every proper coloring is also a majority dominator
coloring (in particular, each vertex dominates the one-element class of the central
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vertex). This implies that for every n > 3, xma(Wy) = x(Wy,) (for the latter one,
see e.g. |24, p.82]).

Observation 3.2. Forn > 3,

4, ifn=1 (mod 2),

Xmd(Wn) = {37 ifn=0 (mod 2).

2 and
uplUY

Let S, be the double star with central vertices u and v with d(u) = a
dv)=b>2. Let X ={z1,29,...,20-1}, Y ={y1,y2,- - -, yp—1}, N(v) =
and N(u) ={v}UX.

>
{

Proposition 3.3. For a,b > 3, x;md(Sap) = 3. Otherwise, Xmd(Sap) = 2.

Proof. 1f a = 2 or b = 2, then the unique (up to renaming of colors) proper
2-coloring defined by V; = X U {v} and V5 = Y U {u} is a majority dominator
coloring (at least one of the color classes consists of two members and every vertex
in the graph dominates at least one of them). On the other hand, if a,b > 3, then
u € V4 and v € V5. Assume that these two color classes are enough. Then
Vi = {u}UY and Vo = {v} UX. We have |V1|,|V2| > 3. But every vertex
in X UY can dominate only one vertex and thus a color class of at most two
members, a contradiction. It follows that at least three colors are necessary. On
the other hand, the coloring defined by Vi = {u}, Vo = {v}, V3 = X UY is a

majority dominator 3-coloring (actually, even a dominator 3-coloring) of S, ;. m

Note that the chromatic number of any double star is x(5,5) = 2, as it is a
bipartite graph. The dominator chromatic number, in turn, equals to x4(Sap) = 3
ifa+b>4]11].

The star K7 ,—1 has one vertex v of degree n —1 and n — 1 vertices of degree
one. It can be generalized to the multistar graph K,(a1,as,...,ay,), which is
formed by attaching a; > 1, (1 < i < n) pendant vertices to each vertex z; of a
complete graph K, with V(K,) = {x1,x2,...,2n}.

Proposition 3.4. For the multistar graph G = Ky (a1, a2, ..., ay)
n, if a; < n for some 1 < i < n,
de(G> =

n—+1, otherwise.

Proof. 1t is clear that x(G) = n, so by x(G) < xmd(G) it follows that xma(G) >
n. Let V(K,) = {z1,2z2,...,2,}. We will use A; to denote the set of pendant
vertices adjacent to x;. Note that a; = |4;|.

Assume first that there is a; such that a; < n (without loss of generality,
assume that ¢ = n). Color K, properly with n colors so that c(z;) = ¢j,j =
1,...,n, then all the vertices in A;,j < n with ¢,, and finally the vertices of A,
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with different colors ¢y, ..., ¢cq,. Every vertex in G dominates at least one vertex
colored with some c;, 7 < n, that is at least half of the respective color class, so ¢
is a majority dominator coloring.

Assume now that for each A; we have a; > n. Suppose that x,,q4(G) = n.
Obviously, we have ¢(x;) = ¢ for ¢ = 1,...,n. If any of these colors, say c;j,
appears at least 3 times in G, then each pendant neighbor of x; has a color
appearing at most twice in the graph, since they cannot dominate the class of x;.
However, each of those colors appears already in K, so it can appear at most
once in A;. This means that there would be at least n different colors in A;, each
of them different than c¢;, a contradiction to the assumption that there are only
n colors in use. Thus at least n + 1 colors are necessary. On the other hand the
coloring defined as ¢(z;) = ¢; for i = 1,...,n and ¢(v) = ¢4 for v € J  A4; is
a majority dominator (n + 1)-coloring. |

Observe that the chromatic number of a generalized star is always equal to
X(Kn(ai,asg,...,a,)) =n, since the n-coloring of the complete subgraph K, can
be trivially extended. It is also known that the dominator chromatic number of
this kind of graph equals to xq4(Kpn(a1,az,...,a,)) =n+1 [10].

In the remainder of this section we are going to focus on the majority dom-
inator coloring numbers of paths and cycles. Before we continue, recall that the
chromatic number of any path P, is x(P,) = 2, as it is a bipartite graph [24, p.
82|, and thus the only optimal coloring is defined by alternate usage of two colors
on consecutive vertices. The dominator chromatic number for n > 2 is in turn
equal to 10, 11]

1+ (2], ifn=2,34,5,7,
2+ [%W , otherwise.

Xd(Pn) = {

The results for cycles are as follows. The chromatic number depends on the
parity. Namely, for n > 3 we have [24, p. 82]

3, ifn=1 (mod 2),
(G =43 =l mod?)
2, ifn=0 (mod 2).

Note that any alternate coloring of consecutive vertices with two colors is optimal
in this case, with one extra color added on one vertex if n is odd. The dominator
chromatic number is in turn equal to [10]
{%1 , if n =4,
xa(Cn) =1+ [%], ifn=25,
2+ [%w , otherwise.

Let us present the following technical result.
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Lemma 3. Let P = P, be a path with vertex set V(P) = {vi,ve,...,vn}, let
k= Xma(P) and let ¢ : V(P) — {1,...,k} be its k-majority dominator coloring.
Then the following statements are true.

1. There are at most two colors in ¢ that appear on at least five vertices.
2. Ifn > 11, then there are at least two colors in ¢ that appear at most twice.

3. If n # 2, then there is at most one color in c that appears only once.

Proof. In all three parts of the proof we are going to use the fact that k is the
minimum number of colors that can be used in a majority dominator coloring
of P.

Part 1. If n < 15, then the conclusion is trivial. If n > 15, suppose that there are
three colors c1, co and cs such that they occur at least five times in ¢. Every vertex
has degree at most 2, so it can dominate a color class of order at most 4. Thus
there are no three consecutive vertices v;, vi11, viyo such that c({v;, vit1,vit2}) C
{c1, 2,3}, because in such a case v;+1 could not dominate any color class. For
that reason the vertices colored with ¢y, co and c3 can have at most one neighbor
colored with one of those colors. It means that one can recolor every vertex colored
with ¢3 using ¢; (by default) or ¢y if one of its neighbors is colored with ¢;. The
new coloring ¢’ is obviously proper. It is also a majority dominator coloring, since
every vertex in V(P) had to dominate a color class from {1,...,k} \ {c1,¢2,c3}
before the recoloring. Moreover it uses k — 1 colors, which contradicts with the
minimality of ¢ and concludes the proof.

Part 2. Since v; and v, can dominate only a color class of order at most two,
there must be at least one such color class in ¢. Suppose that there is only one
such class, colored with color ¢;. Since v; and v, both need to dominate this
class, we must have in particular that ¢; € c¢({vi,v2}) and ¢; € e¢({vp—1,v,}). No
matter which of v; and vy is colored with c¢q, the color of the other one, say co,
must appear at least three times, since we assumed that only the color class of
c1 can have cardinality at most two. Thus there must be at least one vertex v;
colored with ¢, 3 <i<n—2.

If n > 12, then two cases are possible. In the first case there exists v; colored
with c¢p having a neighbor v;, where j € {i — 1,7 + 1}, such that c(v;) = c3,
c3 & {c1, ca}, with the following properties: (i) v; has exactly one neighbor colored
with ¢z (namely v;), (ii) v; has no neighbor colored with ¢;. It follows that in
such circumstances v; has exactly one neighbor colored with yet another color c4.
This means that v; needs to dominate another color class of order at most two
that must be c3 or ¢4, a contradiction. In the second case every neighbor v; of a
vertex colored with ¢z (3 < j < n — 2) has the other neighbor colored with either
c1 or ca. Moreover, a neighbor can be colored ¢; only if j € {3,n — 2}, otherwise
both neighbors must be colored with co. The assumption n > 12 implies that
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there are at least eight vertices vj,j € {3,n — 2}, so at least four of them are
colored with ¢9, 3 < i < n — 2, and so there are at least five such vertices in total,
thus each of their neighbors v; such that 4 < j < n — 3 has to dominate its own
class, which must be of order at most 2, a contradiction.

If n = 11, then there could be only two ways to avoid the multiple occurrence
of a color class of order at most 2. Either there are only three colors in use
or four colors are used and all the color classes but one have cardinalities 3.
In the first case, however, there must be a vertex such that its color (say c2)
appears at least three times and the color of its both neighbors (say c¢3) appears
at least five times, so it cannot dominate any color class. In the other case
there is a vertex v; colored co having two neighbors colored c3 and c4. Indeed,
if any of the end vertices is colored with co, c3 or ¢4, then its neighbor must be
colored with c¢;, since otherwise it would not dominate any color class. Thus the
7 consecutive vertices vs3,v4,...,v9 are colored with colors cs, c3 and c4. The
only sequence of colors avoiding a triple of consecutive vertices colored differently
is z,y,z,y,2,y,x, where x,y € {co,c3,c4}. However x occurs 4 times in this
sequence, which is impossible. Finally, since each of the color classes co, c3, c4 has
exactly three members, v; does not dominate any color class.

Part 3. If n < 4, then the statement follows from the fact that every optimal
proper coloring is majority dominator coloring. Thus we may assume that n > 5.
Suppose that there are two colors ¢; and cg such that [c71(c1)| = e (e2)| = 1.
Let v; and vj, 1 < ¢ < j < n be the two vertices such that c(v;) = ¢ and
c(vj) = co. If they are not adjacent, then we can set c(vj) = ¢1 and obtain this way
a new majority dominator coloring with k — 1 colors, a contradiction. So assume
that j =i+ 1. Since n > 5, without loss of generality we can assume that i > 3
(the path can be reversed if needed). We define a new coloring ¢ by ¢ (v;—1) = ¢1,
d(vi) = ¢(vi—1), d(vit1) = ¢1 and (v) = ¢(v) for v € V(P) \ {vi—1,vs,vis1}-
Note that the new coloring is a majority dominator coloring, since the vertices vs,
i—2 < s <min{i+2,n} dominate now the color class ¢; while the other vertices
(if there are any) dominate the same classes as before the recoloring. Moreover
the new coloring uses k& — 1 colors, which contradicts with the minimality of c.
Thus the number of one-member color classes cannot be greater than one. [

Lemma 4. Let P = P, be a path of order n > 11 with vertices vy, va,...,Up_1, Un,
let k = xmda(P) and let ¢ : V(P) — {1,...,k} be its k-majority dominator col-
oring. Let P' = P,i¢ be an extension of P with vertices vi,va, ..., Vnt5, Unig-
Then xma(P') >k + 1.

Proof. Suppose that there exists a k-majority dominator coloring ¢’ of P/. We
will show that this would contradict with the minimality of ¢. We will consider
two cases: when v, dominates the color class of ¢(v,4+6) and when it does not.
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Case 1. vp16 dominates its own color class. Since all the colors used in ¢
must occur in its restriction to P (otherwise it would use less than k colors), the
color ¢; = /(vn4+6) appears exactly once in P,. By Lemma 3 it is the only one
such color, thus every other color used in V(P’)\ V(P) must be used at least two
times in P, so at least three times in P’. This means in particular that each vertex
v;, n+2 < i < n-+4 must dominate a color class with at least three members and
thus each of them must have two neighbors with the same color. In particular
c(vnt3) = c(vnys) (because of v,y4) and c(vipy1) = ¢(vp+3) (because of vy49).
This means that the color ¢a = ¢(vy41) is used three times in V(P') \ V(P) and
at least two times in V(P), so in fact it cannot be dominated, a contradiction.

Case 2. v,1¢ does not dominate its own color class. In such situation vyy¢
has to dominate the color class of v,15. Using similar argument as in case 1 we
conclude that the vertices in V(P’)\ V(P) have to be colored in the following way:
c(vnt6) = c1, ¢(Vnts) = c2, ¢(Vpt2) = c(vpta) = c3 and c(vp4+1) = c(vp43) = cq,
where c1, ¢, ¢ and ¢4 are pairwise distinct. In particular ¢; # ¢3 (and ¢ # ¢4),
because otherwise ¢; would appear three times in V(P') \ V(P) and according to
Lemma 3 at least two times in V(P), so vn43 (or v,42, respectively) could not
dominate any color class. Also, in the restriction of ¢’ to P, ¢; appears at least
two times, ca exactly one time and c3 and ¢4 exactly two times. We are going to
show that we can recolor the vertices colored with ¢q, ¢3 or ¢4 in P and obtain this
way a (k—1)-majority dominator coloring of P, which contradicts the minimality
of c.

We will consider two subcases: when some vertex dominates the color class
of ¢1 in ¢ and when there is no such vertex.

Subcase 2.1. There is a vertex v € V(P) that dominates the color class
c1 in ¢. In such a case ¢; appears at most three times in V(P) and moreover
there exists a sequence of consecutive vertices vy, u1, v, uz,v2 in V(P) such that
c(uy) = c(ug) = ¢;. Moreover, if ¢(v) = ¢3 (or ¢(v) = ¢4), then none of v; and vy
can be colored with ¢4 (c3, respectively), since this would mean that uy or ug do
not dominate any color class in ¢’ (recall that c¢3 and ¢4 appear exactly four times
in ¢). In particular, if ¢(v) = ¢3, then none of v; and vy can be colored with ¢4,
so both u; and w2 can be recolored with ¢4 and the new coloring of P (call it
") will be still proper. Moreover, after recoloring we have |(¢)~'(c3)| < 4 and
|(")1(eq)| < 4. Tt follows from the fact that before the recoloring both c3 and
¢4 were used exactly two times in P, and exactly two vertices (u; and ug) were
recolored. This implies that ¢” is a majority dominator coloring of P. Indeed,
if any vertex dominated the color class c3 or ¢4 in ¢ (where the cardinalities of
both color classes were exactly four), then it will also dominate it in ¢’ (where
these cardinalities are at most four). Also v dominates ¢4 in ¢”. An analogous
reasoning applies when ¢(v) = ¢4 (then both uy and uy can be recolored with c3).

If ¢(v) = ¢5 ¢ {c3,cq}, then we can do the same as above (i.e., recolor both
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u1 and ug with the same color, either c3 or ¢4) unless ¢(v1) = ¢3 and c(v2) = ¢4
(or ¢(v1) = ¢4 and c(v2) = ¢3). But then c; appears at most twice in ¢ (and ¢)
since otherwise u; would not dominate any color class in ¢’ (it cannot dominate
the color class of vy, since it has cardinality four and it cannot dominate the color
class of itself, since it has cardinality at least three). This allows us to recolor u;
with ¢4 and wue with ¢3 (or u; with cs and uy with ¢4, respectively). Again, the
obtained coloring is a majority dominator coloring of P (with v dominating the
class cj).

Now, either ¢’ is a (k — 1)-coloring (if ¢; appears exactly two times in the
restriction of ¢’ to V(P)) or there is still one vertex colored ¢;, which contradicts
Lemma 3 (recall that there is another one-member color class in P, namely c¢3).

Subcase 2.2. There is no vertex dominating the color class ¢; in ¢. If there is
no vertex v € V(P) that dominates ¢z in ¢, then we proceed as follows. If there is
a vertex u € V(P) colored c3 not adjacent to any vertex colored ¢y, then we can
obtain a new coloring ¢’ of V(P) by putting ¢’ (u) = ¢; and preserving the colors
of the remaining vertices. This will not change any domination relation and there
are exactly two one-element color classes in ¢ (cy and ¢3), a contradiction with
Lemma 3. If each of the two vertices colored cg is adjacent to a vertex colored cy,
then its other neighbor must be colored with a color ¢5 ¢ {c1,cs3,ca} (otherwise
the vertex colored c3 would not dominate any color class in ¢’). Note that cs
appears exactly two times in V(P) if ¢5 # co.

Now, if there is no vertex v € V(P) that dominates ¢4 in ¢/, then we recolor
any vertex u colored c3 with ¢4 and we are done, since the dominance relations
did not change and there are two colors appearing exactly once (c2 and c3), a
contradiction. If there is a vertex v € V(P) that dominates c4, then there is a
sequence of consecutive vertices v1, u1, v, ug, vo with colors ¢ (v1) = cg, ¢/ (u1) = cq,
d(v),d (ug) = c4,d(v2) = ¢z, where some of cg, ¢7, ¢(v) may be equal. Let us
consider few cases.

1. If none of v1,v,vs is colored cg, then we recolor u; and ue with c3 and
obtain this way a (k — 1)-majority dominator coloring of P, a contradiction.

2. If only vy (only v9) is colored with c3, then we recolor ug (u1, respectively)
with c3 and obtain a k-majority dominator coloring of P with two one-member
classes co and c4, a contradiction. Note that the obtained coloring is indeed a
majority domination coloring, since the color class of v has at most two members.
Otherwise u; (ug, respectively) would not dominate any color class in . This
implies that v dominates its own color class, while the remaining dominance
relations do not change.

3. If only ¢/(v) = cs, then the color classes of both cg and c¢7 consist of at
most two members, since otherwise u; or us would not dominate any class in
c. This means that recoloring uy, v and us with ¢3, ¢4 and c3 would produce a
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k-majority dominator coloring of P with v; and u; dominating the class of cg, v
dominating the class of ¢35 and uo and v dominating the class of ¢;. There would
be two one-member color classes ¢o and ¢4, a contradiction.

4. Finally, if ¢ = ¢7 = c3, then the color class of ¢/(v) must consist of at
most two members (otherwise u; and uz would not dominate any color class in
). In this case we can recolor both u; and us with ¢;. The new coloring is a
(k — 1)-majority dominator coloring of P with uj, v and us dominating the color
class of ¢(v) and the remaining domination relations unchanged, a contradiction.

Note that other distributions of ¢3 among v1, u1, v, ue, v9 are impossible, since
we assumed that no vertex dominates the class ¢g and so the distance betweeen
any two vertices of this color must be at least three.

The same reasoning applies if we swap c3 with ¢4. Thus the only case to
consider is the situation when there is a sequence of consecutive vertices in V(P),
u1,v1, w1, S, ug, va, we, where S denotes some subsequence of vertices (possibly
empty), ¢/ (u1) = d(wy) = ¢3 and ' (uz) = (w2) = ¢4 (or (uy) = (w1) = ¢4
and (uz) = d(wy) = c3, but we can skip this case by symmetry). If S is
not empty, then we can define a new (k — 1)-majority dominator coloring ¢’
of V(P) by recoloring ¢’(uz) = ’(wy) = c3, a contradiction. If S is empty,
then we have a sequence uq,v1, w1, ug, v2, ws such that ¢(uy) = ¢/(wy) = ¢3 and
' (ug) = (wq) = ¢4, where w; dominates ¢ (v1), so |(¢/)~1(c/(v1))] < 2 and ¢/ (v1)
is also dominated by u1. By symmetry, |(¢')7!(c/(v2))| < 2 and ¢/(v2) is dominated
by uz and wsy. At least one of /(v1), ¢/(ve) is not co. Without loss of generality
assume that (vy) # co. Now, define the new coloring ¢’ of V(P) by setting
d"(u1) = ¢1 and ¢’(w1) = ¢3 (or ¢’(u1) = ¢z and ¢”’(w1) = ¢ if ug has a neighbor
colored with ¢;) and preserving the colors of the remaining vertices. In both
cases, after the recoloring, ui, v; and w; dominate the color class of ¢’(v1) and
other domination relations remain intact. It follows that C” is a (k — 1)-majority

dominator coloring of P, a contradiction. [
Theorem 5. Let P = P, be a path of order n with vertices v1,va,...,Un_1,Vn.
Then

1, ifn=1,

2, if2<n<5,

Xmd(P) = 4 3, if 6 < n < 10,
4, if 11 <n <13,
[2]+2, ifn>14

Proof. First we are going to show that the given values are minimum possible.
For n < 5 it is obvious, since every coloring must be proper. On the other hand it
is impossible to use only two colors for n > 6, since both colors would appear at
least three times and the ends of the path have only one neighbor, so they cannot
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dominate any color. Assume that three colors are enough for n = 11. By Lemma
3 at least two of them occur at most two times, so the third one needs to be
used at least 7 times. However, this would force at least one pair of neighboring
vertices to be colored with the same (third) color. Thus one needs at least four
colors in this case (as well as for every n > 11).

Assume that in a coloring ¢ of P14 one can use four colors. By Lemma 3 there
are two or three colors that occur at most 2 times. In the latter case, however,
there would be at least eight vertices colored with the same (fourth) color, which
would force at least one pair of them to be adjacent. Thus there are exactly two
colors (say c¢1 and c2) present on at most two vertices and at least ten vertices
colored with two other colors (say c3 and ¢4). Since there are at most four vertices
colored c¢q or cg, in the sequence of colors of the consecutive vertices there can
be at most five subsequences consisting of only ¢35 and c¢4. Either all of them
are pairs, or there are some consisting of at least three vertices. The former is
impossible, since then each of ¢3 and ¢4 occurs exactly five times and the ends of
the path (colored with c3 or ¢4 and neighboring with vertices colored with ¢4 or
c3, respectively) cannot dominate any color class. Thus there must be at least one
subsequence consisting of at least three vertices. Without loss of generality assume
that it is cg, c4, c3. Because of the middle vertex, |c™1(c3)| < 4, so [¢7(eq)| > 6.
But it means that in at least one of the five subsequences c4 occurs at least twice,
thus there is a subsequence of colors ¢y, c3, ¢4 and we deduce that |c1(cq)| < 4, a
contradiction. This means that at least five colors are necessary for every n > 14.

Finally, assume that in a coloring ¢ of Pjg one can use five colors. According
to Lemma 3 the number of colors present on at most two vertices is between two
and four. If it is four, then there are at least eleven vertices colored with the
fifth color, which forces at least two of them to be adjacent, a contradiction. If
there are three such colors, then at least thirteen vertices must be colored with
two other colors (say ¢; and c¢2) and form at most seven subsequences. If they
are distributed in six pairs and one singleton, then there is at least one end of the
path that does not dominate any color. Thus there must be at least one triple,
say c1,c9,c1. This implies that there are at most four vertices labeled with ¢y
and consequently at least nine vertices colored with co. Thus at least one of (at
most) seven subsequences contains at least two of them, so there is a subsequence
9, €1, C2, which implies that ce occurs at most four times, a contradiction. Finally,
assume that there are exactly two colors occurring at most two times. Then there
are at least fifteen vertices colored with three colors, say c;, ¢3 and c3. By Lemma
3 there are at most two colors appearing on at least five vertices, so without loss
of generality we can assume that ¢; occurs at most four times and co at least
six times. Observe that a sequence being a permutation of ¢y, ca, c3 is impossible
since the middle vertex could not dominate any color class. This implies that
there is a subsequence ¢y, x, co, where & € {c1,c3}. It implies that co can occur
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at most 4 times, a contradiction. We deduce that at least six colors are necessary
in any majority dominator coloring of P,, where n > 19.

As we can see, in particular we obtained that x,nq(Pp)
n < 19. Using Lemma 4 it follows by induction that x,q(Py)
n > 14.

To conclude the proof, we need to show that there exist majority dominator
colorings of P, using the number of colors given in the statement of the theorem.

As it can be easily verified, for n < 13 we can use the sequences of colors .S,
defined as follows: S7 = {1}, So = {1,2}, S5 = {1,2,1}, Sy = {1,2,1,2}, S5 =
{1,2,1,2,1}, S¢ = {1,2,1,2,1,3}, Sy = {3,1,2,1,2,1,3}, Sg = {3,1,2,1,2,1,
2,3}, So =1{3,1,2,1,2,1,2,3,1}, S1o = {3,1,2,1,2,1,2,1,3,2}, S1; = {3,4,1,2,
1,2,1,2,1,2,4}, S12 = {3,4,1,2,1,2,1,2,1,2,3,4}, S13 = {1,2,1,2,1,3,1,3,1,
4,1,4,1}.

For n > 14 the desired coloring can be defined with the following formula.

{%] + 2 for 14 <

>
> [%] +2 for every

1, ifi=0 (mod 3),
(01) 2, ifi=1 (mod 3) Ai # n,
C\U;) =
{g]+2, ifi=1 (mod 3)ANi=n
[i]+2, ifi=2 (mod 3).

Note that according to the above formula for every 1 < j < n we have c(v;j_1) > 3,
c(vj) > 3 or ¢(vjy1) > 3 and each color > 3 appears at most two times. So c is
indeed a majority dominator coloring of P. ]

In order to present the result for cycles, we will need the following technical
lemma.

Lemma 6. Let C' = C,, n > 10 be a cycle with vertex set V(C) = {v1,v2,...,vn},
let k = xma(C) and let ¢ : V(C) — {1,...,k} be its k-majority dominator color-
ing. Let P = P, be a path of order n. Then k > Xxma(Py). Moreover, if n = 13,
then k > xma(Ppn) + 1.

Proof. Obviously, there must be a color that appears once or twice in ¢. Oth-
erwise, every vertex u would dominate a color present on at least three vertices,
being the common color of both neighbors of u. However, this could occur only
if the cycle were colored alternately with two colors, which is possible only for
n € {4,6,8}.

If some color occurs exactly once, say on vertex v, then we are done, since
we can remove any edge incident with v, say wwv, and recolor u with ¢(v), which
defines a majority dominator coloring of P,.

From now on we will assume that there are no colors appearing only once.
First assume that there exist two vertices v; and vo such that |c=1(c(v1))| = 2,
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lc71(c(v2))| = 2 and distance between v; and vy is at most 3 (and it can be 1 only
if c(v1) # ¢(v2)). In such a case it is enough to remove an edge from a shortest
(v1,v2)-path: the edge incident to both v; and v (if the distance is 1), either
edge (if the distance is 2) or the middle edge (if the distance is 3). This way each
of v1 and ve will become either an end vertex of the obtained path or the only
neighbor of an end vertex and ¢ will still be a majority dominator coloring of the
obtained path.

Let us focus on the remaining case. There are exactly 2p vertices colored
with colors appearing twice, where p is the number of such colors. The distance
between each pair of such vertices is at least four. In other words, for every pair of
such vertices for which there is no other vertex of this kind between them, there is
a sequence of at least three consecutive vertices colored with some colors that are
used at least three times (we will call such sequences segments). Note that the
number of segments is also 2p. It is impossible that three distinct colors c1, co,
c3 are used on three consecutive vertices, because in such case the middle vertex
would not dominate any color class. This implies in turn that in every segment
exactly two colors are used. If it has the form ¢y, co,c1, then the color ¢; can
appear at most four times in c. If there are at least four vertices in a segment,
then each of ¢; and ¢y can appear at most four times. In particular, the length of
a segment cannot be more than 8.

If every segment has length 3, then one can use one common color on the
middle vertex of every segment and one color on the remaining vertices of every
pair of segments. This allows to use p + 1 colors in the segments and & = 2p + 1
colors in total to color n = 8p vertices. Note that this is the minimum number
of colors that can be used. Indeed, since at most four end vertices of segments
can be colored with one color, and there are exactly 4p end vertices, one needs at
least p colors to color them all. If any of these colors is used also for some middle
vertex in another segment, then one needs at least p + 1 colors to color the end
vertices. On the other hand, if these colors are used only to color the end vertices,
then one extra color is necessary to color the middle vertices. In any case this
gives the number of at least p + 1 colors to color the vertices in the segments.
Note that since &k = 2p + 1 and n = 8p, we have k = 7 + 1 in this case. This
bound will be further used to compare the values of x,,q of paths and cycles of
the same lengths.

Assume that there is a segment of length at least 4. Then there are two sets of
segments of length 3, where each of them can be empty. The first one consists of
qo segments with end vertices colored with colors not used in any longer segment.
The other one consists of a number of segments with endpoints colored with some
color used also on some longer segment. Since the first set is colored independently
from the remaining part of the graph, in order to minimize the total number of
colors it is necessary to use the minimum number of colors in this subset, which
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is at least [%ﬂ , according to the considerations above (even [%ﬂ + 1 if the middle
vertices are colored with an extra color, not used elsewhere). Note that these
segments consist of 3gy vertices.

Now, each of the remaining segments of length 3 has end vertices colored with
a color used on some longer segment, say cg. Note that the other segment cannot
be longer than 5, since it can have at most two vertices colored ¢g. This means
that when a segment of length at least 4 (colored with two colors, say ¢; and ¢2)
is combined with other segments, then one of the following cases must occur.

C1 Some segment of length 4 is combined with two segments of length 3 (one
of them with endpoints colored ¢; and the other with endpoints colored c¢z).
Let denote the number of such triples by ¢g4. They use at least 2¢4 colors and
consist of 10g4 vertices grouped in 3¢q4 segments.

C2 Two segments of length 4 have at least one color in common or a segment
of length 4 or 5 has a color in common with the end vertices of exactly one
segment of length 3. In either case two colors are used to color at most eight
vertices.

C3 The colors ¢; and co of a segment of length between 4 and 8 are not used on
any other segment of length between 4 and 8 and they are not used to color
the end vertices of any segment of length 3. Again, two colors are used to
color at most eight vertices.

Note that the total number of vertices of the segments considered in the cases C2
and C3 is n — 2p — 3qp — 10g4, while the number of colors to be used is at least

{n—Qp—Sqo—loqz;
1

one-fourth of this number, i.e., it is at least —‘ From the above it

follows that in order to color n vertices one needs to use at least

n—2p —3qp — 10 n n
kZ[erqZOJrQqAHr p— 0 qﬂ:{ b_o %12{ qfﬂ

1 12T 27Ty

colors, where the last inequality follows from the fact that the number of segments
analyzed above satisfies in particular ¢y + 3qs < 2p. If g4 > 0, this implies
k> (% + ﬂ On the other hand, if ¢4 = 0, then the minimum number of colors

that must be used is

g , n—2p—3q no.p  q n 1
e e e MEE S NS
—{p+2+ 4 w 127y —Lﬁrzﬁ

where the last inequality follows from gy < 2p — 1, as the case where all the
segments have length 3 was analyzed separately.

From Theorem 5 it follows that for n > 10,n ¢ {11,14,15,19} we have
Xmd(Pn) < [% + ﬂ Let us analyze the four mentioned cases and the case n = 13
separately.
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If n <15, then p = 1, since for p > 2 there would be at most seven vertices in
at least four segments, which is impossible, since we assume that every segment
consists of at least three vertices and if p > 2 then the total number of vertices
would be at least 16. Thus there are exactly two segments.

In the case n = 11 they have lengths 3 and 6 or 4 and 5. In both cases if
the coloring is optimal, then the longer segment uses two colors, and only one of
them can be used also in the other segment, thus at least three colors must be
used to color the segments and x,,q4(C11) > 4.

If n = 13, then the lengths of the two segments are 3 and 8, 4 and 7 or
5 and 6. In the first case the two colors used in the longer segment cannot be
reused (each color is used exactly four times, which is the maximum possible),
thus two new colors are necessary for the shorter segment. In the second case one
of the colors used in the segment of length 7 could be used in the other segment,
but it would not work since each color there must appear twice. Similarly in the
third case both colors used in the segment of length 6 could be used in the other
segment, but each only once, which contradicts with the fact that both colors in
the shorter segment appear at least twice. Thus four colors are necessary in the
segments and X;,mqa(Ci3) > 5. Similarly we show that x,,q4(C14) > 5 (the segments
must be of lengths 6 and 8 or 7 and 7) and that x,,4(C15) > 5, where the only
possible combination of lengths is 7 and 8.

If n = 19, from the fact that the length of a segment is between 3 and 8 it
follows that p = 2 and the lengths of the four segments are (in the non-decreasing
order) (3,3,3,6), (3,3,4,5) or (3,4,4,4). If the sequence of lengths is (3,3, 3,6),
then the two colors from the longest segment can be reused (each of them once),
so they can serve as the colors of two out of three middle vertices in the segments
of length 3. The third middle vertex, as well as all the end vertices of the shorter
segments need other colors. Since in the case of the end vertices, at most four
can get the same color, at least two new colors are needed. Thus at least four
colors are necessary to color the segments. In the case of the sequence (3,3,4,5)
one of the colors used in the longest segment can be used once and the other
twice. The single vertex must be one of the middle vertices of the segments of
length 3. The other color can be used on two end vertices in one of the shorter
segments, on a pair of vertices in the segment of length 4 or on the middle vertices
of two segments of length 3. In any case there will be still at least one middle
vertex and three pairs of vertices (supposed to be monochromatic) to color. One
needs at least two colors to color them, so at least four colors to color all the
segments. Finally if the sequence (3,4,4,4) occurs, the two colors used in one of
the segments of length 4 can be reused on at most two vertices, thus at least three
colors are necessary to color the segments of this kind. Moreover the use of three
colors would be possible only if each of them is used exactly four times, which
is maximum possible. At least one more color is necessary to color the shortest
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segment. In every case we have x;,4(C13) > 6. This concludes the proof. ]

Corollary 3.5. Let C' = C, be a cycle of order n > 3 with vertices vy, v, ...,
Un_1,VUn. Then

2, ifn e {4,6,8),
3, ifn € {3,5,7,9,10},
C) =
Xma(C) 4, if11 < n <12,
(2] +2, ifn>13.

Proof. The fact that the given values are minimum possible follows immediately
from the relation x;mq(C) > x(C) (for n < 9) and from Lemma 6 (for n > 10).
To see that xmq(C) does not exceed the given values one can observe that
the proper colorings of C),, 3 < n < 9, using two colors for n even and three
colors for n odd with the third color used on precisely one vertex, are also major-
ity dominator colorings, a majority dominator coloring of C3 is defined by the
sequence S13 ={1,2,1,2,1,3,1,3,1,4,1,4, 5}, while for the remaining cycles one
can use the sequences of colors used for the paths of respective lengths defined in
the proof of Theorem 5. [

4. FINAL REMARKS

We introduced a new graph invariant, the majority dominator coloring number
Xmd(G) and investigated some of its properties. Although at first glance the
concept of majority dominator coloring is similar to the idea of dominator coloring,
they are different enough to make it difficult to apply the same proof techniques.
For that reasons, we needed to develop new ones.

We presented several general properties of the new parameter, in particular
by connecting it with other graph invariants, like chromatic number x(G), dom-
ination number v(G), independence number «(G) and matching number v(G’),
where G is a specific subgraph of G. This allowed us to derive the value of x;,4(G)
for various classes of graphs and find the families of graphs satisfying chosen con-
straints imposed on ;nq¢(G). Obviously, there are many open problems to solve.
Below we present those most interesting according to our opinion.

As it was observed in the beginning of Section 2, for every graph G it holds
Xmd(G) < xa(G). Although one could expect that usually the inequality will be
strict, in certain cases equality occurs (see e.g. the complete graphs K,). For
that reason our first question is as follows.

Problem 4.1. Characterize the graphs for which x,,q4(G) = x4(G).
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A similar problem is connected with Theorem 1. As one can see even in the
case of the products C),, o K7 the bound is sometimes sharp and sometimes not
(see Proposition 3.1). For that reason we would like to know the solution to the
following problem.

Problem 4.2. Characterize the graphs for which x;,q4(G) = x(G) + [@—‘ — 1.

Our last problem is connected with the product graphs G o K, for arbitrary
G. In such case a(G o K1) = n, where n is the order of G, and x(G o K;) = x(G)
if n > 2. From Theorem 1 it follows that

xmd(G o K1) < x(G) + {g] —1.

On the other hand, by using a reasoning similar to the one from the proof of
Proposition 3.1, we get

Xmd(G o K1) > max {X(G), {gw + 1} )

In particular, this allows us to make the following observation.

Observation 4.3. If G is a bipartite graph of order n, then
n
de(GO Kl) = ’75-‘ + 1.

However, the value of x;,q(G o K1) remains unknown for general G.

Problem 4.4. Let G be an arbitrary graph of order n. What is the value of
Xmd(G o K1)? Can it be expressed in terms of n and x(G)?
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