DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2023): 0.5

5-year Journal Impact Factor (2023): 0.6

CiteScore (2023): 2.2

SNIP (2023): 0.681

Discussiones Mathematicae Graph Theory

Article in press


Authors:

H.-Z. Chen

Hongzhang Chen

Lanzhou University

email: mnhzchern@gmail.com

0009-0007-6601-0673

J. Li

Jianxi Li

Minnan Normal UNIVERSITY

email: ptjxli@hotmail.com

B. Sun

Bin Sun

Lanzhou university

email: sunb21@lzu.edu.cn

S.-J. Xu

Shou-Jun Xu

Lanzhou University

email: shjxu@lzu.edu.cn

0000-0002-2046-3040

Title:

Some results on the $k$-alliance and domination of graphs

PDF

Source:

Discussiones Mathematicae Graph Theory

Received: 2024-03-02 , Revised: 2024-10-04 , Accepted: 2024-10-12 , Available online: 2024-11-09 , https://doi.org/10.7151/dmgt.2568

Abstract:

For a graph $G$ of order $n$ and real number $a\geq-1$, let $\rho_{i}^{a}(G)$ be the $i$-th largest eigenvalue of $A_a(G):=aD(G)+A(G)$, where $A(G)$ and $D(G)$ are the adjacency matrix and the diagonal degree matrix of $G$. In this paper, we investigate connections of the eigenvalues of $A_a(G)$ to the alliances and domination parameters of $G$ including defensive $k$-alliance number, global offensive $k$-alliance number, total domination number and signed domination number. Our results in this paper provide a unified approach to study the alliances and domination in a graph by its eigenvalues of associated matrices. We derive two lower bounds for the defensive $k$-alliance number of $G$ based on the parameter $\rho_{2}^{a}(G)$. Moreover, we establish a lower bound for the global offensive $k$-alliance number of $G$ in relation to $\rho_{n}^{a}(G)$. Additionally, we also deduce the lower bounds for $\rho_{2}^{a}(G)$ based on its total and signed domination numbers, as well as upper bounds for $\rho_{n}^{a}(G)$, respectively. Those results generalize the corresponding known results on $a=-1$ due to Fernau, Rodríguez-Velázquez and Sigarreta (2004), Rodríguez-Velázquez, Yero and Sigarreta (2009) and Shi, Kang and Wu (2010), respectively.

Keywords:

total (signed) domination number, defensive (global offensive) $k$-alliance number, eigenvalue, bound

References:

  1. AIM Minimum Rank–-Special Graphs Work Group, Zero forcing sets and the minimum rank of graphs, Linear Algebra Appl. 428 (2008) 1628–1648.
    https://doi.org/10.1016/j.laa.2007.10.009
  2. B. Brešar, M.G. Cornet, T. Dravec and M.A. Henning, Bounds on zero forcing using $($upper$)$ total domination and minimum degree, Bull. Malays. Math. Sci. Soc. 47 (2024) 143.
    https://doi.org/10.1007/s40840-024-01744-x
  3. A.E. Brouwer and W.H. Haemers, Spectra of Graphs (Springer, New York, NY, 2012).
    https://doi.org/10.1007/978-1-4614-1939-6
  4. H.-Z. Chen, J. Li and W.C. Shiu, Some results on the $A_{\alpha}$-eigenvalues of a graph, Linear Multilinear Algebra 71 (2023) 2998–3012.
    https://doi.org/10.1080/03081087.2022.2135676
  5. H.-Z. Chen, J. Li and S.-J. Xu, Spectral bounds for the zero forcing number of a graph, Discuss. Math. Graph Theory 44 (2024) 971–982.
    https://doi.org/10.7151/dmgt.2482
  6. E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi, Total domination in graphs, Networks 10 (1980) 211–219.
    https://doi.org/10.1002/net.3230100304
  7. D. Cvetković, P. Rowlinson and S. Simić, An Introduction to the Theory of Graph Spectra (Cambridge University Press, 2010).
    https://doi.org/10.1017/CBO9780511801518
  8. F. Dong, J. Ge and Y. Yang, Upper bounds on the signed edge domination number of a graph, Discrete Math. 344 (2021) 112201.
    https://doi.org/10.1016/j.disc.2020.112201
  9. J.E. Dunbar, S.T. Hedetniemi, M.A. Henning and P.J. Slater, Signed domination number of a graph, in: Graph Theory, Combinatorics, and Applications (John Wiley & Sons, New York, 1995) 311–322.
  10. O. Favaron, G. Fricke, W. Goddard, S.M. Hedetniemi, S.T. Hedetniemi, P. Kristiansen, R.C. Laskar and R.D. Skaggs, Offensive alliances in graphs, Discuss. Math. Graph Theory 24 (2004) 263–275.
    https://doi.org/10.7151/dmgt.1230
  11. L. Feng, G. Yu and X.-D. Zhang, Spectral radius of graphs with given matching number, Linear Algebra Appl. 422 (2007) 133–138.
    https://doi.org/10.1016/j.laa.2006.09.014
  12. H. Fernau, J.A. Rodríguez-Velázquez and J.M. Sigarreta, Offensive $r$-alliances in graphs, Discrete Appl. Math. 157 (2009) 177–182.
    https://doi.org/10.1016/j.dam.2008.06.001
  13. C.D. Godsil and M.W. Newman, Eigenvalue bounds for independent sets, J. Combin. Theory Ser. B 98 (2008) 721–734.
    https://doi.org/10.1016/j.jctb.2007.10.007
  14. W.H. Haemers, Hoffman's ratio bound, Linear Algebra Appl. 617 (2021) 215–219.
    https://doi.org/10.1016/j.laa.2021.02.010
  15. J. Har, A note on Laplacian eigenvalues and domination, Linear Algebra Appl. 449 (2014) 115-118.
    https://doi.org/10.1016/j.laa.2014.02.025
  16. J. Harant and S. Richter, A new eigenvalue bound for independent sets, Discrete Math. 338 (2015) 1763–1765.
    https://doi.org/10.1016/j.disc.2014.12.008
  17. T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (CRC Press, Boca Raton, 1998).
    https://doi.org/10.1201/9781482246582
  18. T.W. Haynes, S.T. Hedetniemi and M.A. Henning, Topics in Domination in Graphs, Dev. Math. 64 (Springer, Cham, 2020).
    https://doi.org/10.1007/978-3-030-51117-3
  19. M. A. Henning, Graphs with large total domination number, J. Graph Theory 35 (2000) 21–45.
    https://doi.org/10.1002/1097-0118(200009)35:1<21::AID-JGT3>3.0.CO;2-F
  20. T. Kalinowski, N. Kam\u{c}ev and B. Sudakov, The zero forcing number of graphs, SIAM J. Discrete Math. 33 (2019) 95–115.
    https://doi.org/10.1137/17M1133051
  21. P. Kristiansen, S.M. Hedetniemi and S.T. Hedetniemi, Alliances in graphs, J. Combin. Math. Combin. Comput. 48 (2004) 157–177.
  22. R. Li, The $k$-domination number and bounds for the Laplacian eigenvalues of graphs, Util. Math. 79 (2009) 189–192.
    https://utilitasmathematica.com/index.php/Index/article/view/631
  23. H. Liu and M. Lu, Bounds of signless Laplacian spectrum of graphs based on the $k$-domination number, Linear Algebra Appl. 440 (2014) 83–89.
    https://doi.org/10.1016/j.laa.2013.10.020
  24. M. Lu, H. Liu and F. Tian, Bounds of Laplacian spectrum of graphs based on the domination number, Linear Algebra Appl. 402 (2005) 390–396.
    https://doi.org/10.1016/j.laa.2005.01.006
  25. V. Nikiforov, Bounds on graph eigenvalues I, Linear Algebra Appl. 420 (2007) 667–671.
    https://doi.org/10.1016/j.laa.2006.08.020
  26. J.A. Rodríguez-Velázquez and J.M. Sigarreta, Spectral study of alliances in graphs, Discuss. Math. Graph Theory 27 (2007) 143–157.
    https://doi.org/10.7151/dmgt.1351
  27. J.A. Rodríguez-Velázquez, I.G. Yero and J.M. Sigarreta, Defensive $k$-alliances in graphs, Appl. Math. Lett. 22 (2009) 96–100.
    https://doi.org/10.1016/j.aml.2008.02.012
  28. W. Shi, L. Kang and S. Wu, Bounds on Laplacian eigenvalues related to total and signed domination of graphs, Czechoslovak Math. J. 60 (2010) 315–325.
    https://doi.org/10.1007/s10587-010-0035-1
  29. J.M. Sigarreta, S. Bermudo and H. Fernau, On the complement graph and defensive $k$-alliances, Discrete Appl. Math. 157 (2009) 1687–1695.
    https://doi.org/10.1016/j.dam.2008.12.006
  30. E. Vatandoost and F. Ramezani, On the domination and signed domination numbers of zero-divisor graph, Electron. J. Graph Theory Appl. (EJGTA) 4 (2016) 148–156.
    https://doi.org/10.5614/ejgta.2016.4.2.3
  31. W. Zhang, The maximum spectral radius of $t$-connected graphs with bounded matching number, Discrete Math. 345 (2022) 112775.
    https://doi.org/10.1016/j.disc.2021.112775
  32. W. Zhang, J. Wang, W. Wang and S. Ji, On the zero forcing number and spectral radius of graphs, Electron. J. Combin. 29 (2022) #P1.33.
    https://doi.org/10.37236/10638

Close