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Abstract

For a graph G of order n and real number a ≥ −1, let ρai (G) be the i-th
largest eigenvalue of Aa(G) := aD(G) + A(G), where A(G) and D(G) are
the adjacency matrix and the diagonal degree matrix of G. In this paper,
we investigate connections of the eigenvalues of Aa(G) to the alliances and
domination parameters of G including defensive k-alliance number, global
offensive k-alliance number, total domination number and signed domination
number. Our results in this paper provide a unified approach to study the
alliances and domination in a graph by its eigenvalues of associated matrices.
We derive two lower bounds for the defensive k-alliance number of G based
on the parameter ρa2(G). Moreover, we establish a lower bound for the
global offensive k-alliance number of G in relation to ρan(G). Additionally,
we also deduce the lower bounds for ρa2(G) based on its total and signed
domination numbers, as well as upper bounds for ρan(G), respectively. Those
results generalize the corresponding known results on a = −1 due to Fernau,
Rodŕıguez-Velázquez and Sigarreta (2004), Rodŕıguez-Velázquez, Yero and
Sigarreta (2009) and Shi, Kang and Wu (2010), respectively.
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1. Introduction

All graphs considered in this paper are undirected, connected and simple. Let
G = (V (G), E(G)) be a graph of order n and sizem. For any real number a ≥ −1,
let Aa(G) = aD(G) + A(G), where A(G) and D(G) are the adjacency matrix
and the diagonal degree matrix of G, respectively. Especially, A0(G) = A(G),
A−1(G) = −L(G) and A1(G) = Q(G), where L(G) and Q(G) are the Laplacian
matrix and the signless Laplacian matrix of G. We denote the eigenvalues of
Aa(G) as ρa1(G) ≥ ρa2(G) ≥ · · · ≥ ρan(G). In particular, ρ01(G) ≥ ρ02(G) ≥
· · · ≥ ρ0n(G), −ρ−1

n (G) ≥ −ρ−1
n−1(G) ≥ · · · ≥ −ρ−1

2 (G) ≥ −ρ−1
1 (G) = 0 and

ρ11(G) ≥ ρ12(G) ≥ · · · ≥ ρ1n(G) are the eigenvalues, the Laplacian eigenvalues and
the signless Laplacian eigenvalues of G, respectively. Additionally, −ρ−1

n (G) and
−ρ−1

2 (G) are the Laplacian spectral radius and the algebraic connectivity of G,
respectively. When only one graph G is under consideration, we sometimes write
ρai instead of ρai (G).

The eigenvalues of a graph contain extensive information about the graph.
Many studies on this topic have been conducted, see the book [7]. In particular,
the study of the relationship between the eigenvalues of matrices associated with
a graph and its diverse structural parameters is of particular interest. Such as
independence number [13, 14, 16], matching number [11, 31], etc. In this paper,
we continue to study the k-alliance and domination of a graph from the view of
its eigenvalues. Our primary focus will be on exploring the connections between
the eigenvalues of a graph and its diverse domination numbers (or k-alliance
numbers, respectively). The subsequent sections will introduce the concepts of
k-alliance and domination for a graph, along with relevant results.

Initially, we present essential symbols, terminologies and valuable mathe-
matical tools. For v ∈ V (G), let dG(v) (or d(v) for short) be the degree of
v and N(v) = NG(v) = {u ∈ V : uv ∈ E} (respectively, N [v] = NG[v] =
N(v)∪{v}) be the open (respectively, closed) neighborhood of v. For S ⊆ V (G),
let N(S) =

⋃
v∈S N(v) (respectively, N [S] = N(S) ∪ S) be the open (respec-

tively, closed) neighborhood of S. The number degS(v) = |NS(v)| (or dS(v) for
short) is the degree of v in S, where NS(v) = NG(v) ∩ S. The maximum and
the minimum degrees of a graph G are denoted by ∆(G) = maxv∈V (G) d(v) and
δ(G) = minv∈V (G) d(v), respectively. The degree sequence of G is denoted by
∆(G) = d(v1) ≥ · · · ≥ d(vn) = δ(G) (or ∆ = d1 ≥ · · · ≥ dn = δ for short). For
any S ⊆ V (G), let G[S] and G[V \S] (or G[S̄] for short) denote the subgraph of
G induced by S and V (G)\S, respectively. For two disjoint subsets S, T ⊆ V (G),
we define E(S, T ) = {uv ∈ E(G) : u ∈ S, v ∈ T} and e(S, T ) = |E(S, T )|. A
graph G with a partition V (G) = V1∪V2 is called (r, s)-local-regular if dV2(u) = r
for u ∈ V1 and dV1(v) = s for v ∈ V2.

The eigenvalues of an n×n real symmetric matrixM are denoted by λ1(M) ≥
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λ2(M) ≥ · · · ≥ λn(M), with the convention that the eigenvalues are arranged
in nonincreasing order. Given two nonincreasing real sequences A : λ1 ≥ λ2 ≥
· · · ≥ λn and B : η1 ≥ η2 ≥ · · · ≥ ηm with n > m. For i ∈ {1, 2, . . . ,m}, if
λi ≥ ηi ≥ λn−m+i, then B interlaces A. If there exists λi = ηi for 1 ≤ i ≤ k
and λn−m+i = ηi for k + 1 ≤ i ≤ m, where k ∈ [0,m] is an integer, then the
interlacing is tight.

Consider a partition π = (X1, X2, . . . , Xk) of the set {1, 2, . . . , n}, along
with a real symmetric matrix M where both the rows and columns are labeled
with elements from {1, 2, . . . , n}. Then the matrix M can be represented as the
following partitioned matrix

M =


M1,1 M1,2 · · · M1,k

M2,1 M2,2 · · · M2,k
...

...
. . .

...
Mk,1 Mk,2 · · · Mk,k


with respect to π. The quotient matrix B of the matrix M with respect to π is
the k×k matrix whose entries are the average row sums of the blocks Mi,j of M .
The partition π is termed equitable if each block Mi,j of M possesses a constant
row sum.

Lemma 1 [3]. Let M be a real symmetric matrix. Then the following holds.

(1) The eigenvalue sequence B of B interlaces with A of M ;

(2) the partition is equitable if the interlacing is tight.

2. Results on Defensive (Global Offensive) k-Alliance Number

For a graph G of order n with degree sequence d1 ≥ · · · ≥ dn, a nonempty subset
S ⊆ V (G) is defined as a defensive k-alliance of G, where k ∈ {−d1, . . . , d1}, if
for any v ∈ S,

degS(v) ≥ degV \S(v) + k.

The minimum cardinality defensive k-alliances of G is called the defensive k-
alliance number, denoted by adk(G). In particular, ad−1(G) and ad0(G) are known
as the defensive alliance number and the strong defensive alliance number of
G [21].

The study of defensive k-alliances in graphs was originally introduced by
Kristiansen et al. [21]. They established tight bounds for ad−1(G) and ad0(G).
Subsequently, there has been considerable interest in determining the smallest
size of a defensive k-alliance. One of the classic problems is called the Defensive k-
alliance problem, that is, “Given a graph G of order n and a positive integer l < n.
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Does G have a k-defensive alliance of size at most l?” It has been demonstrated
in [29] that the defensive k-alliance problem is NP-complete. Therefore, there is
interest in establishing bounds for adk(G) in a graph.

In a recent study, Rodŕıguez-Velázquez, Yero and Sigarreta [27] presented
tight bounds for the defensive k-alliance number of graphs, incorporating its
algebraic connectivity −ρ−1

2 (G). This extends the finding of Rodŕıguez-Velázquez
and Sigarreta [26] to the cases of k = −1 and k = 0.

Theorem 2 [27]. Let G be a connected graph of order n with degree sequence
d1 ≥ · · · ≥ dn. For every k ∈ {−dn, . . . , d1}, we have

adk(G) ≥
⌈
n(k + 1− ρ−1

2 (G))

n− ρ−1
2 (G)

⌉
.

Moreover, this bound is sharp.

Motivated by their result, we investigate the connection between the eigen-
value ρa2(G) of a graph G and its defensive k-alliance number. This approach
offers a unified perspective on the adjacency spectrum, the Laplacian spectrum,
and the signless Laplacian spectrum of G.

Prior to presenting the proof of our main result, we require the following
lemma. This lemma serves as a tool for substantiating the pertinent conclusions
and plays a crucial role in the proof. It also establishes a connection between the
eigenvalues of a graph and its structural parameters.

Lemma 3. Suppose G is a graph of order n, and let V (G) = V1 ∪ V2 be a
partition of G with n1 = |V1| and n2 = |V2| such that x =

∑
v∈V1

dG(v)/n1 ≤ y =∑
v∈V2

dG(v)/n2. Then

(1) ρa2(G) ≥ (a+ 1)x− nt

n1n2
,

(2) ρan(G) ≤ (a+ 1)y − nt

n1n2
,

where t = e(V1, V2). If the equality holds in (1) (respectively, (2)), then x = y.
Moreover, if G is regular, then the equality holds in (1) (or respectively, (2)) only

if G is a
(

t
n1
, t
n2

)
-local-regular graph.

Proof. Let B represent the quotient matrix of aD + A associated with the par-
tition V (G) = V1 ∪ V2. Then

B =

(
(a+ 1)x− t

n1

t
n1

t
n2

(a+ 1)y − t
n2

)
.
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Through direct computation, we have

λ2 −
[
(1 + a)(x+ y)− nt

n1n2

]
λ+

[
(1 + a)x− t

n1

] [
(1 + a)y − t

n2

]
− t2

n1n2
.

Hence

(3)

λ1(B) =
1

2

(
(1 + a)(x+ y)− nt

n1n2
+
√
r

)
,

λ2(B) =
1

2

(
(1 + a)(x+ y)− nt

n1n2
−
√
r

)
,

where

r =

[
(1 + a)(x+ y)− nt

n1n2

]2
− 4

[
(a+ 1)x− t

n1

] [
(a+ 1)y − t

n2

]
+

4t2

n1n2

= (a+ 1)2 (y − x)2 +

(
nt

n1n2

)2

− 2(a+ 1) (y − x)

(
t

n2
− t

n1

)
.(4)

Note that x ≤ y. Then by (4), we have

(5) r ≥
[

nt

n1n2
− (a+ 1)(y − x)

]2
and

(6) r ≤
[
(a+ 1)(y − x) +

nt

n1n2

]2
.

Combining (3) with (5), we have

(7)

λ2(B) ≤
1

2

{[
(a+ 1) (x+ y)− nt

n1n2

]
−
∣∣∣∣ nt

n1n2
− (a+ 1)(y − x)

∣∣∣∣}

=

{
(a+ 1)y − nt

n1n2
, if nt

n1n2
> (a+ 1)(y − x),

(a+ 1)x, if nt
n1n2

≤ (a+ 1)(y − x).

Moreover, if nt
n1n2

≤ (a + 1)(y − x), then (a + 1)x ≤ (a + 1)y − nt
n1n2

. Therefore,

(7) implies that λ2(B) ≤ (a+ 1)d̄2 − nt
n1n2

.

Similarly, by (3) and (6), we have

(8) λ2(B) ≥ (a+ 1)x− nt

n1n2
.
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Moreover, Lemma 1 implies that ρa2(G) ≥ λ2(B) ≥ ρan(G). Thus, we have

ρa2(G) ≥ λ2(B) ≥ (a+ 1)d̄1 −
nt

n1n2
and ρan(G) ≤ λ2(B) ≤ (a+ 1)d̄2 −

nt

n1n2
.

If the equality holds in (1) (or respectively, (2)), then the above inequalities must
be equalities. Then ρa2(G) = λ2(B) (or respectively, ρan(G) = λ2(B)), x = y from
(5) and (6). Moreover, if G is a d-regular graph, it follows that ρa1(G) = (1+ a)d
and x = y = d. From (3) and (4), we have λ1(B) = (1+a)d. Thus, ρa1(G) = λ1(B),
and thus Lemma 1 implies that the partition V (G) = V1 ∪ V2 is equitable. For
the case of ρan(G) = λ2(B), a similar analysis applies. Therefore, dV2(u) =

t
n1

for

any u ∈ V1 and dV1(v) = t
n2

for any v ∈ V2. In other words, G is a
(

t
n1
, t
n2

)
-

local-regular graph.

Theorem 4. Let G be a connected graph of order n with degree sequence d1 ≥
· · · ≥ dn = δ. Then for every k ∈ {−dn, . . . , d1}, we have

(9) adk(G) ≥
⌈
n(k + 1 + (a+ 1)δ − ρa2)

n+ (a+ 1)δ − ρa2

⌉
.

Moreover, this bound is sharp.

Proof. Let S ⊆ V (G) be a defensive k-alliance in G. Then for every vertex
v ∈ S, we have degV \S(v)+k ≤ degS(v) ≤ |S|−1. It follows that t = e(S, V \S) =∑
v∈S

degV \S(v) ≤ |S|(|S| − k − 1). By Lemma 3, we have

ρa2(G) ≥ (1 + a)δ − nt

|S|(n− |S|)
≥ (1 + a)δ − n(|S| − k − 1)

n− |S|
.

Hence, we derive the lower bound for adk(G) as

adk(G) ≥
⌈
n[k + 1 + (a+ 1)δ − ρa2]

n+ (a+ 1)δ − ρa2

⌉
.

On the other hand, note that if G is d-regular graph of order n, then Aa(G) =
adIn+A(G). Hence, there is a linear correspondence between the spectra of Aa(G)
and A(G) as ρak(G) = ad + ρ0k(G) for 1 ≤ k ≤ n. Note that adk(Kn) =

⌈
n+k+1

2

⌉
and the eigenvalues of Aa(Kn) are (1 + a)(n− 1), a(n− 1)− 1, . . . , a(n− 1)− 1.
That is, ρa2(Kn) = a(n− 1)− 1. Thus

adk(Kn) ≥
⌈
n(k + 1 + (a+ 1)(n− 1)− a(n− 1) + 1)

n+ (a+ 1)(n− 1)− a(n− 1) + 1

⌉
=

⌈
n+ k + 1

2

⌉
,

which indicates that (9) is sharp for Kn.
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Recall that A−1(G) = −L(G). Then Theorem 4 coincides with Theorem 2
when a = −1, and so Theorem 4 can be regarded as a more generalization of
Theorem 2. On the other hand, let a = 0 and a = 1, we also derive lower
bounds for the defensive k-alliance number adk(G) in relation to ρ02(G) and ρ12(G),
respectively.

Corollary 5. Let G be a connected graph of order n with degree sequence d1 ≥
· · · ≥ dn = δ. Then for every k ∈ {−dn, . . . , d1}, we have

adk(G) ≥
⌈
n(k + 1 + δ − ρ02)

n+ δ − ρ02

⌉
and adk(G) ≥

⌈
n(k + 1 + 2δ − ρ12)

n+ 2δ − ρ12

⌉
.

Moreover, both bounds are sharp.

Furthermore, we also establish the following lower bound on adk(G) involving
its maximum degree.

Theorem 6. Let G be a connected graph of order n with degree sequence ∆ =
d1 ≥ · · · ≥ dn = δ. Then for every k ∈ {−dn, . . . , d1}, we have

(10) adk(G) ≥

⌈
n((a+ 1)δ − ρa2 −

⌊
∆−k
2

⌋
)

(a+ 1)δ − ρa2

⌉
.

Moreover, this bound is sharp.

Proof. Let S ⊆ V (G) be a defensive k-alliance in G. Then for any v ∈ S, we
have

∆(G)≥d(v) = degV \S(v)+degS(v)≥degV \S(v)+degV \S(v)+k ≥ 2 degV \S(v)+k,

that is ⌊
∆− k

2

⌋
≥ degV \S(v).

It follows that

t = e(S, V \S) =
∑
v∈S

degV \S(v) ≤ |S|
⌊
∆− k

2

⌋
.

Moreover, by Lemma 3, we have

ρa2(G) ≥ (1 + a)δ − nt

|S|(n− |S|)
≥ (1 + a)δ −

n
⌊
∆−k
2

⌋
n− |S|

.

This yields the following lower bound for adk(G)

adk(G) ≥

⌈
n((a+ 1)δ − ρa2 −

⌊
∆−k
2

⌋
)

(a+ 1)δ − ρa2

⌉
.
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Recall that adk(Kn) =
⌈
n+k+1

2

⌉
and ρa2(Kn) = a(n− 1)− 1. Thus

adk(Kn) ≥

⌈
n((a+ 1)(n− 1)− a(n− 1) + 1−

⌊
n−1−k

2

⌋
)

(a+ 1)(n− 1)− a(n− 1) + 1

⌉
=

⌈
n+ k + 1

2

⌉
,

which shows that the lower bound in Theorem 6 is sharp for Kn.

Similarly, We have the following corollary.

Corollary 7. Let G be a connected graph of order n with degree sequence ∆ =
d1 ≥ · · · ≥ dn = δ. Then for every k ∈ {−dn, . . . , d1}, we have

adk(G) ≥

⌈
n(δ − ρ02 −

⌊
∆−k
2

⌋
)

δ − ρ02

⌉
and adk(G) ≥

⌈
n(2δ − ρ12 −

⌊
∆−k
2

⌋
)

2δ − ρ12

⌉
.

Moreover, both bounds are sharp.

Recall that A−1(G) = −L(G). Then we also have the following corollary,
which coincides with a result of Rodŕıguez-Velázquez, Yero and Sigarreta in [27].

Corollary 8 [27]. Let G be a connected graph of order n with degree sequence
∆ = d1 ≥ · · · ≥ dn. Then for every k ∈ {−dn, . . . , d1}, we have

adk(G) ≥

⌈
n(−ρ−1

2 (G)−
⌊
∆−k
2

⌋
)

−ρ−1
2 (G)

⌉
.

Moreover, this bound is sharp.

Remark 9. For the cases of k = −1 and k = 0, it is easy to obtain lower bounds
for ad−1(G) and ad0(G) in terms of ρ02, ρ

1
2 and −ρ−1

2 for a connected graph G, which
covers a result concerning the algebraic connectivity −ρ−1

2 due to Rodŕıguez-
Velázquez and Sigarreta in [26].

For any subset S ⊆ V (G), the boundary of S is defined as

∂(S) =
⋃
v∈S

NV \S(v) = N(S) ∩ S̄.

A nonempty set S ⊆ V (G) is a global offensive k-alliance of G, where k ∈
{2− d1, . . . , d1}, if S is a dominating set and for any v ∈ ∂(S),

degS(v) ≥ degV \S(v) + k.

The global offensive k-alliance number γok(G) is the minimum cardinality among
all global offensive k-alliances of G. In particular, γo1(G) (respectively γo2(G)) are
known as the global (respectively strong) offensive alliance number of G [21, 10].
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In [12], Fernau et al. investigated the complexity of global offensive k-allia-
nces. They demonstrated that determining optimal global offensive k-alliances is
an NP-complete. In the same paper, they also derived a tight bound on γok(G)
in terms of its −ρ−1

n (G).

Theorem 10 [12]. Let G be a connected graph of order n with degree sequence
d1 ≥ · · · ≥ dn = δ. Then for every k ∈ {2 − d1, . . . , d1}, we have γok(G) ≥⌈

n⌈ δ+k
2 ⌉

−ρ−1
n (G)

⌉
. Moreover, this bound is sharp.

Motivated by their result, we investigate the connection between ρan(G) of
a graph G and its global offensive k-alliance number. The main results are as
follows.

Theorem 11. Let G be a connected graph of order n with degree sequence ∆ =
d1 ≥ · · · ≥ dn = δ. Then for every k ∈ {2 − d1, . . . , d1}, we have γok(G) ≥⌈

n⌈ δ+k
2 ⌉

(1+a)∆−ρan

⌉
. Moreover, this bound is sharp.

Proof. Let S ⊆ V (G) be a global offensive k-alliance in G. Then for any v ∈
∂(S), we have

2 degS(v) ≥ degS(v) + degV \S(v) + k = d(v) + k.

Therefore,

t = e(S, S̄) =
∑
v∈S̄

degS(v) ≥ (n− |S|)
⌈
d(v) + k

2

⌉
≥ (n− |S|)

⌈
δ + k

2

⌉
.

Since d̄i ≤ ∆, then by Lemma 3, we have

ρan(G) ≤ (1 + a)∆− nt

|S|(n− |S|)
≤ (1 + a)∆− n

|S|

⌈
δ + k

2

⌉
.

Hence, we derive the lower bound for γok(G) as

(11) γok(G) ≥

⌈
n
⌈
δ+k
2

⌉
(1 + a)∆− ρan

⌉
.

For G ∼= Kn, we have ρan(Kn) = a(n− 1)− 1. Thus

γok(Kn) =

⌈
n+ k − 1

2

⌉
≥

⌈
n
⌈
n−1+k

2

⌉
(1 + a)(n− 1)− a(n− 1) + 1

⌉
=

⌈
n+ k − 1

2

⌉
.

This indicates that (11) is sharp for Kn.
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Recall that A−1(G) = −L(G). Then Theorem 11 coincides with Theorem 10
when a = −1, and so Theorem 11 can be regarded as a generalization of The-
orem 10. Similarly, We also derive lower bounds for γok(G) based on ρ0n(G) and
ρ1n(G), respectively.

Corollary 12. Let G be a connected graph of order n with degree sequence ∆ =
d1 ≥ · · · ≥ dn = δ. Then for every k ∈ {2− d1, . . . , d1}, we have

γok(G) ≥

⌈
n
⌈
δ+k
2

⌉
∆− ρ0n

⌉
and γok(G) ≥

⌈
n
⌈
δ+k
2

⌉
2∆− ρ1n

⌉
.

Moreover, both bounds are sharp.

Remark 13. For the cases of k = 1 and k = 2, it is easy to obtain lower
bounds for γo1(G) and γo2(G) in terms of ρ0n, ρ

1
n and −ρ−1

n for a connected graph
G, which covers a result concerning the Laplacian spectral radius −ρ−1

n due to
Rodŕıguez-Velázquez and Sigarreta in [26].

3. Results on the Total (Signed) Domination Number

We refer to S ⊆ V (G) as a total dominating set of G if N(S) = V (G). Among
all total dominating sets of G, the one with the minimum cardinality is referred
to as the total domination number of G, denoted by γt(G). The notion of to-
tal domination in graphs was first introduced by Cockayne, Dawes, and Hedet-
niemi [6] and has subsequently been extensively explored in the field of graph
theory (see [17, 18]).

The correlation between the eigenvalues of a graph and its domination num-
ber was initially investigated by Lu, Liu and Tian [24]. They provided bounds
on the Laplacian spectrum of G involving the domination number, which were
later improved by Nikiforov [25] and Har [15], respectively. Furthermore, Li [22]
generalized the two results of Lu, Liu and Tian [24] from the domination number
to the k-domination number. This result was also extended by Liu and Lu [23]
to the signless Laplacian spectrum. Furthermore, Chen, Li, and Shiu [4] further
extended the results of Liu and Lu [23] from the signless Laplacian spectrum
of a graph to the Aα-spectrum. To date, this topic has received considerable
attention, and we refer the interested reader to the book [18] for more details.

Recently, Shi, Kang and Wu [28] studied the relationship between the total
domination number of a graph and its algebraic connectivity.

Theorem 14 [28]. Let G be a connected graph of order n ≥ 3. Then for G ≇ Kn,
we have

−ρ−1
2 (G) ≤

n
(
n− 3

2γt(G) + 1
2

)
n− γt(G)

.
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Motivated by Theorem 14, We explore the relationship between ρa2(G) (re-
spectively ρan(G)) of G and γt(G). Before presenting the proof of our main result,
we need the following results.

Lemma 15 [6]. Let S be a minimal total dominating set of a connected graph
G. Then for any v ∈ S, it has at least one of the following two properties.

P(1) : There exists a vertex u ∈ S̄ such that N(u) ∩ S = {v}.
P(2) : G[S \ {v}] contains an isolated vertex.

Lemma 16 [19]. Let G ≇ Kn be a connected graph of order n ≥ 3. The graph G
has a vertex set S with |S| = γt(G), and for any v ∈ S, it either satisfies property
P(1) or is adjacent to a vertex of degree 1 in G[S] that has property P(1).

Theorem 17. Let G ≇ Kn be a connected graph of order n ≥ 3 with minimum
degree δ. Then

(12) ρa2(G) ≥ (1 + a)δ −
n
(
n− 3

2γt(G) + 1
2

)
n− γt(G)

.

Equality holds only if G is a
(

t
γt(G) ,

t
n−γt(G)

)
-local-regular graph, where t =

γt(G)
(
n− 3

2γt(G) + 1
2

)
.

Proof. Let S be a minimum total dominating set of G. We now consider two
cases based on whether all vertices in S satisfy property P(1) or not.

Case 1. Every vertex v ∈ S has property P(1). In this case,
∑

v∈S |N(v) \N [S \ v]| ≥
|S| = γt(G). Therefore,

e(S, S̄) ≤
∑
v∈S

|N(v) \N [S \ v]|+ |S|

(
|S̄| −

∑
v∈S

|N(v)−N [S − v]|

)

= |N(S) ∩ S̄|+ γt(G)

(
n− γt(G)−

∑
v∈S

|N(v) \N [S \ v]|

)
= γt(G)(n− γt(G))− (γt(G)− 1)

∑
v∈S

|N(v) \N [S \ v]|

≤ γt(G)(n− 2γt(G) + 1).

Let x =
∑

x∈S d(x)

|S| and y =
∑

y∈S̄ d(y)

|S̄| . Then d̄1 = min {x, y}. By Lemma 3, we

have

(13) ρa2(G) ≥ (1+ a)d̄1−
n (n− 2γt(G) + 1)

n− γt(G)
> (1+ a)δ−

n
(
n− 3

2γt(G) + 1
2

)
n− γt(G)

.
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Case 2. There exists at least one vertex in S which has no property P(1). In
this situation, we first perform a detailed partition of the set S. Let M denote
the set of vertices in S that possess property P(1) and N = S \M . Thus,
N ̸= ∅. For every v ∈ M , let M1 denote the set of vertices in M that satisfy
dS(v) = 1 and there exists a vertex u ∈ B such that uv ∈ E(G). It follows that
|N | ≤ |M1| ≤ |M | by Lemma 16. Then γt(G) = |S| = |M |+ |N | ≤ 2|M |. So we
have 1

2γt(G) ≤ |M | ≤
∑

v∈M |N(v) \N [S \ v]|. Thus

e(S, S̄) ≤
∑
v∈M

|N(v) \N [S \ v]|+ |S|

(
|S̄| −

∑
v∈M

|N(v)−N [S − v]|

)
= γt(G)(n− γt(G))− (γt(G)− 1)

∑
v∈M

|N(v) \N [S \ v]|

≤ γt(G)(n− γt(G))− 1

2
γt(G)(γt(G)− 1)

= γt(G)

(
n− 3

2
γt(G) +

1

2

)
.

Then by Lemma 3, we have

(14) ρa2(G) ≥ (1 + a)δ −
n
(
n− 3

2γt(G) + 1
2

)
n− γt(G)

.

If ρa2(G) = (1+a)δ− n(n− 3
2
γt(G)+ 1

2)
n−γt(G) . Then the above all inequalities must be

equality, and thus d̄1 = δ. Let d̄2 = max{x, y}, then we have d̄1 = d̄2 = δ from
Lemma 3. That is, G is a δ-regular graph. Also, by (13), (14) and Lemma 3,
dS̄(v) =

t
|S| for every v ∈ S and dS(u) =

t
|S̄| for every u ∈ S̄. It follows that G

is a
(

t
γt(G) ,

t
n−γt(G)

)
-local-regular graph, where t = γt(G)

(
n− 3

2γt(G) + 1
2

)
. The

proof of Theorem 17 is completed.

Theorem 18. Let G be any graph of order n with maximum degree ∆. Then

(15) ρan(G) ≤ (1 + a)∆− n

γt(G)
.

Equality holds only if G is a
(
(n−γt(G))

γt(G) , 1
)
-local-regular graph.

Proof. Let S be a minimum total dominating set of G. Then, by the definition
of the total dominating set, we have that

(16) t = e(S, S̄) ≥ n− |S| = n− γt(G).
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Moreover, by Lemma 3, we have

(17) ρan(G) ≤ (1 + a)∆− ne(S, S̄)

|S|(n− |S|)
≤ (1 + a)∆− n

γt(G)
.

If ρan(G) = (1+ a)∆− n
γt(G) , then the above all inequalities must be equality.

Similarly to the proof of Theorem 17, it follows that G is a ∆-regular graph.
Additionally, dS̄(v) =

(n−γt(G))
γt(G) for every v ∈ S and dS(u) = 1 for every u ∈ S̄,

as derived from Lemma 3 and (16). Therefore, G is a
(
(n−γt(G))

γt(G) , 1
)
-local-regular

graph. This completes the proof of Theorem 18.

For a = 0,−1, 1, we then have the following results on A(G), L(G) and Q(G),
respectively.

Corollary 19. For any connected graph G of order n ≥ 3 and G ≇ Kn, we have

ρ02(G) ≥ δ −
n
(
n− 3

2γt(G) + 1
2

)
n− γt(G)

and ρ12(G) ≥ 2δ −
n
(
n− 3

2γt(G) + 1
2

)
n− γt(G)

.

Both equalities hold only if G is a
(

t
γt(G) ,

t
n−γt(G)

)
-local-regular graph, where

t = γt(G)
(
n− 3

2γt(G) + 1
2

)
.

Corollary 20. For any connected graph G of order n with maximum degree ∆,
we have

ρ0n(G) ≤ ∆− n

γt(G)
and ρ1n(G) ≤ 2∆− n

γt(G)
.

Both equalities hold only if G is a
(
(n−γt(G))

γt(G) , 1
)
-local-regular graph.

Corollary 21. For a connected graph G of order n, we have −ρ−1
n (G) ≥ n

γt(G) ,

the equality holds only if G is a
(
(n−γt(G))

γt(G) , 1
)
-local-regular graph.

In [2], Brešar, Cornet, Dravec and Henning proved an upper bound on the
zero forcing number Z(G) of a graphG, expressed in terms of the total domination
number γt(G) of G, where the zero forcing number Z(G) was introduced in [1]
and was studied by [20, 5, 32] in terms of various eigenvalues of a graph.

Theorem 22 [2]. For a connected graph G of order n, we have Z(G) ≤ n−γt(G).

By Theorem 18, we have γt(G) ≥
⌈

n
(1+a)∆−ρan(G)

⌉
. This together with Theo-

rem 22 implies the following upper bound on Z(G) in terms of ρan(G).

Corollary 23. Let G be a connected graph of order n. Then

Z(G) ≤ n−
⌈

n

(1 + a)∆− ρan(G)

⌉
.
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Remark 24. The bound in Corollary 23 is sharp and may be seen as follows.
For G ∼= Kn, we have

n− 1 = Z(Kn) ≤ n−
⌈

n

(1 + a)(n− 1)− a(n− 1) + 1

⌉
= n− 1.

On the other hand, for a = −1, a = 0 and a = 1, we also have the upper bounds
on Z(G) in terms of its −ρ−1

n , ρ0n, and ρ1n, respectively.

A function f : V → {−1, 1} is a signed dominating function if for every vertex
v ∈ V (G), the closed neighborhood of v contains more vertices with function value
1 than with −1. We will use the symbol f [v] to denote the sum

∑
x∈N [v] f(x).

Therefore, a function f is termed a signed dominating function if, for every v ∈ V ,
f [v] ≥ 1. The weight of f is denoted as ω(f) =

∑
x∈V f(x). For a subset S ⊆ V ,

we define f(S) =
∑

v∈S f(v), and then ω(f) = f(V ). The signed domination
number γs(G) of G, is the minimum weight of a signed dominating function on
G. This concept was defined in [9] and has been studied by several authors
including [28, 8, 30].

Next we study the connection between the eigenvalues ρa2(G) (respectively
ρan(G)) and γt(G) for a connected graph G. We begin with the case when G is
regular.

Theorem 25. Let G be a d-regular graph of order n. Then

ρan(G) ≤

(1 + a)d− n(d+3)
γs(G)+n , d is odd,

(1 + a)d− n(d+2)
γs(G)+n , d is even,

the equality holds if and only if G ∼= Kn.

Proof. Let f be an signed dominating function on G for which ω(f) = γs(G).
Let P denote the set of vertices assigned the value 1 by f , and M denote the set
of vertices assigned the value -1 by f . Clearly, |P |+ |M | = n. We now consider
the following two cases according to the parity of d.

Case 1. d is odd. For any u ∈ P , we may assume that dM (u) = s. Through
the definition of the signed dominating function, we have s ≥ 0, dP (u) = d − s
and f [u] = d − s − s + 1 = d − 2s + 1 ≥ 2. Therefore, s ≤ 1

2(d − 1). On
the other hand, we may assume that dP (v) = r for any v ∈ M . Through the
definition of the signed dominating function, we have r ≥ 2, dM (v) = d − r and
f [v] = r − (d− r)− 1 = 2r − d− 1 ≥ 2, which implies that r ≥ 1

2(d+ 3). Recall
that dP (v) = r, then

e(P,M) =
∑
v∈M

dP (v) = r|M | ≥ 1

2
m(d+ 3).
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Let |P | = p and |M | = m. Note that 2p = γs(G) + n and d̄i = d. Hence, by
Lemma 3, we have

ρan(G) ≤ (1 + a)d− ne(P,M)

pm
≤ (1 + a)d− n(d+ 3)

2p
= (1 + a)d− n(d+ 3)

γs(G) + n
.

If ρan(G) = (1+a)d− n(d+3)
γs(G)+n , then the above all inequalities must be equality. By

Lemma 3, we have dM (u) = e(P,M)
|P | = s for every u ∈ P and dP (v) =

e(P,M)
|M | = r

for every v ∈ M . Then s|P | = r|M |. Next, we claim that d = n− 1. Assume the
opposite, namely, that d < n− 1. It follows that ρan(G) < ad− 1 from the proof
of Theorem 28. Hence

2p− n = γs(G) =
n(d+ 3)

(1 + a)d− ρan(G)
− n <

n(d+ 3)

d+ 1
− n.

Therefore,

2p <
n(d+ 3)

d+ 1
=

(d+ 3)(p+m)

d+ 1
=

d+ 3

d+ 1

(
p+

sp

r

)
=

d+ 3

d+ 1
p

(
1 +

2s

d+ 3

)
.

It follows that s > 1
2(d− 1). But this is impossible since s ≤ 1

2(d− 1). Therefore,
d = n− 1 and so G ∼= Kn.

On the other hand, let G = Kn where n is even, and thus γs(Kn) = 2. Then

ρan(G) = ad− 1 ≥ (1 + a)d− n(d+ 3)

γs(G) + n
= (1 + a)d− (d+ 1)(d+ 3)

2 + d+ 1
= ad− 1.

Case 2. d is even. Similarly to the proof of Case 1, we may assume that
dM (u) = s for any u ∈ P . Then s ≥ 0, dP (u) = d−s and f [u] = d−s−s+1 = d−
2s+1 ≥ 1. Therefore, s ≤ d

2 . On the other hand, we may assume that dP (v) = r
for any v ∈ M . Through the definition of the signed dominating function, we
have r ≥ 2, dM (v) = d − r and f [v] = r − (d − r) − 1 = 2r − d − 1 ≥ 1, which
implies that r ≥ 1

2(d+2). Recall that dP (v) = r, then e(P,M) =
∑

v∈M dP (v) =
r|M | ≥ 1

2m(d+ 2). By Lemma 3 and 2p = γs(G) + n,

ρan(G) ≤ (1 + a)d− ne(P,M)

pm
≤ (1 + a)d− n(d+ 2)

2p
= (1 + a)d− n(d+ 2)

γs(G) + n
.

If ρan(G) = (1+a)d− n(d+2)
γs(G)+n , then the above all inequalities must be equality. By

Lemma 3, we have dM (u) = e(P,M)
|P | = s for every u ∈ P and dP (v) =

e(P,M)
|M | = r

for every v ∈ M . Then s|P | = r|M |. Next, we claim that d = n− 1. Assume the
opposite, namely, that d < n− 1. It follows that ρan(G) < ad− 1 from the proof
of Theorem 28. Hence

2p− n = γs(G) =
n(d+ 2)

(1 + a)d− ρan(G)
− n <

n(d+ 2)

d+ 1
− n.
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Therefore,

2p <
n(d+ 2)

d+ 1
=

(d+ 2)(p+m)

d+ 1
=

d+ 2

d+ 1

(
p+

sp

r

)
=

d+ 2

d+ 1
p

(
1 +

2s

d+ 2

)
.

It follows that s > d
2 . But this is impossible since s ≤ d

2 . Therefore, d = n − 1
and so G ∼= Kn.

On the other hand, let G = Kn where n is odd, and thus γs(Kn) = 1. Then

ρan(G) = ad− 1 ≥ (1 + a)d− n(d+ 2)

γs(G) + n
= (1 + a)d− (d+ 1)(d+ 2)

1 + d+ 1
= ad− 1.

This completes the proof of Theorem 25.

Remark 26. For the cases of a = 0, a = 1 and a = −1, the connection between
the signed domination number in terms of ρ0n, ρ

1
n and −ρ−1

n for a d-regular graph
G can be easily obtained, which covers a result concerning the Laplacian spectral
radius −ρ−1

n due to Shi, Kang and Wu in [28].

Moreover, for general graphs, we have the following result.

Theorem 27. Let G be a connected graph of order n with minimum degree δ.
Then

(18) ρa2(G) ≥ (1 + a)δ − n (n+ γs(G)− 2)

n− γs(G)
.

Moreover, this bound is sharp.

Proof. Let f be an signed dominating function on G for which ω(f) = γs(G).
Let P denote the set of vertices assigned the value 1 by f , and M denote the set
of vertices assigned the value -1 by f . Clearly, |P | + |M | = n. For every v ∈ P ,
we may observe that dP (v) ≥ dM (v) since f [v] ≥ 1 for every v ∈ V (G). Let
|P | = p. Then we have

e(P,M) =
∑
v∈P

dM (v) ≤
∑
v∈P

dP (v) ≤ p(p− 1).

By Lemma 3 and 2p = γs(G) + n, we have

ρ02(G) ≥ (1 + a)δ − n (n+ γs(G)− 2)

n− γs(G)
.

For G = Kn and n is odd, we have γs(G) = 1 and ρa2(G) = a(n− 1)− 1. Thus,

ρa2(Kn) = a(n− 1)− 1 ≥ (1 + a)(n− 1)− n (n+ 1− 2)

n− 1
= a(n− 1)− 1.

This indicates that (18) is sharp for Kn.
The proof of Theorem 27 is completed.
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Theorem 28. Let G be a connected graph of order n with maximum degree ∆.
Then

ρan(G) ≤ (1 + a)∆− 4n

γs(G) + n
,

the equality holds if and only if G ∼= K3.

Proof. Let f be an signed dominating function on G for which ω(f) = γs(G).
Let P denote the set of vertices assigned the value 1 by f , and M denote the set
of vertices assigned the value -1 by f . Clearly, |P |+ |M | = n. For every v ∈ M ,
we may observe that dP (v) ≥ 2 since f [v] ≥ 1 for every v ∈ V (G). Let |P | = p.
Then

(19) e(P,M) =
∑
v∈M

dP (v) ≥ 2(n− p).

By Lemma 3 and 2p = γs(G) + n, then

ρan(G) ≤ (1 + a)∆− ne(P,M)

|P ||M |
≤ (1 + a)∆− 2n

p
= (1 + a)∆− 4n

γs(G) + n
.

If ρan(G) = (1+a)∆− 4n
γs(G)+n , then the above all inequalities must be equality.

It follows that G is a ∆-regular graph. By Lemma 3, dM (u) = r1 for every u ∈ P

and dP (v) = r2 for every v ∈ M , where r1 =
e(P,M)

|P | and r2 =
e(P,M)
|M | , respectively.

Then by (19), we have r2 = 2. We also have r1|P | = r2|M | = 2|M |.

Claim 1. ∆(G) = n− 1.

Proof. Assume the opposite, namely, that ∆(G) < n−1. By Wely’s inequalities,
we have

ρan(G) ≤ λ1(aD(G)) + λn(A(G)) ≤ a∆− 1,

the equality holds if and only if G ∼= Kn. It follows that ρ
a
n(G) < a∆− 1. Hence

γs(G) =
4n

(1 + a)∆− ρan(G)
− n <

4n

∆+ 1
− n.

Since 2p = γs(G) + n, we have

2p− n = γs(G) <
4n

∆(G) + 1
− n =

(4 + 2r1)p

∆(G) + 1
− n.

Therefore,

p <
(2 + r1)p

∆(G) + 1
.

It follows that ∆(G) < r1 + 1, i.e., r1 = ∆(G). But this is impossible. Since

2n = 2p+ 2|M | = 2p+ r1p ≥ n+ 1 + r1p ≥ n+ 1 +∆p ≥ n+ 1 + 2p ≥ 2n+ 2,

a contradiction.
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Since G is a ∆-regular graph, G ∼= Kn. It follows that ρan(G) = a∆(G) − 1.
Thus

p =
(2 + r1)p

∆(G) + 1
,

which implies that 2+r1 = ∆(G)+1, and thus r1 = ∆(G)−1, i.e., r1 = n−2. Then
we have r1p = (n− 2)p = 2|M |. Recall that n = p+ |M |. So (n− 2)p = 2n− 2p,
which implies that p = 2 and |M | = 1. Note that r2 = 2, and so G ∼= K3.

On the other hand, for G = K3, γs(K3) = 1. Then we have

ρan(K3) = 2a− 1 ≥ 2(1 + a)− n (n+ 1− 2)

n− 1
= 2a− 1.

This completes the proof of Theorem 28.

For a = 0,−1, 1, we then have the following results on A(G), L(G) and Q(G),
respectively.

Corollary 29. Let G be a connected graph of order n with minimum degree δ.
Then

ρ02(G) ≥ δ − n (n+ γs(G)− 2)

n− γs(G)
and ρ12(G) ≥ 2δ − n (n+ γs(G)− 2)

n− γs(G)
.

Moreover, both bounds are sharp.

Corollary 30. Let G be a connected graph of order n with minimum degree δ.
Then

ρ0n(G) ≤ ∆− 4n

γs(G) + n
and ρ1n(G) ≤ 2∆− 4n

γs(G) + n
,

both equalities hold if and only if G ∼= K3.

Since A−1(G) = −L(G), we also have the following corollary, which is a result
in [28].

Corollary 31 [28]. Let G be a connected graph of order n. Then the following
holds

−ρ−1
2 (G) ≤ n (n+ γs(G)− 2)

n− γs(G)
and − ρ−1

n (G) ≥ 4n

γs(G) + n
.

Moreover, both bounds are sharp and the right equality holds if and only if
G ∼= K3.
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[2] B. Brešar, M.G. Cornet, T. Dravec and M.A. Henning, Bounds on zero forcing
using (upper) total domination and minimum degree, Bull. Malays. Math. Sci. Soc.
47 (2024) 143.
https://doi.org/10.1007/s40840-024-01744-x

[3] A.E. Brouwer and W.H. Haemers, Spectra of Graphs (Springer, New York, NY,
2012).
https://doi.org/10.1007/978-1-4614-1939-6

[4] H.-Z. Chen, J. Li and W.C. Shiu, Some results on the Aα-eigenvalues of a graph,
Linear Multilinear Algebra 71 (2023) 2998–3012.
https://doi.org/10.1080/03081087.2022.2135676

[5] H.-Z. Chen, J. Li and S.-J. Xu, Spectral bounds for the zero forcing number of a
graph, Discuss. Math. Graph Theory 44 (2024) 971–982.
https://doi.org/10.7151/dmgt.2482

[6] E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi, Total domination in graphs, Net-
works 10 (1980) 211–219.
https://doi.org/10.1002/net.3230100304
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