DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2023): 0.5

5-year Journal Impact Factor (2023): 0.6

CiteScore (2023): 2.2

SNIP (2023): 0.681

Discussiones Mathematicae Graph Theory

Article in press


Authors:

I.M. Pelayo

Ignacio M. Pelayo

Universitat Politècnica de Catalunya

email: ignacio.m.pelayo@upc.edu

0000-0002-6523-0611

J. Cáceres

José Cáceres

Universidad de Almer\'{\i}a

email: jcaceres@ual.es

0000-0003-2790-8484

Title:

Reconstructing a graph from the boundary distance matrix

PDF

Source:

Discussiones Mathematicae Graph Theory

Received: 2024-05-17 , Revised: 2024-09-24 , Accepted: 2024-09-28 , Available online: 2024-10-23 , https://doi.org/10.7151/dmgt.2567

Abstract:

A vertex $v$ of a connected graph $G$ is said to be a boundary vertex of $G$ if for some other vertex $u$ of $G$, no neighbor of $v$ is further away from $u$ than $v$. The boundary $\partial(G)$ of $G$ is the set of all of its boundary vertices. The boundary distance matrix $\hat{D}_G$ of a graph $G=([n],E)$ is the square matrix of order $\kappa$, with $\kappa$ being the order of $\partial(G)$, such that for every $i,j\in \partial(G)$, $[\hat{D}_G]_{ij}=d_G(i,j)$. Given a square matrix $\hat{B}$ of order $\kappa$, we prove under which conditions $\hat{B}$ is the distance matrix $\hat{D}_T$ of the set of leaves of a tree $T$, which is precisely its boundary. We show that if $G$ is either a block graph or a unicyclic graph, then $G$ is uniquely determined by the boundary distance matrix $\hat{D}_{G}$ of $G$ and we also conjecture that this statement holds for every connected graph $G$, whenever both the order $n$ and the boundary (and thus also the boundary distance matrix) of $G$ are prefixed. Moreover, an algorithm for reconstructing a 1-block graph (respectively, a unicyclic graph) from its boundary distance matrix is given, whose time complexity in the worst case is $O(n)$ (respectively, $O(n^2)$).

Keywords:

boundary, distance matrix, block graph, unicyclic graph, realizability

References:

  1. M. Ahmed and C. Wenk, Constructing street networks from GPS trajectories, in: Algorithms-ESA 2012, L. Epstein and P. Ferragina (Ed(s)), Lecture Notes in Computer Science 7501, (Springer, Berlin, Heidelberg, 2012) 60–71.
    https://doi.org/10.1007/978-3-642-33090-2_7
  2. U. Brandes and S. Cornelsen, Phylogenetic graph models beyond trees, Discrete Appl. Math. 157 (2009) 2361–2369.
    https://doi.org/10.1016/j.dam.2008.06.031
  3. P. Buneman, A note on the metric properties of trees, J. Combin. Theory Ser. B 17 (1974) 48–50.
    https://doi.org/10.1016/0095-8956(74)90047-1
  4. J. Cáceres, C. Hernando, M. Mora, I.M. Pelayo, M.L. Puertas and C. Seara, On geodetic sets formed by boundary vertices, Discrete Math. 306 (2006) 188–198.
    https://doi.org/10.1016/j.disc.2005.12.012
  5. J. Cáceres, C. Hernando, M. Mora, I.M. Pelayo, M.L. Puertas, C. Seara and D.R. Wood, On the metric dimension of Cartesian products of graphs, SIAM J. Discrete Math. 21 (2007) 423–441.
    https://doi.org/10.1137/050641867
  6. J. Cáceres and I.M. Pelayo, Metric locations in pseudotrees: A survey and new results (2023).
    arXiv: 2307.13403v2
  7. G. Chartrand, D. Erwin, G.L. Johns and P. Zhang, Boundary vertices in graphs, Discrete Math. 263 (2003) 25–34.
    https://doi.org/10.1016/S0012-365X(02)00567-8
  8. G. Chartrand, L. Lesniak and P. Zhang, Graphs and Digraphs, 6th Ed. (Chapman and Hall/CRC Press, 2016).
    https://doi.org/10.1201/b19731
  9. T.K. Day, J. Wang and Y. Wang, Graph reconstruction by discrete Morse theory, in: Proc. 34th International Symposium on Computational Geometry, (Leibniz International Proceedings in Informatics (LIPIcs) 99 2018) 31:1–31:15.
    https://doi.org/10.4230/LIPIcs.SoCG.2018.31
  10. R.L. Graham and H.O. Pollack, On the addressing problem for loop switching, Bell Syst. Tech. J. 50 (1971) 2495–2519.
  11. M. Gromov, Filling Riemannian manifolds, J. Differential Geom. 18 (1983) 1–147.
    https://doi.org/10.4310/jdg/1214509283
  12. S.L. Hakimi and S.S. Yau, Distance matrix of a graph and its realizability, Quart. Appl. Math. 22 (1965) 305–317.
    https://doi.org/10.1090/qam/184873
  13. Y. Hasegawa and A. Saito, Graphs with small boundary, Discrete Math. 307 (2007) 1801–1807.
    https://doi.org/10.1016/j.disc.2006.09.028
  14. C. Hernando, M. Mora, I.M. Pelayo and C. Seara, Some structural, metric and convex properties of the boundary of a graph, Ars Combin. 109 (2013) 267–283.
  15. E. Howorka, On metric properties of certain clique graphs, J. Combin. Theory Ser. B 27 (1979) 67–74.
    https://doi.org/10.1016/0095-8956(79)90069-8
  16. S. Kannan, C. Mathieu and H. Zhou, Graph reconstruction and verification, ACM Trans. Algorithms 14(4) (2018) Article No. 40 1–30.
    https://doi.org/10.1145/3199606
  17. P.J. Kelly, On Isometric Transformations, Ph.D. Thesis (University of Wisconsin, 1942).
  18. D. Kuziak, The strong resolving graph and the strong metric dimension of cactus graphs, Mathematics 2020 (8) 1266.
    https://doi.org/10.3390/math8081266
  19. H. Lin, R. Liu and X. Lu, The inertia and energy of the distance matrix of a connected graph, Linear Algebra Appl. 467 (2015) 29–39.
    https://doi.org/10.1016/j.laa.2014.10.045
  20. R. Michel, Sur la rigidité imposé par la longueur des géodésiques, Invent Math. 65 (1981/82) 71–84.
  21. E. Mossel and N. Ross, Shotgun assembly of labeled graphs, IEEE Trans. Network Sci. Eng. 6 (2019) 145–157.
    https://doi.org/10.1109/TNSE.2017.2776913
  22. O.R. Oellermann and J. Peters-Fransen, The strong metric dimension of graphs and digraphs, Discrete Appl. Math. 155 (2007) 356–364.
    https://doi.org/10.1016/j.dam.2006.06.009
  23. L. Pestov and G. Uhlmann, Two dimensional compact simple Riemannian manifolds are boundary distance rigid, Ann. of Math. 161 (2005) 1093–1110.
    https://doi.org/10.4007/annals.2005.161.1093
  24. J.A. Rodr\'{\i}guez-Velázquez, I.G. Yero, D. Kuziak and O.R. Oellermann, On the strong metric dimension of Cartesian and direct products of graphs, Discrete Math. 335 (2014) 8–19.
    https://doi.org/10.1016/j.disc.2014.06.023
  25. A. Sebö and E. Tannier, On metric generators of graphs, Math. Oper. Res. 29 (2004) 383–393.
    https://doi.org/10.1287/moor.1030.0070
  26. J.M.S. Simões Pereira, A note on the tree realizability of a distance matrix, J. Combin. Theory 6 (1969) 303–310.
    https://doi.org/10.1016/S0021-9800(69)80092-X
  27. P.J. Slater, Leaves of trees, Congr. Numer. 14 (1975) 549–559.
  28. Ye.A. Smolenskii, A method for the linear recording of graphs, U.S.S.R. Comput. Math. and Math. Phys. 2 (1962) 396–397.
    https://doi.org/10.1016/0041-5553(63)90418-X
  29. P. Stefanov, G. Uhlmann and A. Vasy, Boundary rigidity with partial data, J. Amer. Math. Soc. 29 (2016) 299–332.
    https://doi.org/10.1090/jams/846
  30. S. Steinerberger, The boundary of a graph and its isoperimetric inequality, Discrete Appl. Math. 338 (2023) 125–134.
    https://doi.org/10.1016/j.dam.2023.05.026
  31. G. Uhlmann, Inverse problems: seeing the unseen, Bull. Math. Sci. 4 (2014) 209–279.
    https://doi.org/10.1007/s13373-014-0051-9
  32. S.M. Ulam, A collection of mathematical problems, in: Interscience Tracts in Pure and Applied Mathematics 8, Interscience Publishers (1960).
  33. M.S. Waterman, T.F. Smith, M. Singh and W.A. Beyer, Additive evolutionary trees, J. Theoret. Biol. 64 (1977) 199–213.
    https://doi.org/10.1016/0022-5193(77)90351-4
  34. K.A. Zareckii, Constructing a tree on the basis of a set of distances between the hanging vertices, Uspekhi Mat. Nauk 20(6) (1965) 90–92, in Russian.

Close