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Abstract

A vertex v of a connected graph G is said to be a boundary vertex of G
if for some other vertex u of G, no neighbor of v is further away from u than
v. The boundary ∂(G) of G is the set of all of its boundary vertices.

The boundary distance matrix D̂G of a graph G = ([n], E) is the square
matrix of order κ, with κ being the order of ∂(G), such that for every
i, j ∈ ∂(G), [D̂G]ij = dG(i, j).

Given a square matrix B̂ of order κ, we prove under which conditions B̂
is the distance matrix D̂T of the set of leaves of a tree T , which is precisely
its boundary.

We show that if G is either a block graph or a unicyclic graph, then G is
uniquely determined by the boundary distance matrix D̂G of G and we also
conjecture that this statement holds for every connected graph G, whenever
both the order n and the boundary (and thus also the boundary distance
matrix) of G are prefixed.

Moreover, an algorithm for reconstructing a 1-block graph (respectively,
a unicyclic graph) from its boundary distance matrix is given, whose time
complexity in the worst case is O(n) (respectively, O(n2)).
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1. Introduction

While typically a graph is defined by its lists of vertices and edges, significant
research has been dedicated to minimizing the necessary information required
to uniquely determine a graph. For example, various approaches include recon-
structing metric graphs from density functions [9], road networks from a set of
trajectories [1], graphs utilizing shortest paths or distance oracles [16], labeled
graphs from all r-neighborhoods [21], or reconstructing phylogenetic trees [2]. Of
particular note is the graph reconstruction conjecture [17, 32] which states the
possibility of reconstructing any graph on at least three vertices (up to isomor-
phism) from the multiset of all unlabeled subgraphs obtained through the removal
of a single vertex. Indeed, a search with the word “graph reconstruction” returns
more than 3 million entries.

In this paper, our focus lies in the reconstruction of graphs from the distance
matrix of their boundary vertices and the graph’s order. We are persuaded that
this process could hold true for all graphs, and we state it as a conjecture (see
Conjecture 12). It is accordingly of particular interest to explore whether this
conjecture holds for specific families of graphs. Our objective herein is to establish
its validity for block graphs and also for unicyclic graphs.

There is a similar line of research in the continuous setting, known as the
boundary rigidity problem (introduced in [11, 20]), which can be stated as fol-
lows. Given a compact Riemannian manifold (M, g) with boundary ∂M , estab-
lish under which assumptions on ∂M , the geodesic distance dg|∂M×∂M , uniquely
determines g. For further details on this topic, see [23, 29, 31].

The concept of a graph’s boundary was introduced by Chartrand, Erwin,
Johns and Zhang in 2003 [7]. Initially conceived to identify local maxima of ver-
tex distances, the boundary has since revealed a host of intriguing properties. It
has been recognized as geodetic [4], serving as a resolving set [14], as a strong
resolving set [24] and also as doubly resolving set (see Proposition 4). Put simply,
each vertex lies in the shortest path between two boundary vertices and, given
any pair of vertices x and y, there exists a boundary vertex v such that either
x lies on the shortest path between v and y, or vice versa. With such proper-
ties, it is unsurprising that the boundary emerges as a promising candidate for
reconstructing the entire graph.

Graph distance matrices represent a fundamental tool for graph users, en-
abling the solution of problems such as finding the shortest path between two
nodes. However, our focus here shifts mainly towards their realizability. That
is, given a matrix (integer, positive and symmetric), we inquire whether there
exists a corresponding graph where the matrix entries represent the distances
between vertices. In 1965, Hakimi and Yau [12] presented a straightforward ad-
ditional condition that the matrix must satisfy to be realizable (see Theorem 1).
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Building upon this, in 1974, Buneman [3] provided the matrix characterization
for being the distance matrix of a tree once we know that the graph is K3-free,
and Graham and Pollack [10] computed the determinant of the distance matrix
of a tree (see Theorem 17). Additionally, Howorka [15] in 1979, formulated condi-
tions for the distance matrix of a block graph (see Theorem 15), and Lin, Liu and
Lu [19] provided the determinant of such matrices (see Theorem 16). Incidentally,
we use their result to derive the converse of the Graham and Pollack’s theorem.
Furthermore, we also give an algorithmic approach to the characterization of the
distance matrix of a unicyclic graph.

As previously mentioned, we are interested in the distance matrix of a graph’s
boundary, a submatrix of the distance matrix. We seek to determine the realiz-
ability of these matrices and, while we have achieved characterization in the case
of trees and block graphs, a similar analysis for unicyclic graphs remains elusive.

Finally, we present a pair of algorithms for reconstructing trees and unicyclic
graphs from the distance matrix of their boundary. In trees, the boundary corre-
sponds to the leaves, while in unicyclic graphs, it contains the leaves along with
the vertices of the cycle with degree two.

The paper is organized as follows: this section is finished by introducing
general terminology and notation. In Section 2, we explore the notion of boundary
and its relation with distance matrices. Section 3 is devoted to the reconstruction
of trees and 1-block graphs, completing first with the realizability of both the
distance matrix and the boundary distance matrix of a tree and a block graph.
In a similar way, Section 4 undertakes the characterization of distance matrices
for unicyclic graphs, followed by their reconstruction from the boundary distance
matrix. Finally, the paper ends with a section on conclusions and open problems.

1.1. Basic terminology

All the graphs considered are undirected, simple, finite and (unless otherwise
stated) connected. If G = (V,E) is a graph of order n and size m, it means that
|V | = n and |E| = m. Unless otherwise specified, n ≥ 2 and V = [n] = {1, . . . , n}.

Let v be a vertex of a graph G. The open neighborhood of v is N(v) =
{w ∈ V (G) : vw ∈ E}, and the closed neighborhood of v is N [v] = N(v) ∪
{v}. The degree of v is deg(v) = |N(v)|. The minimum degree (respectively,
maximum degree) of G is δ(G) = min{deg(u) : u ∈ V (G)} (respectively, ∆(G) =
max{deg(u) : u ∈ V (G)}). If deg(v) = 1, then v is said to be a leaf of G and the
set and the number of leaves of G are denoted by L(G) and ℓ(G), respectively.

Let Kn, Pn, Wn and Cn be, respectively, the complete graph, path, wheel
and cycle of order n. Moreover, Kr,s denotes the complete bipartite graph whose
maximal independent sets are Kr and Ks, respectively. In particular, K1,n−1

denotes the star with n− 1 leaves.

Given a graph G = (V,E) and a subset of vertices W ⊆ V , the subgraph of
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G induced by W , denoted by G[W ], has W as vertex set and E(G[W ]) = {vw ∈
E : v, w ∈ W}. If G[W ] is a complete graph, then it is said to be a clique of G.

Given a pair of vertices u, v of a graph G, a u − v geodesic lies on a u − v
shortest path, i.e., a path joining u and v of minimum order. Clearly, all u − v
geodesics have the same length, and it is called the distance between vertices u
and v in G, denoted by dG(u, v), or simply by d(u, v), when the context is clear.
A set W ⊆ V (G) is called geodetic if any vertex of the graph is in a u−v geodesic
for some u, v ∈ W .

The eccentricity ecc(v) of a vertex v is the distance to a farthest vertex from
v. The radius and diameter of G are respectively, the minimum and maximum
eccentricity of its vertices and are denoted as rad(G) and diam(G). A vertex
u ∈ V (G) is a central vertex of G if ecc(u) = rad(G), and it is called a peripheral
vertex of G if ecc(u) = diam(G). The set of central (respectively, peripheral)
vertices of G is called the center (respectively, periphery) of G.

Let S = {w1, w2, . . . , wk} be a set of vertices of a graph G. The distance
d(v, S) between a vertex v ∈ V (G) and S is the minimum of the distances be-
tween v and the vertices of S, that is, d(v, S) = min{d(v, w) : w ∈ S}. The
metric representation r(v|S) of a vertex v with respect to S is defined as the k-
vector r(v|S) = (dG(v, w1), dG(v, w2), . . . , dG(v, wk)). A set of vertices S is called
resolving if for every pair of distinct vertices x, y ∈ V (G), there exist a vertex
u ∈ S such that d(x, u) ̸= d(y, u), or equivalently, if r(x|S) ̸= r(y|S).

Resolving sets were first introduced by Slater in [27], and since then, many
other similar concepts have been defined, such as doubly resolving sets [5] and
strong resolving sets [22, 25]. A set of vertices S is called doubly resolving if
for every pair x, y ∈ V (G), there exist u, v ∈ S such that d(x, u) − d(y, u) ̸=
d(x, v) − d(y, v). A set of vertices S is called strong resolving if for every pair
x, y ∈ V (G), either x is in a y − v geodesic or y is in x − v geodesic, for some
vertex v ∈ S. Clearly, every doubly (respectively, strong) resolving set is also
resolving, but the converse is far from being true (see Figure 1).

A cut-vertex is a vertex whose deletion disconnects the graph. A maximal
subgraph of G without cut-vertices is a block of G. In a block graph, every block
is a clique, or equivalently, every cycle induces a complete subgraph. A block
of a block graph is called trivial if it is K2. Let Kh be a non-trivial block of a
block graph G such that V (Kh) = {x1, . . . , xh}. For every i ∈ [h], the connected
component of G − E(Kh) containing xi is called the branching graph of xi and
its denoted by Gxi . A non-trivial block Kh is called exterior if for some vertex
xi ∈ V (Kh), Gxi is a tree, in which case, it is called the branching tree of xi and
it is denoted by Txi . The tree Txi is said to be trivial if V (Txi) = {xi}. A 1-block
graph is a graph containing one non-trivial exterior block.

A graph G whose order and size are equal is called unicyclic. These graphs
contain a unique cycle that is denoted as Cg, where g is the girth of G. The
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connected component of G−E(Cg) containing a vertex v ∈ V (Cg) is denoted as
Tv and it is called the branching tree of v. The tree Tv is said to be trivial if
V (Tv) = {v}. A vertex v ∈ V (G) is a branching vertex if either v ̸∈ V (Cg) and
deg(v) ≥ 3 or v ∈ V (Cg) and deg(v) ≥ 4.

For further information on basic graph theory we refer the reader to [8].

2. The Conjecture

2.1. The boundary of a graph

In this subsection, we introduce one of the essential components of our work: the
boundary of a graph, which was first studied by Chartrand et al. in [7]. A vertex
v of a graph G is said to be a boundary vertex of a vertex u if no neighbor of v is
further away from u than v, i.e., if for every vertex w ∈ N(v), d(u,w) ≤ d(u, v).
The set of boundary vertices of a vertex u is denoted by ∂G(u), or simply by
∂(u), when the context is clear. Given a pair of vertices u, v ∈ V (G) if v ∈ ∂(u),
then v is also said to be maximally distant from u. A pair of vertices u, v ∈ V (G)
are called mutually maximally distant, or simply MMD, if both v ∈ ∂(u) and
u ∈ ∂(v).

The boundary of G, denoted by ∂(G), is the set of all of its boundary vertices,
i.e., ∂(G) =

⋃
u∈V (G) ∂(u). Notice that, as was pointed out in [24], the boundary

of G can also be defined as the set of MMD vertices of G, i.e.,

∂(G) = {v ∈ V (G) : there existsu ∈ V (G) such thatu, v areMMD}.

Theorem 1 [13, 30]. Let G be a graph of order n ≥ 2 with κ boundary vertices.
Then, κ = 2 if and only if G = Pn. Moreover, κ = 3 if and only if either

(1) G is a subdivision of K1,3; or

(2) G can be obtained from K3 by attaching exactly one path (of arbitrary length)
to each of its vertices.

Also, graphs with a big κ are well-known, as the next results show.

Proposition 2. Let G be a graph of order n with κ boundary vertices. Then,

(1) If rad(G) = diam(G), then κ = n.

(2) If diam(G) = 2, then n− 1 ≤ κ ≤ n.
Moreover, κ = n− 1 if and only if G contains a unique central vertex.

Proof. (1) Suppose that rad(G) = diam(G) = d. Take u ∈ V (G) and notice
that ecc(u) = d. Let v ∈ V (G) such that d(u, v) = d. For every vertex w ∈ N(v),
d(u,w) ≤ d = d(u, v). Hence, u ∈ ∂(u) ⊆ ∂(G).
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(2) If rad(G) = diam(G) = 2, then according to the previous item, κ = n.
Suppose that rad(G) = 1. Let V (G) = U ∪W such that U is the set of central
vertices and W is the set of peripheral vertices of G. Observe that W ⊊ ∂(G)
and that if |U | = h, then G[U ] = Kh. If h ≥ 2, then every central vertex belongs
to the boundary of every other vertex of G. If h = 1 and U = {u}, then for every
vertex w ∈ W , u ̸∈ ∂(w), i.e., ∂(G) = W , which means that κ = |W | = n− 1.

Corollary 3. Let G be a graph of order n ≥ 3 with κ boundary vertices.

(1) If G ∈ {Kn,Kr,s, Cn} and r, s ≥ 2, then κ = n.

(2) If G ∈ {Wn,K1,n−1}, then κ = n− 1.

As previously mentioned, the boundary exhibits several intriguing properties,
like being geodetic [4] and a resolving set [14]. However, for the scope of this
paper, its status as a strong resolving set is particularly pertinent. Thus, we
shall now develop into this concept with some detail.

That notion were first defined by Sebő and Tannier [25] in 2003, and later
studied in [22]. They were interested in extending isometric embeddings of sub-
graphs into the whole graph and, to ensure that, they defined a strong resolving
set of a graph G as a subset S ⊆ V (G) such that for any pair x, y ∈ V (G) there
is an element v ∈ S such that there exists either a x− v geodesic that contains y
or a y − v geodesic containing x.

What is crucial for our goals is that, as a consequence of the definition, it
only suffices to know the distances from the vertices of a strong resolving set to
the rest of nodes, to uniquely determine the graph. This issue is explored in more
detail in Subsection 2.2.

It was proved in [24] that the boundary of a graph is always a strong resolving
set. We show next that it is also a doubly resolving set.

Proposition 4. The boundary ∂(G) of every graph G is both a strong resolving
set and a doubly resolving set.

Proof. Let u, v ∈ V (G) such that d(u, v) = k and {u, v}∩∂(G) = ∅. So, for some
vertex w1 ∈ N(v), d(u,w1) = k + 1. If w1 ∈ ∂(u), then we are done. Otherwise,
for some vertex w2 ∈ N(w1), d(u,w2) = k + 2.

Thus, after iterating this procedure finitely many times, say h times, we
will finally find a vertex wh such that for every vertex w ∈ N(wh), d(u,w) ≤
d(u,wh) = k + h, i.e., a vertex wh ∈ ∂(G) and a u − wh geodesic containing
vertex v. Thus, ∂(G) is a strong resolving set of G.

Now, consider the pair {wh, u} and take a vertex z1 ∈ N(u) such that
d(wh, z1) = d(wh, u) + 1. Reasoning in the same way as before, we conclude
that there is a vertex zρ ∈ ∂(G) such that the pair u, v is in a wh − zρ geodesic.
Hence, ∂(G) is a doubly resolving set of G.
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Particularly, for trees, block graphs and unicyclic graphs, the boundary is
very straightforward to characterize.

Proposition 5 [30]. Let T be a tree. Then, ∂(T ) = L(T ).

Proof. If u ∈ L(T ) and N(u) = {v}, then notice that u ∈ ∂(v), and thus
u ∈ ∂(T ).

Take a vertex u ∈ V (T ) such that deg(u) ≥ 2. If {v1, v2} ⊆ N(u) then, for
every vertex w ∈ V (T ), d(w, u) < max{d(w, v1), d(w, v2)}. Hence, u ̸∈ ∂(G).

Proposition 6. Let G be a block graph. If U(G) denotes the set of vertices of
the blocks of order k ≥ 3 of degree k − 1, then ∂(G) = L(G) ∪ U(G).

Proof. If u ∈ L(G) and N(u) = {v}, then notice that u ∈ ∂(v). If u ∈ U(G) and
Kk is the clique of G such that u ∈ V (Kk), then for every vertex v ∈ V (Kk)− u,
u ∈ ∂(v).

Finally, take a vertex u ̸∈ L(G) ∪ U(G). If u ∈ V (Kk), {v1, v2} ⊆ N(u),
v1 ∈ V (Kk) and v2 ̸∈ V (Kk), then d(w, u) < max{d(w, v1), d(w, v2)}, for every
vertex w ∈ V (G). Hence, u ̸∈ ∂(G).

Proposition 7. Let G be a unicyclic graph of girth g. If U(G) denotes the set
of vertices of Cg of degree 2, then ∂(G) = L(G) ∪ U(G).

Proof. If u ∈ L(G) and N(u) = {v}, then notice that u ∈ ∂(v). If u ∈ U(G)
and v ∈ V (Cg) is a vertex such that d(u, v) ∈

⌊g
2

⌋
, then observe that u ∈ ∂(v).

Finally, take a vertex u ̸∈ L(G)∪U(G). If u ∈ V (Cg), N(u)∩V (Cg) = {v1, v2}
and v3 ∈ N(u)∩V (Tu), then d(w, u) < max{d(w, v1), d(w, v2), d(w, v3)}, for every
vertex w ∈ V (G). Thus, u ̸∈ ∂(G). If u ∈ V (Tv) for some vertex v ∈ V (Cg),
deg(u) ≥ 2 and {v1, v2} ⊆ N(u), then d(w, u) < max{d(w, v1), d(w, v2)}, for
every vertex w ∈ V (G). Hence, u ̸∈ ∂(G).

2.2. The distance matrix of a graph

At this point, the other relevant element of the work is introduced: distance
matrices, and, along with some notations, a complete characterization of both
the distance matrix of a tree and the distance matrix of the leaves of a tree are
provided. This subsection concludes by showing a conjecture, along with some
related open problems.

A square matrix D is called a dissimilarity matrix if it is symmetric, all
off-diagonal entries are (strictly) positive and the diagonal entries are zeroes.
A square matrix D of order n ≥ 3 is called a metric dissimilarity matrix if it
satisfies, for any triplet i, j, k ∈ [n], the triangle inequality : dik ≤ dij + djk.

The distance matrix DG of a graph G = (V,E) with V = [n] is the square
matrix of order n such that, for every i, j ∈ [n], dij = d(i, j). Certainly, this
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matrix is a metric dissimilarity matrix. A metric dissimilarity matrix D is called
a distance matrix if there is a graph G such that DG = D.

Let S be a subset of vertices of order k of a graph G = (V,E), with V = [n].
We denote by DS,V the submatrix of DG of order k×n such that for every i ∈ S
and for every j ∈ V , [DS,V ]ij = d(i, j).

Similarly, the so-called S-distance matrix of G, denoted by DG
S , or simply

by DS , when the context is clear, is the square submatrix of DG of order k such
that for every i, j ∈ S, [DS ]ij = d(i, j). If S = ∂(G), then DS is also denoted by
D̂G and it is called the boundary distance matrix of G.

The next result was stated and proved in [12] and constitutes a general char-
acterization of distance matrices. We include here a (new) proof, for the sake of
completeness.

Theorem 8 [12]. Let D be an integer metric dissimilarity matrix of order n.
Then, D is a distance matrix if and only if, for every i, j ∈ [n], if dij > 1, then
there exists an integer k ∈ [n] such that

(1) dik = 1 and dij = dik + dkj .

Proof. The necessity of the above condition immediately follows from the defi-
nition of distance matrix.

To prove the sufficiency, we consider the non-negative symmetric square ma-
trix A of order n, such that, for every pair i, j ∈ [n], aii ∈ {0, 1} being aij = 1 if
and only if dij = 1. Let G = ([n], E) be the graph such that its adjacency matrix
is A. Next, we show that the distance matrix of G is precisely D.

If diam(G) = d, then d(i, j) = p ∈ {1, . . . , d}, for every pair of distinct
vertices i, j ∈ [n]. If p = 1, then clearly d(i, j) = 1 if and only if dij = 1. Take
2 ≤ p ≤ d and suppose that, if 1 ≤ r ≤ p− 1, then

d(i, j) = r if and only if dij = r.

Let i, j ∈ [n] such that dij = p. According to condition (1), take k ∈ [n]
such that d(i, k) = dik = 1 and p = dij = dik + dkj = 1 + dkj . This means that
d(i, j) ≤ p, since dkj = p − 1 and d(i, j) ≤ d(i, k) + d(k, j) = 1 + d(k, j). Hence,
d(i, j) = p as otherwise, according to the inductive hypothesis (1), dij = d(i, j) <
p, a contradiction.

Conversely, let i, j ∈ [n] such that d(i, j) = p. Let k ∈ N(i) such that
d(i, j) = 1 + d(k, j). Since A is a metric dissimilarity matrix, dij ≤ dik + dkj .
This means that dij ≤ p, since d(k, j) = p− 1 and dij ≤ 1 + dkj . Hence, dij = p
as otherwise, according to the inductive hypothesis (1), d(i, j) = dij < p, a
contradiction.
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An integer metric dissimilarity matrix D of order n ≥ 3 is called additive if
every subset of indices {i, j, h, k} ⊆ [n] satisfies the so-named four-point condition:

dij + dhk ≤ max{dih + djk, dik + djh}
dih + djk ≤ max{dij + dhk, dik + djh}
dik + djh ≤ max{dij + dhk, dih + djk}.

Notice that every metric dissimilarity matrix of order n = 3 is additive, which
means that the four-point condition can be seen as a strengthened version of the
triangle inequality (see [3]).

A graph G = ([n], E) is said to satisfy the four-point condition if its distance
matrix DG is additive, that is, if for every 4-vertex set {i, j, h, k} ⊆ [n]:

d(i, j) + d(h, k) ≤ max{d(i, h) + d(j, k), d(i, k) + d(j, h)}
d(i, h) + d(j, k) ≤ max{d(i, j) + d(h, k), d(i, k) + d(j, h)}
d(i, k) + d(j, h) ≤ max{d(i, j) + d(h, k), d(i, h) + d(j, k)}.

As was pointed out in [3], these inequalities can be characterized as follows.

Proposition 9 [3]. Let {i, j, h, k} be a 4-vertex set of a graph G = ([n], E).
Then, the following statements are equivalent.

(1) {i, j, h, k} satisfies the four-point condition.

(2) Among the three sums d(i, j) + d(h, k), d(i, h) + d(j, k), d(i, k) + d(j, h), the
two largest ones are equal.

2.3. The Conjecture

The next result was implicitly mentioned in some papers [18, 24, 25] and proved
in [6]. This equivalence, along with the statement shown in Proposition 4, has
served as an inspiration for the main conjecture of the paper that is presented at
the end of this subsection.

Theorem 10 [6]. Let S be a proper subset of vertices of a graph G = (V,E).
Then, the following statements are equivalent.

(1) S is a strong resolving set.

(2) G is uniquely determined by the distance matrix DS,V .

As was noticed in [24, 25], this result is not true if we consider resolving sets
instead of strong resolving sets. For example, the pair of leaves of the graphs
displayed in Figure 1 form, in both cases, a resolving set S and also for both
graphs the matrix DS,V is the same.

As a direct consequence of both Theorem 10 and Proposition 4, the following
result holds.



952 J. Cáceres and I.M. Pelayo

Figure 1. A pair of graphs of order 7, whose pair of leaves form a (neither doubly nor
strong) resolving set.

Corollary 11 [6]. Let G = (V,E) be a graph. Then, G is uniquely determined
by the distance matrix D∂(G),V .

G′

G

G′′

Figure 2. In each column, D̂′
G = D̂G = DG′′

∂(G), G
′ and G have the same boundary but

different order, meanwhile G and G′′ have the same order but different boundary. In all
cases, the boundary is the set of black vertices.

It is relatively easy to find pairs of graphs having the same boundary (that is,
the same boundary distance matrix) but different order (see Figure 2, for some
examples). Having in mind all of these results and particularly the one stated in
Corollary 11, we present the following conjecture.

Conjecture 12. Let B̂ an integer metric dissimilarity matrix of order κ. Let
G = ([n], E) be a graph such that D̂G = B̂. If G′ = ([n], E′) is a graph such that
D̂G′ = B̂, then G and G′ are isomorphic.

Equivalently, this conjecture can be restated as follows.
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Conjecture 12. Let κ, n be integers such that 2 ≤ κ ≤ n. Let A, B̂ be integer
square matrices of order n and κ, respectively. Then, there is, at most, one graph
G such that V (G) = [n], DG = A, ∂(G) = [κ] and D̂G = B̂.

Let κ, n be integers such that 2 ≤ κ ≤ n. Let A, B̂ be integer square matrices
of order n and κ, respectively. Let G be a graph such that V (G) = [n], ∂(G) = [κ]
and DG = A. We define the following graph families, denoted by H(κ), H(n),
and H(κ, n), respectively.

• G ∈ H(κ) if it is the unique graph (up to isomorphism) such that ∂(G) = [κ]
and D̂G = B̂.

• G ∈ H(n) if it is the unique graph (up to isomorphism) of order n such that
V (G) = [n] and D[κ] = B̂.

• G ∈ H(κ, n) if it is the unique graph (up to isomorphism) such that V (G) =
[n], ∂(G) = [κ] and D[κ] = B̂.

Notice that Conjecture 12 can be restated as follows.

Conjecture 12. Every graph belongs to H(κ, n).

Although it is not difficult to find graphs not belonging neither to the graph
family H(κ) nor to the graph family H(n) (see Figure 2, for some examples), we
are persuaded that, for a wide spectrum of graph classes, it is possible to obtain
the whole graph G from its boundary distance matrix. In Sections 3 and 4, we
prove not only that both the block and the unicyclic families belong to H(κ, n),
but also to H(κ) ∩H(n).

3. Block Graphs

This section is divided into three subsections: in the first one, we revise the main
results regarding the characterization of the distance matrices of block graphs,
and we prove the converse of the result of Graham and Pollack [10] in Theorem 19.
The next subsection is devoted to determine those matrices which can be the
boundary distance matrix of a block graph. Finally, in the last subsection, we
describe and check the validity of an algorithm to reconstruct a 1-block graph
having its boundary distance matrix as the only information.

3.1. The distance matrix of a block graph

In the seminal paper [3], Buneman noticed that trees satisfy the four-point con-
dition and also showed that a K3-free graph is a tree if and only if its distance
matrix is additive. In the same paper, it was also proved that, for every additive
matrix A of order k, there always exists a weighted tree of order n ≥ k containing
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a subset of vertices S of order k such that DS = A (see Figure 3). A different
approach based on the structure of the 4× 4 principal submatrices was given by
Simões Pereira in [26]. In addition, it was proved in [33] that for every dissimilar-
ity matrix D, it satisfies the four-point condition if and only if there is a unique
weighted binary tree T whose ∂(T )-distance matrix is D.

Starting from these results, Howorka in [15] was able to characterize the
family of graphs whose distance matrix is additive, i.e., satisfying the four-point
condition. We include next new proofs of those results for the sake of both
completeness and clarity.

21 1 2
1

1

1

1

4 4

3 3

1
1
2

1
2

1
2

G1 G2

DG1 = D[4] =



0 1 2 2
1 0 1 1
2 1 0 1
2 1 1 0



Figure 3. The distance matrix DG1
of G1 and the [4]-distance matrix of the weighted

tree G2 are the same.

Proposition 13 [15]. Every block graph satisfies the four-point condition.

Proof. Let S be a 4-vertex set of a block graph G, named S = {1, 2, 3, 4}. The
only seven possible configurations of paths connecting the 4 vertices of S are
those shown in Figure 4. We check that the four-condition holds in all cases.

(1) d12 + d34 = d13 + d24 = d14 + d23 = a+ b+ c+ d,

(2) d12 + d34 = a+ b+ c+ d d13 + d24 = d14 + d23 = a+ b+ c+ d+ 2e,

(3) d12 + d34 = a+ b+ c+ d+ 1,
d13 + d24 = d14 + d23 = a+ b+ c+ d+ 2,

(4) d12 + d34 = a+ b+ c+ d+ 1,
d13 + d24 = d14 + d23 = a+ b+ c+ d+ 2e+ 2,

(5) d12 + d34 = a+ b+ c+ d+ 2,
d13 + d24 = d14 + d23 = a+ b+ c+ d+ 4,

(6) d12 + d34 = a+ b+ c+ d+ 2,
d13 + d24 = d14 + d23 = a+ b+ c+ d+ 2e+ 4,

(7) d12 + d34 = d13 + d24 = d14 + d23 = a+ b+ c+ d+ 2.
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42
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4 2

1 3

4

3

42

1
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c c c

a

d d d d
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(5) (6) (7)

e e

e

Figure 4. Seven possible configurations of paths connecting 4 vertices of a block graph.

The converse is proved in the next proposition.

Proposition 14 [15]. If G satisfies the four-point condition, then it is a block
graph.

Proof. Let Ch be an induced cycle of G of minimum order h ≥ 4. Then, h =
4q + r, with q ≥ 1 and 0 ≤ r ≤ 3. Notice that Ch is not only an induced
subgraph of G but also isometric. Take a 4-vertex set {i, j, h, k} ⊆ V (Ch) such
that {dij , djh, dh,k, dk,i} ⊆ {q, q + 1}. Check that dij + dhk ≤ 2q + 2, dik + djh ≤
2q+2 and dih+djk ≥ 4q. Hence, this 4-vertex set violate the four-point condition,
which means that either G is a tree or it is a chordal graph of girth 3, i.e., the
only induced cycles have length 3.

Next, suppose that G is a chordal graph of girth 3. Take a cycle Cp = ([p], E)
in G of minimum order p ≥ 4, such that [p] is not a clique. Notice that p ≥ 5, since
neither the cycle C4 nor the diamond K4 − e satisfies the four-point condition.
Let i, j ∈ [p] such that 1 ≤ i < j ≤ p and ij ̸∈ E(G). Notice that d(i, j) = 2,
since Cp is of minimum order. W.l.o.g. we may assume that i = 1 and j = 3.
Observe that for every h ̸∈ {2, p} and k ̸∈ {2, 4}, {1h, 3k} ∩ E(G) = ∅, since Cp

is of minimum order.

Let h be the minimum integer between 4 and p such that 2h ∈ E(G). Then,
clearly h = 4, since otherwise the set {2, . . . , h} is an induced cycle of order at
least 4, a contradiction. Let k be the minimum integer between 5 and p such that
2k ∈ E(G). We distinguish cases.

Case 1. If k = 5, then the subgraph induced by the set {2, 3, 4, 5} is the
diamond K4 − e, a contradiction.
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Case 2. If p = 5 and 2k ∈ E(G), then the subgraph induced by the set
{2, 4, 5, 1} is the cycle C4, a contradiction.

Case 3. If p ≥ 6 and k ≥ 6, then the subgraph induced by the set {2, 4, 5, . . . ,
k} is the cycle Ck−2, a contradiction.

Hence, we have proved that every cycle of G induces a clique, i.e., G is a
block graph.

Once the two implications have been proved, we can establish the theorem.

Theorem 15 [15]. A graph G of order n is a block graph if and only if its distance
matrix DG is additive.

Theorem 16 [19]. Let G be a block graph on n vertices and k blocks Kn1 , . . . ,Knk
.

Then,

det(DG) = (−1)n−1
k∑

i=1

ni − 1

ni

k∏
j=1

nj .

In particular, as a straight consequence of the previous result, the following
theorem, proved in [10], is obtained.

Theorem 17 [10]. Let T be a tree on n vertices. Then,

det(DT ) = (−1)n−1(n− 1)2n−2.

The next lemma is the crucial result that allows us to prove the characteri-
zation of distance matrices of trees by means of its determinant.

Lemma 18. Let k and n be integers such that n ≥ 3 and 1 ≤ k ≤ n − 1. Let
{n1, . . . , nk} be a decreasing sequence of k integers such that n ≥ n1 ≥ · · · ≥ nk ≥
2 and n1 + · · ·+ nk = n+ k − 1. Then,

k∑
i=1

ni − 1

ni

k∏
j=1

nj ≤ (n− 1)2n−2

Moreover, the equality holds if and only if k = n− 1 and n1 = · · · = nn−1 = 2.

Proof. Let h ∈ [k] such that nh ≥ 3 and for every i ∈ {h + 1, . . . , k}, ni = 2.
Then,

k∑
i=1

ni − 1

ni

k∏
j=1

nj =
(n1 − 1

n1
+ · · ·+ nh − 1

nh
+

k − h

2

)
·

h∏
j=1

nj · 2k−h.



Reconstructing a Graph From the Distance Matrix of ... 957

Take the (k + 1)-sequence {n′
1, . . . , n

′
k+1} = {n1, . . . , nh−1, nh − 1, nh+1, . . . ,

nk, 2}. Then,

k+1∑
i=1

n′
i − 1

n′
i

k+1∏
j=1

n′
j =

(n1 − 1

n1
+ · · ·+ nh−1 − 1

nh−1
+

nh − 2

nh − 1
+

k − h

2
+

1

2

)
·
h−1∏
j=1

nj · (nh − 1) · 2k−h+1.

Check that if nh ≥ 3, then both nh−1
nh

< nh−2
nh−1 + 1

2 and nh < (nh − 1) · 2.

Hence,
∑k

i=1
ni−1
ni

∏k
j=1 nj <

∑k+1
i=1

n′
i−1
n′
i

∏k+1
j=1 n

′
j .

Repeating this procedure iteratively, starting from the sequence {n′
1, . . . ,

n′
k+1}, the inequality

∑k
i=1

ni−1
ni

∏k
j=1 nj ≤ (n − 1)2n−2 is shown, since the last

sequence is the (n− 1)-sequence: {2, . . . , 2}.

As a direct consequence of Theorems 15, 16, 17 and Lemma 18, we are able
to prove the converse of Theorem 17.

Theorem 19. A graph of order n is a tree T if and only if its distance matrix
DT is additive and det(DT ) = (−1)n−1(n− 1)2n−2.

3.2. The boundary distance matrix of a block graph

If, in the previous subsection, we have characterized the distance matrices of
block graphs, in this one we intend to characterize the set of metric dissimilarity
matrices which are the distance matrix of the boundary of these classes of graphs.

We begin by showing that no two (non-isomorphic) trees can have the same
boundary distance matrix, a fact that was firstly noticed and proved in [28].

Theorem 20 [28]. Let T be a tree on n vertices and κ leaves. Then, T is uniquely
determined by D̂T , the L(T )-distance matrix of T .

Proof. We proceed by induction on κ. Clearly, the claim holds true when κ = 2
since the unique tree with 2 leaves of order n is the path Pn and n is uniquely
determined by the distance between its leaves.

Let Tκ be a tree with κ leaves such that L(Tκ) = {ℓ1, . . . , ℓκ} is the set of
leaves of Tκ. Assume that D̂Tκ = D̂T . Let D̂κ−1 be the submatrix of D̂T obtained
by deleting the last row and column of D̂T .

By the inductive hypothesis, there is a unique tree Tκ−1 with κ − 1 leaves
such that D̂Tκ−1 = D̂κ−1. Hence, Tκ−1 is the subtree of T obtained by deleting
the path that joins the leaf ℓκ to its exterior major vertex wκ.
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According to Propositions 4 and 5, L(Tκ−1) = {ℓ1, . . . , ℓκ−1} is a doubly
resolving set of Tκ−1. This means that, if d(ℓκ, wκ) = a, then wκ is the unique
vertex in Tκ−1 such that

r(ℓκ|L(Tκ−1)) = r(wκ|L(Tκ−1)) + (a, κ−1. . . , a)

Thus, Tκ and T are isomorphic.

In [34], the metric dissimilarity matrices which are the distance matrices of
the set of leaves of a tree were characterized.

Theorem 21 [34]. Let B̂κ be an integer metric dissimilarity matrix of order
κ ≥ 3. Then, B̂κ is the L(T )-distance matrix of a tree T if and only if it is
additive and, for every distinct i, j, k ∈ [κ],

(1) b̂ij < b̂ik + b̂jk,

(2) b̂ij + b̂ik + b̂jk is even.

Before approaching these pair of issues for the block graph family, we show
how to algorithmically reconstruct a tree T from its L(T )-distance matrix. To
this end, it is enough to notice that the proof of Theorem 20 can be turned into
an algorithm which runs in the worst case in O(κn) times.

Algorithm 1 Reconstructing-Tree

Require: A matrix D̂T of a certain tree.
Ensure: A tree T = (V,E).
1: Let κ be the order of the matrix D̂T and let T be initially a set of κ isolated

vertices ℓ1, . . . , ℓκ;
2: Join the vertices ℓ1 and ℓ2 by a path of the length determined in D̂T ;
3: Label all the vertices u ∈ V with r(u|{ℓ1, ℓ2}), i.e., the distances from u to

{ℓ1, ℓ2};
4: for k := 3 to κ do
5: Compute r(ℓk|{ℓ1, . . . , ℓk−1}) as the distances from ℓk to {ℓ1, . . . , ℓk−1};
6: Locate a vertex u in T and a positive integer a such that

r(u|{ℓ1, . . . , ℓk−1}) + (a, k−1. . . a) = r(ℓk|{ℓ1, . . . , ℓk−1});
7: Add to T a path of length a joining u and ℓk;
8: Relabel all the vertices in T with their distances to {ℓ1, . . . , ℓk};
9: end for

10: return T .

Corollary 22. The Algorithm 1 runs in time O(κn).

Proof. It is straightforward to check that the step dominating the computation
is 6, and that step is repeated O(κn) times.
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Corollary 23. Every tree T of order n with κ leaves belongs not only to H(κ, n),
but also to H(κ) and to H(n).

Theorem 24. Let G be a block graph on n vertices and κ ≥ 3 boundary vertices.
Then, G is uniquely determined by D̂G, the boundary distance matrix of G.

Proof. We proceed by induction on κ, the number of boundary vertices of G.
For κ = 3, the statement clearly holds since, according to [13], G is either a
spider or a 1-block graph whose branching trees are paths, depending on whether
d(u1, u2) + d(u1, u3) + d(u2, u3) be either even or odd.

Let Gκ be a block graph of order n with κ ≥ 4 boundary vertices such that
D̂Gκ = D̂G. We distinguish cases.

Case 1. There is a pair of twin vertices u1, u2 ∈ ∂(Gκ). Let Gκ−1 be the
subgraph of Gκ obtained after deleting vertex u1. Notice that, according to the
induction hypothesis, Gκ−1 is also an induced subgraph of G, since Gκ−1 is a
block graph with κ− 1 boundary vertices. Thus, Gκ and G must be isomorphic
since u1 is in both graphs a twin of u2.

Case 2. Assume that ∂(Gκ) has no twins. Let x1 and x2 be a pair of vertices
of an exterior block of Gκ. Consider its branching trees Tx1 and Tx2 . If Tx1

(respectively, Tx2) is neither trivial nor a path, recursively pruning from Tx1

(respectively, Tx2) beginning always with a leaf having maximum eccentricity, in
a similar way as shown in Algorithm 2, as many leaves as needed until obtaining
a block graph with a pair of twins. Otherwise, delete both Tx1 −x1 and Tx2 −x2,
obtaining thus a graph in which both x1 and x2 are twins. In either case, we
conclude that Gκ and G must be isomorphic since both Tx1 and Tx2 are not only
in Gκ but also in G.

Lemma 25. Let B̂3 be an integer metric dissimilarity matrix of order κ = 3.
Then, B̂3 is the boundary distance matrix of a block graph G if and only if it
satisfies the following condition: for every distinct i, j, k ∈ [3], b̂ij < b̂ik + b̂jk.

Proof. If for some block graph G, B̂3 = D̂G is the boundary distance matrix of
G, then it is a routine exercise to check that B̂ satisfies the condition.

To prove the converse, let B̂3 be an integer metric dissimilarity matrix of
order 3

B̂3 =

 0 a b
a 0 c
b c 0

.

We distinguish cases.
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Case 1. a+ b+ c is even. Firstly, notice that min{a, b, c} ≥ 2, since otherwise
if for example min{a, b, c} = a = 1, then, according to the condition: b < 1 + c
and c < 1+b, which means that b = c, and thus a+b+c = 1+2c, a contradiction.

Consider the tree T of order n = x + y + z + 1 with 3 leaves displayed in
Figure 5 (left) and notice that if B̂3 = D̂T , then

(y + z, x+ z, x+ y) = (a, b, c) ⇔ (x, y, z) =
(b+ c− a

2
,
a+ c− b

2
,
a+ b− c

2

)
.

3

x

1 z 2y 1 2

3

x

xx

z y

Figure 5. Left: Spider of order n = x+ y + z + 1 with 3 leaves. Right: 1-block graph of
order n = x+ y + z + 3 with (at most) 3 leaves.

Clearly, x, y and z are strictly positive, since B̂3 satisfies the condition.
Moreover, x, y and z are integers, since a+ b+ c is an even integer, which means
that integers b+ c− a, a+ c− b and a+ b− c are also even. Hence, the distance
matrix of the leaves of T is B̂.

Case 2. a+b+c is odd. Consider the 1-block graph G of order n = x+y+z+3
with (at most) 3 leaves displayed in Figure 5 (right) and notice that if B̂3 = D̂G,
then

(y + z + 1, x+ z + 1, x+ y + 1) = (a, b, c) ⇔ (x, y, z)

=
(b+ c− a− 1

2
,
a+ c− b− 1

2
,
a+ b− c− 1

2

)
.

Clearly, x, y and z are positive, since B̂3 satisfies the condition. Moreover,
x, y and z are integers, since a+b+c is an odd integer, which means that integers
b + c − a, a + c − b and a + b − c are also odd. Hence, the boundary distance
matrix of G is B̂3.

Theorem 26. Let B̂κ be an integer metric dissimilarity matrix of order κ ≥ 3.
Then, B̂κ is the boundary distance matrix of a block graph G if and only if it is
additive and it satisfies the following condition: for every distinct i, j, k ∈ [κ],
b̂ij < b̂ik + b̂jk.

Proof. If for some block graph G with κ boundary vertices, B̂κ = D̂T is the
boundary distance matrix of G, then it is a routine exercise to check that B̂ is
additive and satisfies the condition.
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To prove the converse, take an integer additive matrix B̂κ of order κ ≥ 4
satisfying the condition. We proceed by induction on κ, the order of B̂κ. Case
κ = 3 has been proved in Lemma 25.

Let B̂1
κ−1 and B̂κ

κ−1 be the matrices obtained by deleting row (and thus also

column) 1 and κ of B̂κ, respectively. Let B̂κ−2 be the matrix obtained by deleting
rows (and thus also columns) 1 and κ of B̂κ.

By the inductive hypothesis, B̂κ−2,B̂
1
κ−1 and B̂κ

κ−1 are, respectively, the
boundary distance matrices of three block graphs: Gκ−2, G

1
κ−1 and Gκ

κ−1. More-
over, according to Theorem 24, Gκ−2 is an induced subgraph of both G1

κ−1 and
Gκ

κ−1.

Let Gκ the block graph obtained by joining G1
κ−1 and Gκ

κ−1. If ∂(G1
κ−1) =

{u2, . . . , uκ}, ∂(Gκ
κ−1) = {u1, . . . , uκ−1} and ∂(Gκ) = {u1, . . . , uκ−1, uκ}, then for

every i, j ∈ [κ], d(ui, uj) = b̂ij , unless i = 1 and j = κ.

Suppose that, for every 4-subset {i, j, h, k}, b̂ij + b̂hk = b̂ih + b̂jk = b̂ik + b̂jh.
In this case, according to Proposition 13 (see Cases (1) and (2)), Gκ must be
either a spider with κ legs or a 1-block graph with κ branching trees, all of them
being paths (see Figure 4, (1) and (7)).

Otherwise, assume w.l.o.g. that b̂12 + b̂3κ < b̂13 + b̂2κ = b̂1κ + b̂23. Thus,
d(ℓ1, ℓκ) + d(ℓj , ℓh) = d(ℓ1, ℓh) + d(ℓj , ℓκ), and

d(ℓ1, ℓκ) = d(ℓ1, ℓh) + d(ℓj , ℓκ)− d(ℓj , ℓh) = b̂1h + b̂jκ − b̂jh = b̂1κ,

which means that B̂κ is the distance matrix of Gκ.

3.3. Reconstructing a 1-block graph from the boundary distance ma-
trix

At this point, we provide a procedure to obtain a 1-block graph from its boundary
distance matrix. The unique previous result that we need is a way to determine
the leaves of the graph.

Lemma 27. Let G be a block graph. From the boundary distance matrix D̂G, it
is possible to distinguish the vertices in L(G) from the ones in U(G).

Proof. Take a vertex u ∈ ∂(G). If u ∈ L(G), then for any two distinct vertices
w1, w2 ∈ ∂(G)− u, d(w1, u) + d(u,w2)− d(w1, w2) ≥ 2 (see Figure 7(1)).

If u ∈ U(G) and N(u) = {v1, v2}, consider the branching trees Tv1 and Tv2 .
For i = 1, 2, let wi be either a leaf of Tvi or the vertex vi if Tvi , if it is trivial.
Clearly, d(w1, u) + d(u,w2)− d(w1, w2) = 1 (see Figure 7(2)).

Finally, Theorem 28 establishes the correctness and time complexity of Al-
gorithm 2.
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Algorithm 2 Reconstructing-1Block-Recursive

Require: (B̂,G) where B̂ is a boundary distance matrix and G is a graph.
if B̂ corresponds with the distance matrix of a complete graph Km then

return (B̂,Km)
else

Use Lemma 27 to distinguish the leaves in B̂;
Let v be the leaf with greatest eccentricity;
if v has no siblings then

Let B̂1 be the matrix B̂ in which the row and column that correspond to
the vertex v have been deleted and a row and a column are added corresponding
with the parent of v;

(B̂2, G1)=Reconstructing-1Block-Recursive (B̂1, G);
Add v to G1;
return (B̂,G1);

else v has siblings v1, . . . vk being v = v0
Let B̂1 the matrix B̂ in which the row and column that correspond to

the vertex v and its siblings have been deleted and a row and a column are
added corresponding with the parent of v;

(B̂2, G1)=Reconstructing-1Block-Recursive (B̂1, G);
Add v0, . . . , vk to G1;
return (B̂,G1);

end if
end if

Theorem 28. Beginning with the boundary distance matrix D̂G of a 1-block
graph G, Reconstructing-1Block-Recursive (D̂G, ∅) obtains an isomorphic graph
to G in O(n).

Proof. The algorithm is recursive for simplicity and to take advantage of the
recursion stack for reconstructing the graph. Two parameters are involved in
this process which are the distance boundary matrix B̂ and the graph G. The
matrix B̂ is simplified by pruning one or several leaves but ensuring that the new
matrix is the distance matrix of the boundary of a new graph. The graph G plays
no role in this part of the process.

The base case of the recursion occurs when B̂ corresponds with a complete
graph which is then assigned to G. In the backtracking process, B̂ recuperate its
previous state, with the originally pruned leaves and G is actualized by adding
those leaves, until the algorithm reaches the last recursive call and then G is the
reconstruction we are looking for.

Clearly, the algorithm pruned at least a leaf at each step, and hence the
running time in the worst case is O(n).
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Corollary 29. Every 1-block graph G of order n with κ boundary vertices belongs
not only to H(κ, n), but also to H(κ) and to H(n).

4. Unicyclic Graphs

In this section, we move from block graphs to unicyclic graphs, i.e., those graphs
containing a unique cycle. It is divided into two subsections: one devoted to
the procedure for knowing whether a matrix is the distance matrix of a unicyclic
graph or not. A similar procedure works for recognizing the distance boundary
matrix of a unicyclic graph.

The second one is dedicated to the process of reconstructing a unicyclic graph
from its ∂(G)-distance matrix which is very similar to the analogous algorithm
for 1-blocks. Incidentally, the correctness of the algorithm proves that unicyclic
graphs verify Conjecture 12.

4.1. The distance matrix of a unicyclic graph

Let us focus in recognizing whether a matrix is the distance matrix of a unicyclic
graph. The procedure for checking is inductive and simple. At each step, one
can delete a leaf. When there are no leaves, the resulting matrix should be one
of a cycle (see Figure 6).

Theorem 30. A graph G is unicyclic if and only if the above procedure answers
in the affirmative.

Proof. Let DG be the distance matrix of a graph G. Then, a row and a column
with a unique one corresponds with a leaf in the graph G, and if we delete that
row and column, then the new matrix D′ is the distance matrix of the graph G′

obtained by deleting that leaf in G (see Figure 6). Hence, if the final matrix of
the above procedure is the distance matrix of a cycle, then it only remains to
rebuild the graph to obtain a unicyclic graph.

w

u

Figure 6. Procedure to recognize the distance boundary matrix of a unicyclic graph G.
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It is possible to slightly modify the previous procedure to recognize ∂(G)-
distance matrices of unicyclic graphs. This algorithm could be recursive or itera-
tive but in any case, we have to reduce the matrix keeping in mind that the new
matrix should be again a distance boundary matrix of a graph. In order to do
that, it is only necessary to delete the leaves in a certain order. Thus, we will pick
a leaf with maximum eccentricity. If that leaf has no siblings (case of the vertex
w in Figure 6), we delete it and substitute in the matrix for its parent which
undoubtedly is a boundary vertex of the reduced graph. If the vertex is part of a
bunch of siblings, then all of them are deleted and changed by its common parent
(vertex u in Figure 6).

It only remains a point that need to be clarify. Whereas in the distance
matrix recognizing a leaf consists of determining a row or column with a unique
one, in the ∂(G)-distance matrix, we need a different criterion for recognizing
leaves which is given by the next result.

Lemma 31. Let G be a unicyclic graph with g ≥ 3. Given the matrix D̂G, it is
possible to distinguish the vertices in L(G) from the ones in U(G).

Proof. Take a vertex u ∈ ∂(G). If u ∈ L(G), then for any two distinct vertices
w1, w2 ∈ ∂(G) − u, d(w1, u) + d(u,w2) − d(w1, w2) ≥ 2 (see Figure 7(1)). If
u ∈ U(G) and N(u) = {v1, v2}, consider the branching trees Tv1 and Tv2 . For
i = 1, 2, let wi be either a leaf of Tvi or the vertex vi if Tvi , if it is trivial.

Clearly, if g ≥ 4 then d(w1, w2) = d(w1, u) + d(u,w2) (see Figure 7(3)),
meanwhile that if g = 3, then d(w1, u)+d(u,w2)−d(w1, w2) = 1 (see Figure 7(2)).

a

w1

1
1

1
u

w2

b

a

c

w1

w2

u

w2

a

w1

1

u

(2) g = 3(1) u ∈ L(G) (3) g ≥ 4

v2
b

v1 v1

v2b
g − 2

1

Figure 7. In all cases, u,w1, w2 ∈ ∂(G).

4.2. Reconstructing a unicyclic graph from the boundary distance
matrix

In this subsection, the process is described of reconstructing a unicyclic graph G
from D̂G, the distance matrix of its boundary. The idea of the algorithm is the
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same as for 1-blocks: we prune all the leaves in a special order and the remaining
graph should be a cycle graph in which we add again the leaves in reverse order.

The algorithm implements Proposition 7, ∂(G) = L(G)∪U(G), and Lemma 31
to keep track of the leaves of the graph.

Algorithm 3 Recognizing-Unicyclic-Recursive

Require: D̂G, the boundary distance matrix of a graph G.
Ensure: Ans=T/F depending on whether G is unicyclic or not.
Use Lemma 31 to distinguish the leaves in D̂G;
if D̂G has no leaves then

return Ans=True or False depending on D̂G is the distance matrix of a
cycle;
else

Let v be the leaf with greatest eccentricity;
if v has no siblings then

Let B̂ be the matrix D̂G in which the row and column that correspond to
the vertex v have been deleted and a row and a column are added corresponding
with the parent of v;

else v has siblings v1, . . . , vk being v = v0
Let B̂ the matrix D̂G in which the row and column that correspond to

the vertex v and its siblings have been deleted and a row and a column are
added corresponding with the parent of v;

end if
Ans=Recognizing-Unicyclic-Recursive (B̂);

end if

The pseudocode description is given in Algorithm 4. Finally, Theorem 32
establishes the correctness and time complexity of Algorithm 4.

Theorem 32. Beginning with the boundary distance matrix D̂G of a unicyclic
graph G, Reconstructing-Unicyclic-Recursive (D̂G, ∅) obtains an isomorphic graph
to G in O(n).

Proof. The algorithm is an evolved version of Algorithm 3 in which we added
a second parameter G along with the distance boundary matrix B̂. As in the
other algorithm, the matrix B̂ is simplified by pruning one or several leaves but
ensuring that the new matrix is the distance matrix of the boundary of a new
graph. The graph G plays no role in this part of the process.

The base case of the recursion occurs when B̂ corresponds with a cycle graph
which is then assigned to G. In the backtracking process, B̂ recuperate its previ-
ous state, with the originally pruned leaves and G is actualized by adding those
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Algorithm 4 Reconstructing-Unicyclic-Recursive

Require: (B̂,G) where B̂ is a boundary distance matrix and G is a graph.
if B̂ corresponds with the distance matrix of a cycle Cg then

return (B̂, Cg)
else

Use Lemma 31 to distinguish the leaves in B̂;
Let v be the leaf with greatest eccentricity;
if v has no siblings then

Let B̂1 be the matrix B̂ in which the row and column that correspond to
the vertex v have been deleted and a row and a column are added corresponding
with the parent of v;

(B̂2, G1)=Reconstructing-Unicyclic-Recursive (B̂1, G);
Add v to G1;
return (B̂,G1);

else v has siblings v1, . . . , vk being v = v0
Let B̂1 the matrix B̂ in which the row and column that correspond to

the vertex v and its siblings have been deleted and a row and a column are
added corresponding with the parent of v;

(B̂2, G1)=Reconstructing-Unicyclic-Recursive (B̂1, G);
Add v0, . . . , vk to G1;
return (B̂,G1);

end if
end if

leaves, until the algorithm reaches the last recursive call and then G is the recon-
struction we are looking for.

Clearly, the algorithm pruned at least a leaf at each step, and hence the
running time in the worst case is O(n).

As a consequence, we obtain the uniqueness of the graph beginning with D̂G.

Corollary 33. Let G be a unicyclic graph on n vertices and κ boundary vertices.
Then, G is uniquely determined by D̂G, the boundary distance matrix of G. In
other words, unicyclic graphs verify Conjecture 12.

It is easy to check that, except for the cases with girth between 4 and 7 (see
Figure 2, for the cases g = 4, 5, 6), every unicyclic graph G of order n with κ
boundary vertices belongs not only to H(κ, n), but also to H(κ) and to H(n).
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5. Conclusions and Further Work

In [25], it was firstly implicitly mentioned that a resolving set S of a graph G is
strong resolving if and only if the distance matrix DS,V uniquely determines the
graph G (see Theorem 10). On the other hand, in [24] it was proved that the
boundary ∂(G) of every graph G is a strong resolving set (see Proposition 4).

Mainly having in mind this pair of results, we have presented in Section 2
the following conjecture.

Conjecture 34. Every graph belongs to H(κ, n).

In Sections 3 and 4, we have proved that if G is either a block graph or a
unicyclic graph, then it belongs to H(κ, n), and we have also provided algorithms
to recognize both 1-block and unicyclic graphs.

In addition, in Section 3, we have been able to characterize, for block graphs,
both the distance matrix DG and the boundary distance matrix D̂GT (see Theo-
rems 15, 24 and 26).

We conclude with a list of suggested open problems.

Open Problem 1. Characterizing both the distance matrices and the boundary
distance matrices of unicyclic graphs in a similar way as it has been done for trees
and for block graphs.

Open Problem 2. Designing an algorithm for reconstructing block graphs, in
a similar way as it has been done for trees, 1-block graphs and unicyclic graphs.

Open Problem 3. Checking whether every cactus graph belongs to H(κ), to
H(κ), or at least to H(κ, n).

Open Problem 4. Checking whether every split graph belongs to H(κ), to
H(κ), or at least to H(κ, n).

Open Problem 5. Checking whether every Ptolemaic graph belongs to H(κ),
to H(κ), or at least to H(κ, n).

Open Problem 6. Checking whether every graph of order n with n−1 boundary
vertices belongs to H(κ), to H(κ), or at least to H(κ, n).

Open Problem 7. Checking whether every graph of diameter 3 belongs to
H(κ, n), and characterizing the set of graphs of diameter 3 belonging to H(n)
(respectively, to H(κ)).
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