DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2023): 0.5

5-year Journal Impact Factor (2023): 0.6

CiteScore (2023): 2.2

SNIP (2023): 0.681

Discussiones Mathematicae Graph Theory

Article in press


Authors:

D. Bakhshesh

Davood Bakhshesh

Department of Computer Science,
University of Bojnord, Bojnord, Iran

email: d.bakhshesh@ub.ac.ir

0000-0002-8883-8312

M.A. Henning

Michael A. Henning

University of Johannesburg

email: mahenning@uj.ac.za

0000-0001-8185-067X

Title:

Complementary coalition graphs: characterization and algorithm

PDF

Source:

Discussiones Mathematicae Graph Theory

Received: 2024-02-16 , Revised: 2024-09-22 , Accepted: 2024-09-23 , Available online: 2024-10-11 , https://doi.org/10.7151/dmgt.2565

Abstract:

A set $S$ of vertices in a graph $G$ is a dominating set if every vertex of $V(G) \setminus S$ is adjacent to a vertex in $S$. A coalition in $G$ consists of two disjoint sets of vertices $X$ and $Y$ of $G$, neither of which is a dominating set but whose union $X \cup Y$ is a dominating set of $G$. Such sets $X$ and $Y$ form a coalition in $G$. A coalition partition, abbreviated $c$-partition, in $G$ is a partition $\mathfrak{X} = \{X_1,\ldots,X_k\}$ of the vertex set $V(G)$ of $G$ such that for all $i \in [k]$, each set $X_i \in \mathfrak{X}$ satisfies one of the following two conditions: (1) $X_i$ is a dominating set of $G$ with a single vertex, or (2) $X_i$ forms a coalition with some other set $X_j \in \mathfrak{X}$. Given a coalition partition $\mathfrak{X}$ of a graph $G$, a coalition graph CG$(G,\mathfrak{X})$ is constructed by representing each member of $\mathfrak{X}$ as a vertex of the graph, and joining two vertices with an edge if and only if the corresponding sets form a coalition in $G$. If each set in a coalition partition $\mathfrak{X}$ of $G$ contains only one vertex, then $\mathfrak{X}$ is referred to as a singleton coalition partition. A graph $G$ is a complementary coalition graph if CG$(G,\mathfrak{X})$ is isomorphic to the complement of $G$. We characterize complementary coalition graphs. This solves an open problem posed by Haynes et al. [Commun. Comb. Optim. 8 (2023) 423–430]. Moreover, we provide a polynomial-time algorithm that determines if a given graph is a complementary coalition graph.

Keywords:

coalition number, domination number, coalition partition, coalition graphs

References:

  1. D. Bakhshesh, M.A. Henning and D. Pradhan, On the coalition number of trees, Bull. Malays. Math. Sci. Soc. 46 (2023) 95.
    https://doi.org/10.1007/s40840-023-01492-4
  2. T.W. Haynes, J.T. Hedetniemi, S.T. Hedetniemi, A.A. McRae and R. Mohan, Introduction to coalitions in graphs, AKCE Int. J. Graphs Comb. 17 (2020) 653–659.
    https://doi.org/10.1080/09728600.2020.1832874
  3. T.W. Haynes, J.T. Hedetniemi, S.T. Hedetniemi, A.A. McRae and R. Mohan, Coalition graphs of paths, cycles and trees, Discuss. Math. Graph Theory 43 (2023) 931–946.
    https://doi.org/10.7151/dmgt.2416
  4. T.W. Haynes, J.T. Hedetniemi, S.T. Hedetniemi, A.A. McRae and R. Mohan, Upper bounds on the coalition number, Australas. J. Combin. 80 (2021) 442–453.
  5. T.W. Haynes, J.T. Hedetniemi, S.T. Hedetniemi, A.A. McRae and R. Mohan, Coalition graphs, Commun. Comb. Optim. 8 (2023) 423–430.
    https://doi.org/10.22049/cco.2022.27916.1394
  6. T.W. Haynes, S.T. Hedetniemi and M.A. Henning, Topics in Domination in Graphs, Dev. Math. 64 (Springer, Cham, 2020).
    https://doi.org/10.1007/978-3-030-51117-3
  7. T.W. Haynes, S.T. Hedetniemi and M.A. Henning, Structures of Domination in Graphs, Dev. Math. 66 (Springer, Cham, 2021).
    https://doi.org/10.1007/978-3-030-58892-2
  8. T.W. Haynes, S.T. Hedetniemi and M.A. Henning, Domination in Graphs: Core Concepts, Springer Monogr. Math. (Springer, Cham, 2023).
    https://doi.org/10.1007/978-3-031-09496-5

Close