Discussiones Mathematicae Graph Theory 45 (2025) 915–925 https://doi.org/10.7151/dmgt.2565

# COMPLEMENTARY COALITION GRAPHS: CHARACTERIZATION AND ALGORITHM

DAVOOD BAKHSHESH

Department of Computer Science University of Bojnord Bojnord, Iran e-mail: d.bakhshesh@ub.ac.ir

AND

MICHAEL A. HENNING

Department of Mathematics and Applied Mathematics University of Johannesburg Auckland Park, South Africa

e-mail: mahenning@uj.ac.za

#### Abstract

A set S of vertices in a graph G is a dominating set if every vertex of  $V(G) \setminus S$  is adjacent to a vertex in S. A coalition in G consists of two disjoint sets of vertices X and Y of G, neither of which is a dominating set but whose union  $X \cup Y$  is a dominating set of G. Such sets X and Y form a coalition in G. A coalition partition, abbreviated c-partition, in Gis a partition  $\mathfrak{X} = \{X_1, \ldots, X_k\}$  of the vertex set V(G) of G such that for all  $i \in [k]$ , each set  $X_i \in \mathfrak{X}$  satisfies one of the following two conditions: (1)  $X_i$  is a dominating set of G with a single vertex, or (2)  $X_i$  forms a coalition with some other set  $X_i \in \mathfrak{X}$ . Given a coalition partition  $\mathfrak{X}$  of a graph G, a coalition graph  $CG(G, \mathfrak{X})$  is constructed by representing each member of  $\mathfrak{X}$  as a vertex of the graph, and joining two vertices with an edge if and only if the corresponding sets form a coalition in G. If each set in a coalition partition  $\mathfrak{X}$  of G contains only one vertex, then  $\mathfrak{X}$  is referred to as a singleton coalition partition. A graph G is a complementary coalition graph if  $CG(G, \mathfrak{X})$  is isomorphic to the complement of G. We characterize complementary coalition graphs. This solves an open problem posed by Haynes et al. [Commun. Comb. Optim. 8 (2023) 423-430]. Moreover, we provide a polynomial-time algorithm that determines if a given graph is a complementary coalition graph.

**Keywords:** coalition number, domination number, coalition partition, coalition graphs.

2020 Mathematics Subject Classification: 05C69.

#### 1. INTRODUCTION

A set S of vertices in a graph G is a *dominating set* if every vertex in  $V(G) \setminus S$  is adjacent to a vertex in S. If  $X, Y \subseteq S$ , then set X *dominates* the set Y if every vertex  $y \in Y$  belongs to X or is adjacent to a vertex of X. The study of domination in graphs is an active area of research in graph theory. A thorough treatment of this topic can be found in recent so-called "domination books" [6–8].

For graph theory notation and terminology, we generally follow [8]. Specifically, let G = (V(G), E(G)) be a graph with vertex set V(G) and edge set E(G), and of order n(G) = |V(G)| and size m(G) = |E(G)|. Two adjacent vertices in Gare neighbors. The open neighborhood, denoted by  $N_G(v)$ , of a vertex v in G is the set of all neighbors of v, and the closed neighborhood of v is  $N_G[v] = \{v\} \cup N_G(v)$ . We denote the degree of v in G by  $\deg_G(v)$ , and so  $\deg_G(v) = |N_G(v)|$ . The minimum and maximum degrees in G are denoted by  $\delta(G)$  and  $\Delta(G)$ , respectively. An isolated vertex in G is a vertex of degree 0 in G. A graph is isolate-free if it contains no isolated vertex. A vertex v is a universal vertex of G, also called a full vertex in the literature, if  $N_G[v] = V(G)$ , that is,  $\deg_G(v) = n(G) - 1$ . Given a graph G, we let  $U_G$  be the set of all universal vertices in G. If the graph Gis clear from the context, we simply write V, E, n, m,  $\deg(v)$ , N(v), and N[v]rather than V(G), E(G), n(G), m(G),  $\deg_G(v)$ ,  $N_G(v)$ , and  $N_G[v]$ , respectively.

We denote a path and cycle on n vertices by  $P_n$  and  $C_n$ , respectively, and we denote a complete graph on n vertices by  $K_n$ . A complete bipartite graph with partite sets of cardinalities r and s we denote by  $K_{r,s}$ . A star is a complete bipartite graph  $K_{1,s}$  where  $s \ge 2$ . A nontrivial tree is a tree of order at least 2. A partition of a set is a grouping of its elements into non-empty subsets, in such a way that every element of the set is included in exactly one subset. For a set  $S \subseteq V(G)$ , the subgraph induced by S is denoted by G[S]. The join of two graphs G and H, denoted by G + H, is a graph formed by taking the disjoint union of G and H and adding an edge between every vertex in G and every vertex in H. The union of two graphs G and H, denoted by  $G \cup H$ , is the graph formed by taking the disjoint union of G and H.

A coalition in a graph G consists of two disjoint sets of vertices X and Y of G, neither of which is a dominating set but whose union  $X \cup Y$  is a dominating set of G. Such sets X and Y form a coalition in G. A coalition partition, called a *c*-partition, in G is a partition  $\mathfrak{X} = \{X_1, \ldots, X_k\}$  of V(G) such that for all  $i \in [k]$ , the set  $X_i$  is either a singleton dominating set (that is, a dominating set that

consists of a single vertex) or forms a coalition with another set  $X_j$  for some j, where  $j \in [k] \setminus \{i\}$ . The *coalition number*, C(G), in G is the maximum cardinality of a c-partition of G.

If each set in a coalition partition  $\mathfrak{X}$  of a graph G contains only one vertex, then  $\mathfrak{X}$  is referred to as a *singleton coalition partition*, denoted by  $\mathfrak{X}_1$ -partition. Given a coalition partition  $\mathfrak{X}$  of a graph G, a coalition graph  $CG(G,\mathfrak{X})$  is constructed by representing each member of  $\mathfrak{X}$  as a vertex of the graph, and joining two vertices with an edge if and only if the corresponding sets form a coalition in G.

Coalitions in graphs were introduced and first studied by Haynes, Hedetniemi, Hedetniemi, McRae, and Mohan [2], and have subsequently been studied, for example, in [1,3–5]. In [2], the authors determined the coalition number of paths and cycles, and in [4] they presented some upper bounds on the coalition number of graphs. Isolate-free graphs G of order n that satisfy C(G) = n are characterized in [1]. Further, all trees T of order n with C(T) = n - 1 are characterized in [1]. In [5], Haynes *et al.* showed that any graph can be a coalition graph. Moreover, they defined a graph G to be a *complementary coalition* graph, abbreviated CC-graph, if  $CG(G, \mathfrak{X})$  is isomorphic to the complement of G, denoted by  $\overline{G}$ . Haynes *et al.* [5] posed the following open problem.

**Problem 1** [5]. Characterize complementary coalition graphs.

In this paper, we provide a complete characterization of CC-graphs. Moreover, we present a cubic-time algorithm to determine if a given graph is a CCgraph.

### 2. CC-Graphs

In this section, we characterize all CC-graphs. Suppose G is a CC-graph, and let x be a vertex in G. We use  $\overline{x}$  to denote the vertex in  $CC(G, \mathfrak{X}_1)$  that corresponds to the set  $\{x\}$  in  $\mathfrak{X}_1$ -partition of G.

Now, we present the following proposition.

**Proposition 2.** A graph G of order  $n \ge 2$  and with no universal vertex is a CC-graph if and only if for every two distinct vertices  $x, y \in V(G)$ , the following conditions hold.

(a) If  $xy \in E(G)$ , then  $\{x, y\}$  is not a dominating set of G.

(b) If  $xy \notin E(G)$ , then  $\{x, y\}$  is a dominating set of G.

**Proof.** Let G be a graph of order  $n \geq 2$  and with no universal vertex. Suppose firstly that G is a CC-graph, and so  $CG(G, \mathfrak{X})$  is isomorphic to the complement,  $\overline{G}$ , of G, that is,  $CG(G, \mathfrak{X}_1) \cong \overline{G}$ . Since G has order n we infer that C(G) = n.

Let x and y be two distinct vertices that belong to V(G). If  $xy \in E(G)$ , then  $xy \notin E(\overline{G})$ , and so the vertices x and y are not adjacent in  $CG(G, \mathfrak{X}_1)$ , implying that  $\{x, y\}$  is not a dominating set of G. On the other hand, if  $xy \notin E(G)$ , then  $xy \in E(\overline{G})$ , and so the vertices x and y are adjacent in  $CG(G, \mathfrak{X}_1)$ , implying that  $\{x, y\}$  is a dominating set of G.

Conversely, suppose that the conditions (a) and (b) hold for every two distinct vertices x and y that belong to the graph G. We show that G is a CC-graph. We show firstly that C(G) = n. Since G has no universal vertex, every vertex in G is not adjacent to at least one other vertex in G. Let x be an arbitrary vertex of G, and let y be such a vertex distinct from x that is not adjacent to x, that is,  $xy \notin E(G)$ . By condition (b),  $\{x, y\}$  is a dominating set of G, implying that  $\{x\}$  forms a coalition with  $\{y\}$ . From this property we infer that C(G) = n. Now let  $H = CG(G, \mathfrak{X}_1)$ , and consider any two distinct vertices u and v of G. If  $uv \in E(G)$ , then by condition (a),  $\{u, v\}$  is not a dominating set of G. Therefore,  $\{u\}$  and  $\{v\}$  do not form a coalition, which means that  $\overline{u}\overline{v} \notin E(H)$ . If  $uv \notin E(G)$ , then by condition (b),  $\{u, v\}$  is a dominating set of G. Therefore,  $\{u\}$  and  $\{v\}$  form a coalition, which means that  $\overline{u}\overline{v} \in E(H)$ . Thus, we have shown that  $H \cong \overline{G}$ . Therefore, G is a CC-graph.

If G is a CC-graph that contains a universal vertex u, then the set  $\{u\}$  is a dominating set of G. Consequently, the vertex  $\overline{u}$  is isolated in the complementary coalition graph  $CG(G, \mathfrak{X}_1)$ . The following result follows as a consequence of Proposition 2.

**Proposition 3.** If G is a graph and  $|U_G| \ge 1$ , then G is CC-graph if and only if  $G[V(G) \setminus U_G]$  is a CC-graph.

Now, we define the family  $\mathcal{F}$ .

**Definition 4.** Let  $\mathcal{F}$  be the family of all graphs G with no universal vertices such that for every vertex w in G, the following conditions hold.

- (a) The induced subgraph  $G[V(G) \setminus N[w]]$  is a complete graph.
- (b) Every vertex in N(w) is not adjacent in G to at least one vertex of  $V(G) \setminus N[w]$ .

Figure 1 shows two graphs of the family  $\mathcal{F}$ .

We are now in a position to characterize complementary coalition graphs that do not contain a universal vertex.

**Theorem 5.** A graph G with no universal vertex is a CC-graph if and only if  $G \in \mathcal{F}$ .

**Proof.** Let G = (V, E) be a graph with no universal vertex. Suppose firstly that  $G \in \mathcal{F}$ . We show that G is a CC-graph. Let  $x, y \in V$  be two distinct vertices of



Figure 1. Two graphs of the family  $\mathcal{F}$ .

G. Assume that  $xy \in E$ . Since  $G \in \mathcal{F}$ , there is a vertex  $u \in V \setminus N[x]$  which is not adjacent to y. Thus,  $uy \notin E$  and  $ux \notin E$ . Therefore,  $\{x, y\}$  is not a dominating set of G. Thus, condition (a) in Proposition 2 is satisfied. Now, assume that  $xy \notin E$ . Then,  $y \in V \setminus N[x]$ . Since  $G \in \mathcal{F}$ , the induced subgraph  $G[V \setminus N[x]]$  is a complete graph. Hence the set  $\{x, y\}$  is a dominating set of G. Thus, condition (b) in Proposition 2 is satisfied. Since both conditions (a) and (b) in Proposition 2 are satisfied, the graph G is a CC-graph by Proposition 2.

Conversely, suppose next that G is a CC-graph. Let  $w \in V$  be an arbitrary vertex, and let  $X = V \setminus N[w]$ . If  $X = \emptyset$ , then w is a universal vertex of G, a contradiction. Hence,  $X \neq \emptyset$ . We show that G[X] is a complete graph. If |X| = 1, then the result is immediate since in this case  $G[X] \cong K_1$ . Thus we assume that  $|X| \ge 2$ . Let x be an arbitrary vertex of X. Since  $x \notin N[w]$ , the vertices w and x are distinct and not adjacent in G, and consequently by Proposition 2,  $\{w, x\}$ is a dominating set of G. Since w has no neighbor in X, all vertices of  $X \setminus \{x\}$ must be adjacent to x. Thus since x is an arbitrary vertex of X, we infer that G[X] is a complete graph. Thus, condition (a) in Definition 4 is satisfied. We show next that condition (b) in Definition 4 is satisfied. Let y be an arbitrary vertex in N(w). By Proposition 2,  $\{w, y\}$  is not a dominating set of G, implying that there must exist a vertex z that is adjacent to neither w nor y. Thus,  $z \in X$ and the vertex  $y \in N(w)$  is not adjacent to z. Thus, condition (b) in Definition 4 is satisfied. Therefore  $G \in \mathcal{F}$ .

## 2.1. CC-graphs with small minimum degree

As a consequence of Theorem 5 we provide next an exact characterization of all CC-graphs that are trees.

**Theorem 6.** A tree T is a CC-graph if and only if T is a path of order at most 3.

**Proof.** It is immediate to verify that the paths  $P_1$ ,  $P_2$ , and  $P_3$  are CC-graphs.

Let T = (V, E) be a tree of order  $n \ge 1$  that is a CC-graph. If  $n \le 3$ , then T is a path of order at most 3, as claimed. Hence we may assume that  $n \ge 4$ , for otherwise the desired result follows. Suppose that T has a universal vertex. In this case, T is isomorphic to a star  $K_{1,s}$  where  $s = n - 1 \ge 3$ . By Proposition 3, the tree  $T[V \setminus U_T]$  is also a CC-graph. Since  $T[V \setminus U_T]$  is isomorphic to the empty graph  $\overline{K}_s$ , which is a CC-graph only when  $s \le 2$ , we infer that  $n = s + 1 \le 3$ , contradicting our assumption that  $n \ge 4$ . Hence, T has no universal vertex. In this case, applying Theorem 5 we infer that  $T \in \mathcal{F}$ . Let w be a leaf in T, and so w has degree 1 in T, and let u be the (unique) neighbor of w. Further, let  $X = V \setminus \{u, w\}$ . Thus,  $n = |X| + 2 \ge 4$ , and so  $|X| \ge 2$ . By condition (a) in Definition 4, the subtree T[X] is a complete graph, implying that  $|X| \le 2$ . Consequently, |X| = 2. Since T is a tree, the vertex u is not adjacent to at least one vertex in X. From these properties, we infer that  $T \cong P_4$ . However,  $P_4$  is not a CC-graph, which completes the proof.

Moreover as a consequence of Theorem 5, we provide exact characterizations of CC-graphs with small minimum degree.

**Theorem 7.** A graph G of order  $n \ge 2$  and  $\delta(G) = 0$  is a CC-graph if and only if  $G \cong K_1 \cup K_{n-1}$ .

**Proof.** Let G = (V, E) be a graph of order  $n \ge 2$  with  $\delta(G) = 0$ . Suppose firstly that G is a CC-graph. By Theorem 5,  $G \in \mathcal{F}$ . Let x be an isolated vertex in G. By condition (a) in Definition 4,  $G[V \setminus x]$  is a complete graph, and so  $G[V \setminus x] \cong K_{n-1}$ , implying that  $G \cong K_1 \cup K_{n-1}$ . Conversely, suppose next that  $G \cong K_1 \cup K_{n-1}$ . Thus, G has no universal vertex. Moreover both conditions (a) and (b) in Definition 4 are satisfied for every vertex in G. Therefore, by Theorem 5 we infer that G is a CC-graph.

**Theorem 8.** A graph G of order  $n \ge 3$  and  $\delta(G) = 1$  that contains a universal vertex is a CC-graph if and only if  $G \cong (K_1 \cup K_{n-2}) + K_1$ .

**Proof.** Let G = (V, E) be a graph of order  $n \geq 3$  with  $\delta(G) = 1$  that contains a universal vertex. Suppose that  $G \cong (K_1 \cup K_{n-2}) + K_1$ . We show that G is a CC-graph. Let z be the unique universal vertex of G. Let  $G' = G[V \setminus z]$ , and so  $G' \cong K_1 \cup K_{n-2}$ . The graph G' has minimum degree  $\delta(G') = 0$ . According to Proposition 3, G is a CC-graph if and only if G' is a CC-graph. Applying Theorem 7, the graph G' is a CC-graph. Therefore, G is a CC-graph, as claimed.

Conversely, suppose next that G is a CC-graph. Since  $\delta(G) = 1$ , the graph G of order  $n \geq 3$  has a unique universal vertex. Let z be the unique universal vertex of G. Let G' = G - z. By Proposition 3, the graph G' is a CC-graph. Moreover,  $\delta(G') = 0$ . Hence, by Theorem 7, we infer that  $G' \cong K_1 \cup K_{n-2}$  noting that the order of G' is n-1. Consequently,  $G \cong (K_1 \cup K_{n-2}) + K_1$ .

**Theorem 9.** A graph G of order  $n \ge 3$  and  $\delta(G) = 1$  that contains no universal vertex is a CC-graph if and only if  $G \cong K_2 \cup K_{n-2}$ .

**Proof.** Let G = (V, E) be a graph of order  $n \ge 3$  with  $\delta(G) = 1$  that contains no universal vertex. Suppose  $G \cong K_2 \cup K_{n-2}$ . By Definition 4, the graph G belongs to the family  $\mathcal{F}$ . Since G has no universal vertices, Theorem 5 implies that G is a CC-graph.

Conversely, suppose that G is a CC-graph. By Theorem 5,  $G \in \mathcal{F}$ . Let w be a vertex in G with degree  $\delta(G) = 1$ , and let  $N(w) = \{v\}$ . Let  $X = V \setminus \{v, w\}$ and let G' = G[X]. Since  $G \in \mathcal{F}$ , the subgraph G' is a complete graph of order  $n' = n - 2 \ge 1$ . Suppose that  $\deg_G(v) \ge 2$ , and let u be a neighbor of v distinct from w. Let  $U = V \setminus N_G[u]$ . Since  $G \in \mathcal{F}$ , the subgraph G[U] is a complete graph. We note that  $w \in U$  since  $uw \notin E$ . Since the vertex v is the only neighbor of w, it follows that  $U = \{w\}$ . This implies that the vertex  $v \in N_G(u)$  is adjacent to every vertex in U, which contradicts condition (b) in Definition 4. Therefore,  $\deg_G(v) = 1$ . Thus, G is a disconnected graph consisting of two components, namely a  $K_2$ -component that contains the edge vw and a component consisting of the subgraph G'. Hence,  $G \cong K_2 \cup K_{n-2}$ .

We note that a graph G with  $\delta(G) = 2$  contains at most two universal vertices. We prove next the following theorem.

**Theorem 10.** A graph G of order  $n \ge 4$  and  $\delta(G) = 2$  with  $1 \le |U_G| \le 2$  is a CC-graph if and only if one of the following hold.

(a)  $G \cong K_1 + (K_2 \cup K_{n-3}), \text{ if } |U_G| = 1.$ (b)  $G \cong K_2 + (K_1 \cup K_{n-3}), \text{ if } |U_G| = 2.$ 

**Proof.** Let G = (V, E) be a graph of order  $n \ge 4$  with  $\delta(G) = 2$ . Suppose firstly that  $|U_G| = 1$ . Let  $U_G = \{x\}$  and let G' = G - x. We note that the graph G' has no universal vertex and satisfies  $\delta(G') = 1$ . By Theorem 9, G' is a CC-graph if and only if  $G' \cong K_2 \cup K_{n-3}$ . By Proposition 3, the graph G is a CC-graph if and only if the graph G' is a CC-graph. From this we infer that G is a CC-graph if and only if  $G \cong K_1 + (K_2 \cup K_{n-3})$ . This proves part (a) in the statement of the theorem.

Suppose next that  $|U_G| = 2$ . Let  $U_G = \{x, y\}$  and in this case, let  $G' = G - \{x, y\}$ . We note that the graph G' has order n - 2. Further, G' has no universal vertex and satisfies  $\delta(G') = 0$ . By Theorem 7, G' is a CC-graph if and only if  $G' \cong K_1 \cup K_{n-3}$ . We therefore infer that G is a CC-graph if and only if  $G \cong K_2 + (K_1 \cup K_{n-3})$ . This proves part (b) in the statement of the theorem.

Conversely, it is straightforward to verify that if  $G \cong K_1 + (K_2 \cup K_{n-3})$ , then  $|U_G| = 1$  and G is a CC-graph, and that if  $G \cong K_2 + (K_1 \cup K_{n-3})$ , then  $|U_G| = 2$  and G is a CC-graph.

Let  $\mathcal{C}$  be the family of all graphs G = (V, E) such that  $V = \{s, p, q\} \cup P \cup Q$ , where s is a vertex of degree 2,  $N(s) = \{p, q\}$ ,  $N(p) = P \cup \{s\}$ ,  $N(q) = Q \cup \{s\}$ ,  $P \cap Q = \emptyset$ , and  $G[P \cup Q] \cong K_{n-3}$ . A graph in the family  $\mathcal{C}$  is illustrated in Figure 2.



Figure 2. A graph of C.

**Theorem 11.** A graph G of order  $n \ge 4$  and  $\delta(G) = 2$  that contains no universal vertex is a CC-graph if and only if  $G \cong K_3 \cup K_{n-3}$  or  $G \in C$ .

**Proof.** Let G = (V, E) be a graph of order  $n \ge 4$  with minimum degree  $\delta(G) = 2$  that contains no universal vertex. It is straightforward to verify that if  $G \cong K_3 \cup K_{n-3}$  or  $G \in \mathcal{C}$ , then G is a CC-graph. Suppose next that G is a CC-graph. We show that  $G \cong K_3 \cup K_{n-3}$  or  $G \in \mathcal{C}$ . Let s be a vertex in G of minimum degree, and so deg(s) = 2. Further, let  $N(s) = \{p,q\}$ . Let  $X = V \setminus N[s]$  and let G' = G[X]. By supposition, G is a CC-graph. Hence by Theorem 5,  $G \in \mathcal{F}$ , implying that G' is a complete graph  $K_{n-3}$ .

Suppose that p and q are adjacent in G. We show that in this case neither p nor q is adjacent in G to any vertex that belongs to X. Suppose, to the contrary, that there is an edge joining X to a vertex in  $\{p,q\}$ . Renaming vertices if necessary, we may assume that vertex p is adjacent to a vertex  $x \in X$ . Since  $G \in \mathcal{F}$ , for any  $u \in N(x)$ , there exists at least one vertex in  $V \setminus N[x]$  that is not adjacent to u. If  $q \notin N(x)$ , then we have  $V \setminus N[x] = \{s,q\}$ . However, since p is adjacent to both s and q while also being in N(x), we have a contradiction. On the other hand, if  $q \in N(x)$ , then we have  $V \setminus N[x] = \{s\}$ . But again, this leads to a contradiction since p is adjacent to s and also belongs to N(x). Hence, neither p nor q is adjacent to any vertex that belongs to X. As observed earlier,  $G' \cong K_{n-3}$ .

Suppose next that p and q are not adjacent in G. Suppose that p and q have a common neighbor, z say, different from s, and so  $z \in X$  and  $\{p,q\} \subseteq N(z)$ . By our earlier observations, the vertex z is adjacent to every vertex of G, except for the vertex s, and so  $V \setminus N[z] = \{s\}$ . Since  $G \in \mathcal{F}$ , every vertex  $u \in N(z)$ is not adjacent to at least one vertex of  $V \setminus N[z]$ . However, this contradicts the fact that both p and q are adjacent to the vertex s. Therefore, the vertex s is the only common neighbor of p and q in the graph G. Let P and Q be the set of all vertices in X that are adjacent to p and q, respectively. By our earlier observations,  $P \cap Q = \emptyset$ ,  $N_G(p) = P \cup \{s\}$ , and  $N_G(q) = Q \cup \{s\}$ . If there is a vertex  $u \in X$  that belongs to neither P nor Q, then since G' is a complete graph, we infer that  $V \setminus N[u] = \{p, q, s\}$ . However,  $pq \notin E(G)$ , and so  $G[V \setminus N[u]]$  is not a complete graph, contradicting condition (a) in Definition 4. Hence,  $G[P \cup Q] \cong K_{n-3}$ . From these properties of G, we infer that  $G \in C$ .

#### 3. Algorithm

It seems that the decision problem related to the computation of the coalition number of a given graph is NP-hard. Here, we present a cubic-time algorithm that determines whether a given graph G is a CC-graph. It is remarkable that for any CC-graph G of order n, C(G) = n.

For a given graph G of order n, we define an  $n^2 \times n$  matrix  $\mathcal{D}$  as follows

 $\mathcal{D}(\{a,b\},x) = \begin{cases} 1 & \text{if the vertex } x \text{ has a neighbor in } \{a,b\}, \\ 0 & \text{otherwise.} \end{cases}$ 

Note that if  $x \in \{a, b\}$ , then we assume that  $\mathcal{D}(\{a, b\}, x) = 1$ . Now, based on the definition of the matrix  $\mathcal{D}$  and Proposition 2, we conclude the following theorem.

**Theorem 12.** A graph G = (V, E) of order n with no universal vertex is a CC-graph if and only if the following conditions hold.

- (a) For every pair  $xy \in E$ , we have  $\sum_{v \in V} \mathcal{D}(\{x, y\}, v) < n$ , and
- (b) for every pair  $xy \notin E$ , we have  $\sum_{v \in V} \mathcal{D}(\{x, y\}, v) = n$ .

Now, we present an algorithm that determines whether a given graph G is a CC-graph. The algorithm proceeds as follows: first, it identifies all universal vertices of G and adds them to the set  $U_G$ . Next, it considers the induced subgraph  $G'(V', E') = G[V \setminus U_G]$  and computes the matrix  $\mathcal{D}$  for G'. Then, for every two vertices  $x, y \in V$  with  $x \neq y$ , it applies Theorem 12. For more details, see Algorithm 1.

The running time of Algorithm 1 is  $O(n^3)$  when implemented naively. This is because  $U_G$ , G', n' consume O(n) time, and calculating  $\mathcal{D}$  consumes  $O(n^3)$ time. All if-statements takes O(n) time, and consequently the two loops have an overall running time of  $O(n^3)$ . Hence, the overall running time of the algorithm is  $O(n^3)$ . We state this formally as follows.

**Theorem 13.** The algorithm CCG can determine if a given graph G of order n is a CC-graph in  $O(n^3)$  time.

## Algorithm 1: CCG(G, V, E)

**input:** A graph G, and with vertex set V and the edge set E. output: Return "yes" if G is a CC-graph, and return "no" if G is not a CC-graph. 1  $U_G :=$  the set of all universal vertices of G; 2  $G'(V', E') := G[V \setminus U_G];$ **3**  $n' := |V| - |U_G|$ ; 4 Compute the matrix  $\mathcal{D}$  for G'; **5** flag := 0;6 foreach  $x \in G'$  do for each  $y \in G'$  with  $x \neq y$  do 7 if  $(x, y) \in E$  then 8 if  $\sum_{v \in V'} \mathcal{D}(\{x,y\},v) < n'$  then 9 flag := 1; $\mathbf{10}$ end 11 end  $\mathbf{12}$ else  $\mathbf{13}$ if  $\sum_{v \in V'} \mathcal{D}(\{x, y\}, v) = n'$  then 14 flag := 1;15  $\mathbf{16}$ end  $\mathbf{end}$ 17 if flag = 0 then 18 return "no";  $\mathbf{19}$ end  $\mathbf{20}$ flag = 0; $\mathbf{21}$ end  $\mathbf{22}$ 23 end 24 return "yes";

## 4. Conclusion

In this paper, we have addressed the problem of characterizing complementary coalition graphs and have provided a cubic-time algorithm to determine if a given graph is a complementary coalition graph. Our main result provides a solution to an open problem that was posed by Haynes *et al.* [5]. As future works, it would be interesting to propose a quadratic or linear time algorithm to determine if a given graph is a CC-graph.

#### Acknowledgments

Research of Michael A. Henning was supported in part by the South African National Research Foundation (grants 132588, 129265) and the University of Johannesburg.

#### References

- D. Bakhshesh, M.A. Henning and D. Pradhan, On the coalition number of trees, Bull. Malays. Math. Sci. Soc. 46 (2023) 95. https://doi.org/10.1007/s40840-023-01492-4
- [2] T.W. Haynes, J.T. Hedetniemi, S.T. Hedetniemi, A.A. McRae and R. Mohan, Introduction to coalitions in graphs, AKCE Int. J. Graphs Comb. 17 (2020) 653–659. https://doi.org/10.1080/09728600.2020.1832874
- [3] T.W. Haynes, J.T. Hedetniemi, S.T. Hedetniemi, A.A. McRae and R. Mohan, Coalition graphs of paths, cycles and trees, Discuss. Math. Graph Theory 43 (2023) 931–946. https://doi.org/10.7151/dmgt.2416
- [4] T.W. Haynes, J.T. Hedetniemi, S.T. Hedetniemi, A.A. McRae and R. Mohan, Upper bounds on the coalition number, Australas. J. Combin. 80 (2021) 442–453.
- T.W. Haynes, J.T. Hedetniemi, S.T. Hedetniemi, A.A. McRae and R. Mohan, *Coalition graphs*, Commun. Comb. Optim. 8 (2023) 423–430. https://doi.org/10.22049/cco.2022.27916.1394
- T.W. Haynes, S.T. Hedetniemi and M.A. Henning, Topics in Domination in Graphs, Dev. Math. 64 (Springer, Cham, 2020). https://doi.org/10.1007/978-3-030-51117-3
- T.W. Haynes, S.T. Hedetniemi and M.A. Henning, Structures of Domination in Graphs, Dev. Math. 66 (Springer, Cham, 2021). https://doi.org/10.1007/978-3-030-58892-2
- [8] T.W. Haynes, S.T. Hedetniemi and M.A. Henning, Domination in Graphs: Core Concepts, Springer Monogr. Math. (Springer, Cham, 2023). https://doi.org/10.1007/978-3-031-09496-5

Received 16 February 2024 Revised 22 September 2024 Accepted 23 September 2024 Available online 11 October 2024

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License https://creativecommons.org/licenses/by-nc-nd/4.0/