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Abstract

A set S of vertices in a graph G is a dominating set if every vertex of
V(G) \ S is adjacent to a vertex in S. A coalition in G consists of two
disjoint sets of vertices X and Y of G, neither of which is a dominating
set but whose union X UY is a dominating set of G. Such sets X and Y
form a coalition in G. A coalition partition, abbreviated c-partition, in G
is a partition X = {X1,..., Xy} of the vertex set V(G) of G such that for
all i € [k], each set X; € X satisfies one of the following two conditions:
(1) X; is a dominating set of G with a single vertex, or (2) X; forms a
coalition with some other set X; € X. Given a coalition partition X of a
graph G, a coalition graph CG(G, X) is constructed by representing each
member of X as a vertex of the graph, and joining two vertices with an edge
if and only if the corresponding sets form a coalition in G. If each set in
a coalition partition X of G contains only one vertex, then X is referred to
as a singleton coalition partition. A graph G is a complementary coalition
graph if CG(G, X) is isomorphic to the complement of G. We characterize
complementary coalition graphs. This solves an open problem posed by
Haynes et al. [Commun. Comb. Optim. 8 (2023) 423-430]. Moreover, we
provide a polynomial-time algorithm that determines if a given graph is a
complementary coalition graph.
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1. INTRODUCTION

A set S of vertices in a graph G is a dominating set if every vertex in V(G) \ S
is adjacent to a vertex in S. If X,Y C S, then set X dominates the set Y if
every vertex y € Y belongs to X or is adjacent to a vertex of X. The study of
domination in graphs is an active area of research in graph theory. A thorough
treatment of this topic can be found in recent so-called “domination books” [6-8].

For graph theory notation and terminology, we generally follow [8]. Specifi-
cally, let G = (V(G), E(G)) be a graph with vertex set V(G) and edge set E(G),
and of order n(G) = |V(G)| and size m(G) = |E(G)|. Two adjacent vertices in G
are neighbors. The open neighborhood, denoted by Ng(v), of a vertex v in G is the
set of all neighbors of v, and the closed neighborhood of v is Ng[v] = {v}UNg(v).
We denote the degree of v in G by degq(v), and so degs(v) = |[Ng(v)|. The min-
imum and maximum degrees in G are denoted by §(G) and A(G), respectively.
An isolated verter in G is a vertex of degree 0 in GG. A graph is isolate-free if it
contains no isolated vertex. A vertex v is a universal vertex of GG, also called a
full vertex in the literature, if Ng[v] = V(G), that is, degg(v) = n(G) — 1. Given
a graph G, we let Ug be the set of all universal vertices in . If the graph G
is clear from the context, we simply write V, E, n, m, deg(v), N(v), and N[v]
rather than V(G), E(G), n(G), m(G), degs(v), Na(v), and Ng[v], respectively.

We denote a path and cycle on n vertices by P, and C,, respectively, and
we denote a complete graph on n vertices by K,. A complete bipartite graph
with partite sets of cardinalities  and s we denote by K, ;. A star is a complete
bipartite graph K, where s > 2. A nontrivial tree is a tree of order at least 2.
A partition of a set is a grouping of its elements into non-empty subsets, in such
a way that every element of the set is included in exactly one subset. For a set
S C V(G), the subgraph induced by S is denoted by G[S]. The join of two graphs
G and H, denoted by G + H, is a graph formed by taking the disjoint union of
G and H and adding an edge between every vertex in G and every vertex in H.
The union of two graphs GG and H, denoted by G U H, is the graph formed by
taking the disjoint union of G and H.

A coalition in a graph G consists of two disjoint sets of vertices X and Y of
G, neither of which is a dominating set but whose union X UY is a dominating
set of G. Such sets X and Y form a coalition in G. A coalition partition, called a
c-partition, in G is a partition X = {X1, ..., X} of V(G) such that for all i € [k],
the set X; is either a singleton dominating set (that is, a dominating set that
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consists of a single vertex) or forms a coalition with another set X; for some j,
where j € [k]\ {i}. The coalition number, C(G), in G is the maximum cardinality
of a c-partition of G.

If each set in a coalition partition X of a graph G contains only one vertex,
then X is referred to as a singleton coalition partition, denoted by Xi-partition.
Given a coalition partition X of a graph G, a coalition graph CG(G, X) is con-
structed by representing each member of X as a vertex of the graph, and joining
two vertices with an edge if and only if the corresponding sets form a coalition
in G.

Coalitions in graphs were introduced and first studied by Haynes, Hedet-
niemi, Hedetniemi, McRae, and Mohan [2], and have subsequently been studied,
for example, in [1,3-5]. In [2], the authors determined the coalition number of
paths and cycles, and in [4] they presented some upper bounds on the coalition
number of graphs. Isolate-free graphs G of order n that satisfy C(G) = n are
characterized in [1]. Further, all trees T' of order n with C(T) = n — 1 are
characterized in [1]. In [5], Haynes et al. showed that any graph can be a coali-
tion graph. Moreover, they defined a graph G to be a complementary coalition
graph, abbreviated CC-graph, if CG(G, X) is isomorphic to the complement of G,
denoted by G. Haynes et al. [5] posed the following open problem.

Problem 1 [5]. Characterize complementary coalition graphs.

In this paper, we provide a complete characterization of CC-graphs. More-
over, we present a cubic-time algorithm to determine if a given graph is a CC-
graph.

2. CC-GRAPHS

In this section, we characterize all CC-graphs. Suppose G is a CC-graph, and let
x be a vertex in G. We use T to denote the vertex in CC(G, X;) that corresponds
to the set {z} in X;-partition of G.

Now, we present the following proposition.

Proposition 2. A graph G of order n > 2 and with no universal vertexr is a
CC-graph if and only if for every two distinct vertices x,y € V(G), the following
conditions hold.

(a) If xy € E(G), then {z,y} is not a dominating set of G.
(b) If xy ¢ E(G), then {x,y} is a dominating set of G.
Proof. Let G be a graph of order n > 2 and with no universal vertex. Suppose

firstly that G is a CC-graph, and so CG(G, X) is isomorphic to the complement,
G, of G, that is, CG(G, X1) = G. Since G has order n we infer that C(G) = n.
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Let  and y be two distinct vertices that belong to V(G). If zy € E(G), then
ry ¢ E(G), and so the vertices z and y are not adjacent in CG(G, X1), implying
that {x,y} is not a dominating set of G. On the other hand, if zy ¢ E(G), then
ry € E(G), and so the vertices x and y are adjacent in CG(G, X1), implying that
{z,y} is a dominating set of G.

Conversely, suppose that the conditions (a) and (b) hold for every two distinct
vertices x and y that belong to the graph G. We show that G is a CC-graph.
We show firstly that C(G) = n. Since G has no universal vertex, every vertex
in G is not adjacent to at least one other vertex in G. Let x be an arbitrary
vertex of GG, and let y be such a vertex distinct from z that is not adjacent
to x, that is, xzy ¢ E(G). By condition (b), {z,y} is a dominating set of G,
implying that {x} forms a coalition with {y}. From this property we infer that
C(G) =n. Now let H = CG(G, X1), and consider any two distinct vertices u and
v of G. If wv € E(G), then by condition (a), {u,v} is not a dominating set of G.
Therefore, {u} and {v} do not form a coalition, which means that uv ¢ E(H).
If wv ¢ E(G), then by condition (b), {u,v} is a dominating set of G. Therefore,
{u} and {v} form a coalition, which means that uv € E(H). Thus, we have
shown that H = G. Therefore, G is a CC-graph. [

If G is a CC-graph that contains a universal vertex u, then the set {u} is a
dominating set of G. Consequently, the vertex w is isolated in the complementary
coalition graph CG(G,X;). The following result follows as a consequence of
Proposition 2.

Proposition 3. If G is a graph and |Ug| > 1, then G is CC-graph if and only if
G[V(G)\ Ug] is a CC-graph.

Now, we define the family F.

Definition 4. Let F be the family of all graphs G with no universal vertices
such that for every vertex w in G, the following conditions hold.

(a) The induced subgraph G[V(G) \ N[w]] is a complete graph.

(b) Every vertex in N(w) is not adjacent in G to at least one vertex of V(G) \
Nw].

Figure 1 shows two graphs of the family F.
We are now in a position to characterize complementary coalition graphs that
do not contain a universal vertex.

Theorem 5. A graph G with no universal vertex is a CC-graph if and only if
GeF.

Proof. Let G = (V, E) be a graph with no universal vertex. Suppose firstly that
G € F. We show that G is a CC-graph. Let x,y € V be two distinct vertices of
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Figure 1. Two graphs of the family F.

G. Assume that zy € E. Since G € F, there is a vertex u € V' \ N[z] which is not
adjacent to y. Thus, uy ¢ E and ux ¢ E. Therefore, {z,y} is not a dominating
set of G. Thus, condition (a) in Proposition 2 is satisfied. Now, assume that
xzy & E. Then, y € V' \ N[z]. Since G € F, the induced subgraph G[V \ N{z]] is
a complete graph. Hence the set {x,y} is a dominating set of G. Thus, condition
(b) in Proposition 2 is satisfied. Since both conditions (a) and (b) in Proposition
2 are satisfied, the graph G is a CC-graph by Proposition 2.

Conversely, suppose next that G is a CC-graph. Let w € V be an arbitrary
vertex, and let X = V' \ N[w]. If X = {), then w is a universal vertex of G, a
contradiction. Hence, X # (). We show that G[X] is a complete graph. If | X| =1,
then the result is immediate since in this case G[X] = Kj. Thus we assume that
|X| > 2. Let z be an arbitrary vertex of X. Since z ¢ Nw], the vertices w and
x are distinct and not adjacent in G, and consequently by Proposition 2, {w, x}
is a dominating set of G. Since w has no neighbor in X, all vertices of X \ {z}
must be adjacent to x. Thus since x is an arbitrary vertex of X, we infer that
G[X] is a complete graph. Thus, condition (a) in Definition 4 is satisfied. We
show next that condition (b) in Definition 4 is satisfied. Let y be an arbitrary
vertex in N(w). By Proposition 2, {w,y} is not a dominating set of G, implying
that there must exist a vertex z that is adjacent to neither w nor y. Thus, z € X
and the vertex y € N(w) is not adjacent to z. Thus, condition (b) in Definition 4
is satisfied. Therefore G € F. ]

2.1. CC-graphs with small minimum degree

As a consequence of Theorem 5 we provide next an exact characterization of all
CC-graphs that are trees.

Theorem 6. A tree T is a CC-graph if and only if T is a path of order at most 3.

Proof. 1t is immediate to verify that the paths Py, P», and P3 are CC-graphs.
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Let T = (V,E) be a tree of order n > 1 that is a CC-graph. If n < 3, then T
is a path of order at most 3, as claimed. Hence we may assume that n > 4, for
otherwise the desired result follows. Suppose that T has a universal vertex. In
this case, 1" is isomorphic to a star K s where s =n — 1 > 3. By Proposition 3,
the tree T[V \ Ur] is also a CC-graph. Since T'[V \ Ur] is isomorphic to the empty
graph K, which is a CC-graph only when s < 2, we infer that n = s + 1 < 3,
contradicting our assumption that n > 4. Hence, T has no universal vertex. In
this case, applying Theorem 5 we infer that T' € F. Let w be a leaf in T, and
so w has degree 1 in T, and let u be the (unique) neighbor of w. Further, let
X =V \{u,w}. Thus, n = |X|+ 2 > 4, and so |X| > 2. By condition (a)
in Definition 4, the subtree T'[X] is a complete graph, implying that |X| < 2.
Consequently, | X| = 2. Since T is a tree, the vertex u is adjacent to at least one
vertex in X. By condition (b) in Definition 4, the vertex w is not adjacent to at
least one vertex in X. From these properties, we infer that T' = P,. However, P,
is not a CC-graph, which completes the proof. [ |

Moreover as a consequence of Theorem 5, we provide exact characterizations
of CC-graphs with small minimum degree.

Theorem 7. A graph G of order n > 2 and 6(G) = 0 is a CC-graph if and only
’LfG ==Ki1UK,_1.

Proof. Let G = (V,E) be a graph of order n > 2 with §(G) = 0. Suppose
firstly that G is a CC-graph. By Theorem 5, G € F. Let x be an isolated vertex
in G. By condition (a) in Definition 4, G[V \ z] is a complete graph, and so
G[V \ z] 2 K,,_1, implying that G = K; U K,,_1. Conversely, suppose next that
G = K; UK, 1. Thus, G has no universal vertex. Moreover both conditions (a)
and (b) in Definition 4 are satisfied for every vertex in G. Therefore, by Theorem 5

we infer that G is a CC-graph. ]

Theorem 8. A graph G of order n > 3 and §(G) = 1 that contains a universal
vertex is a CC-graph if and only if G = (K1 U K, —9) + K;.

Proof. Let G = (V, E) be a graph of order n > 3 with 6(G) = 1 that contains
a universal vertex. Suppose that G = (K; U K,,_2) + K;. We show that G is a
CC-graph. Let z be the unique universal vertex of G. Let G' = G[V'\ 2], and
so G' 2 K1 U K,,_3. The graph G’ has minimum degree 6(G’') = 0. According
to Proposition 3, G is a CC-graph if and only if G’ is a CC-graph. Applying
Theorem 7, the graph G’ is a CC-graph. Therefore, G is a CC-graph, as claimed.

Conversely, suppose next that G is a CC-graph. Since §(G) = 1, the graph
G of order n > 3 has a unique universal vertex. Let z be the unique universal
vertex of G. Let G’ = G — z. By Proposition 3, the graph G’ is a CC-graph.
Moreover, §(G’) = 0. Hence, by Theorem 7, we infer that G’ = K; U K,,_5 noting
that the order of G’ is n — 1. Consequently, G = (K1 U K,,_2) + K. [ |
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Theorem 9. A graph G of order n > 3 and 6(G) = 1 that contains no universal
vertex is a CC-graph if and only if G = Ko U Kj,_o.

Proof. Let G = (V, E) be a graph of order n > 3 with §(G) = 1 that contains no
universal vertex. Suppose G = KsU K,,_5. By Definition 4, the graph G belongs
to the family F. Since G has no universal vertices, Theorem 5 implies that G is
a CC-graph.

Conversely, suppose that G is a CC-graph. By Theorem 5, G € F. Let w be
a vertex in G with degree 6(G) = 1, and let N(w) = {v}. Let X =V \ {v,w}
and let G' = G[X]. Since G € F, the subgraph G’ is a complete graph of
order n’ = n —2 > 1. Suppose that degs(v) > 2, and let u be a neighbor
of v distinct from w. Let U = V' \ Ng[u]. Since G € F, the subgraph G[U] is
a complete graph. We note that w € U since uw ¢ E. Since the vertex v is
the only neighbor of w, it follows that U = {w}. This implies that the vertex
v € Ng(u) is adjacent to every vertex in U, which contradicts condition (b) in
Definition 4. Therefore, degs(v) = 1. Thus, G is a disconnected graph consisting
of two components, namely a Ks-component that contains the edge vw and a
component consisting of the subgraph G’. Hence, G = Ko U K,,_». [

We note that a graph G with §(G) = 2 contains at most two universal
vertices. We prove next the following theorem.

Theorem 10. A graph G of order n > 4 and §(G) = 2 with 1 < |Ug| < 2 is a
CC-graph if and only if one of the following hold.

(a) G= K+ (KoUK, 3), if |Ug| = 1.
(b) G = Ky + (K1 UK, 3), if |[Ua| = 2.

Proof. Let G = (V, E) be a graph of order n > 4 with 6(G) = 2. Suppose firstly
that |[Ug| = 1. Let Ug = {x} and let G’ = G — x. We note that the graph G’ has
no universal vertex and satisfies §(G’) = 1. By Theorem 9, G’ is a CC-graph if
and only if G’ & Ky U K,,_3. By Proposition 3, the graph G is a CC-graph if and
only if the graph G’ is a CC-graph. From this we infer that G is a CC-graph if
and only if G = Ky + (K2 U K,,_3). This proves part (a) in the statement of the
theorem.

Suppose next that |Ug| = 2. Let Ug = {z,y} and in this case, let G’ =
G — {z,y}. We note that the graph G’ has order n — 2. Further, G’ has no
universal vertex and satisfies §(G’) = 0. By Theorem 7, G’ is a CC-graph if and
only if G’ = K1 U K,,_3. We therefore infer that G is a CC-graph if and only if
G = Ky + (K1 U K,,_3). This proves part (b) in the statement of the theorem.

Conversely, it is straightforward to verify that if G = K; + (Ko UK,,_3), then
|Ug| =1 and G is a CC-graph, and that if G = Ky + (K1 U K,,_3), then |Ug| = 2
and G is a CC-graph. [
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Let C be the family of all graphs G = (V, E) such that V = {s,p,q} UPUQ,
where s is a vertex of degree 2, N(s) = {p,q}, N(p) = PU{s}, N(q) = QU {s},
PNn@ =0, and GIPUQ] = K,_3. A graph in the family C is illustrated in
Figure 2.

Figure 2. A graph of C.

Theorem 11. A graph G of order n > 4 and §(G) = 2 that contains no universal
vertex is a CC-graph if and only if G = K3 U K,,_3 or G € C.

Proof. Let G = (V, E) be a graph of order n > 4 with minimum degree §(G) = 2
that contains no universal vertex. It is straightforward to verify that if G =
K3UK,,_3or G €C, then G is a CC-graph. Suppose next that G is a CC-graph.
We show that G =2 K3 U K, _3 or G € C. Let s be a vertex in G of minimum
degree, and so deg(s) = 2. Further, let N(s) = {p,q}. Let X = V \ N|[s] and
let G’ = G[X]. By supposition, G is a CC-graph. Hence by Theorem 5, G € F,
implying that G’ is a complete graph K,_3.

Suppose that p and ¢ are adjacent in G. We show that in this case neither
p nor ¢ is adjacent in G to any vertex that belongs to X. Suppose, to the
contrary, that there is an edge joining X to a vertex in {p, ¢}. Renaming vertices
if necessary, we may assume that vertex p is adjacent to a vertex x € X. Since
G € F, for any u € N(x), there exists at least one vertex in V' \ N[z] that is not
adjacent to u. If ¢ € N(z), then we have V' \ N[z] = {s,¢}. However, since p
is adjacent to both s and ¢ while also being in N(z), we have a contradiction.
On the other hand, if ¢ € N(x), then we have V' \ N[z] = {s}. But again, this
leads to a contradiction since p is adjacent to s and also belongs to N(z). Hence,
neither p nor ¢ is adjacent to any vertex that belongs to X. As observed earlier,
G' = K,,_3. Therefore, G = K3 U K,,_3.

Suppose next that p and ¢ are not adjacent in G. Suppose that p and ¢ have
a common neighbor, z say, different from s, and so z € X and {p,q} C N(z2).
By our earlier observations, the vertex z is adjacent to every vertex of G, except
for the vertex s, and so V' \ N[z] = {s}. Since G € F, every vertex u € N(z)
is not adjacent to at least one vertex of V' \ N[z]. However, this contradicts
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the fact that both p and ¢ are adjacent to the vertex s. Therefore, the vertex
s is the only common neighbor of p and ¢ in the graph G. Let P and @ be
the set of all vertices in X that are adjacent to p and ¢, respectively. By our
earlier observations, PN Q = 0, Ng(p) = P U {s}, and Ng(q) = Q U {s}. If
there is a vertex u € X that belongs to neither P nor @, then since G’ is a
complete graph, we infer that V' \ N[u] = {p,q, s}. However, pq ¢ E(G), and so
G[V \ N{[u]] is not a complete graph, contradicting condition (a) in Definition 4.
Hence, G[P U Q] = K,,_3. From these properties of G, we infer that G € C. =

3. ALGORITHM

It seems that the decision problem related to the computation of the coalition
number of a given graph is NP-hard. Here, we present a cubic-time algorithm
that determines whether a given graph G is a CC-graph. It is remarkable that
for any CC-graph G of order n, C(G) = n.

For a given graph G of order n, we define an n

D({a,b},z) = {

Note that if = € {a, b}, then we assume that D({a, b}, z) = 1. Now, based on the
definition of the matrix D and Proposition 2, we conclude the following theorem.

2 x n matrix D as follows

1 if the vertex x has a neighbor in {a, b},
0 otherwise.

Theorem 12. A graph G = (V,E) of order n with no universal vertexr is a
CC-graph if and only if the following conditions hold.

(a) For every pair xy € E, we have ), .y, D({z,y},v) <n, and

(b) for every pair xy ¢ E, we have ) .y, D({z,y},v) =n.

Now, we present an algorithm that determines whether a given graph G is
a CC-graph. The algorithm proceeds as follows: first, it identifies all universal
vertices of G and adds them to the set Ug. Next, it considers the induced
subgraph G'(V', E') = G|V \ Ug] and computes the matrix D for G'. Then, for
every two vertices x,y € V with x # y, it applies Theorem 12. For more details,
see Algorithm 1.

The running time of Algorithm 1 is O(n?) when implemented naively. This
is because Ug, G', n’ consume O(n) time, and calculating D consumes O(n?3)
time. All if-statements takes O(n) time, and consequently the two loops have an
overall running time of O(n3). Hence, the overall running time of the algorithm
is O(n?®). We state this formally as follows.

Theorem 13. The algorithm CCG can determine if a given graph G of order n
is a CC-graph in O(n?) time.
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Algorithm 1: CCG(G,V, E)
input: A graph GG, and with vertex set V' and the edge set E.

output: Return “yes” if G is a CC-graph, and return “no” if GG is not a
CC-graph.

1 Ug := the set of all universal vertices of G}
2 G'(V',E") :=G[V\Ug] ;

3 n':=|V]|—|Uql;

4 Compute the matrix D for G;

5 flag :=0;

6 foreach z € G’ do

7 foreach y € G’ with x # y do

8 if (z,y) € E then

9 if 3" cv» D({z,y},v) < n' then
10 ‘ flag == 1;

11 end

12 end

13 else

14 if >~ cv» D({z,y},v) = n' then
15 ‘ flag :=1;

16 end

17 end

18 if flag =0 then

19 ‘ return “no”;

20 end

21 flag = 0;

22 end
23 end
24 return “yes”;

4. CONCLUSION

In this paper, we have addressed the problem of characterizing complementary
coalition graphs and have provided a cubic-time algorithm to determine if a given
graph is a complementary coalition graph. Our main result provides a solution to
an open problem that was posed by Haynes et al. [5]. As future works, it would
be interesting to propose a quadratic or linear time algorithm to determine if a
given graph is a CC-graph.
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