DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2023): 0.5

5-year Journal Impact Factor (2023): 0.6

CiteScore (2023): 2.2

SNIP (2023): 0.681

Discussiones Mathematicae Graph Theory

Article in press


Authors:

M. Walicki

Michał Walicki

Department of Informatics, University of Bergen, PBox 7803, 5020 Bergen, Norway

email: michal.walicki@uib.no

Title:

Poison Game for semikernels of arbitrary digraphs

PDF

Source:

Discussiones Mathematicae Graph Theory

Received: 2024-06-28 , Revised: 2024-09-10 , Accepted: 2024-09-10 , Available online: 2024-09-25 , https://doi.org/10.7151/dmgt.2562

Abstract:

A modified version of Duchet and Meyniel's Poison Game is presented, which can be played on arbitrary digraphs without sinks. Player $A$ has a winning strategy if and only if the graph has a semikernel; the winning condition for this player is that the game is infinite. Even for the uncountable graphs, it suffices to consider games with up to $\omega$ steps.

Keywords:

infinite digraphs, kernels, semikernels

References:

  1. C. Berge and P. Duchet, Perfect graphs and kernels, Bull. Inst. Math. Acad. Sin. 16 (1988) 263–274.
  2. C. Berge and P. Duchet, Recent problems and results about kernels in directed graphs, Discrete Math. 86 (1990) 27–31.
    https://doi.org/10.1016/0012-365X(90)90346-J
  3. M. Blidia, A parity digraph has a kernel, Combinatorica 6(1) (1986) 23–27.
    https://doi.org/10.1007/BF02579405
  4. E. Boros and V. Gurvich, Perfect graphs, kernels, and cores of cooperative games, Discrete Math. 306 (2006) 2336–2354.
    https://doi.org/10.1016/j.disc.2005.12.031
  5. M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas, The strong perfect graph theorem, Ann. of Math. (2) 164 (2006) 51–229.
    https://doi.org/10.4007/annals.2006.164.51
  6. R.T. Cook, Patterns of paradox, J. Symb. Log. 69 (2004) 767–774.
    https://doi.org/10.2178/jsl/1096901765
  7. P. Duchet and H. Meyniel, Une généralisation du théorème de Richardson sur l'existence de noyaux dans les graphes orientés, Discrete Math. 43 (1983) 21–27.
    https://doi.org/10.1016/0012-365X(83)90017-1
  8. P. Duchet and H. Meyniel, Kernels in directed graphs: a poison game, Discrete Math. 115 (1993) 273–276.
    https://doi.org/10.1016/0012-365X(93)90496-G
  9. H. Galeana-Sánchez and V. Neumann-Lara, On kernels and semikernels of digraphs, Discrete Math. 48 (1984) 67–76.
    https://doi.org/10.1016/0012-365X(84)90131-6
  10. V. Neumann-Lara, Seminúcleos de una Digráfica, Technical Report (Anales del Instituto de Matemáticas II, Universidad Nacional Autónoma México, 1971).
  11. M. Richardson, Solutions of irreflexive relations, Ann. of Math. (2) 58 (1953) 573–590.
    https://doi.org/10.2307/1969755
  12. R. Sánchez-López, Infinite kernel perfect digraphs, AKCE Int. J. Graphs Comb. 14 (2017) 165–171.
    https://doi.org/10.1016/j.akcej.2017.02.005
  13. J. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior (Princeton University Press, 1944).
  14. M. Walicki, Resolving infinitary paradoxes, J. Symb. Log. 82 (2017) 709–723.
    https://doi.org/10.1017/jsl.2016.18
  15. M. Walicki, Kernels of digraphs with finitely many ends, Discrete Math. 342 (2019) 473–486.
    https://doi.org/10.1016/j.disc.2018.10.026

Close