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Abstract

A modified version of Duchet and Meyniel’s Poison Game is presented,
which can be played on arbitrary digraphs without sinks. Player A has
a winning strategy if and only if the graph has a semikernel; the winning
condition for this player is that the game is infinite. Even for the uncountable
graphs, it suffices to consider games with up to ω steps.

Keywords: infinite digraphs, kernels, semikernels.

2020 Mathematics Subject Classification: 05C57, 05C63, 05C99.

A kernel of a graph (which here always means a digraph) is an independent
subset K of vertices with an incoming edge from every vertex v ̸∈ K. Kernels
have been studied since their introduction in [13], as this notion captures various
important concepts in graph theory and its different applications. For instance,
kernels played an important role in the search for a proof of the strong perfect
graph theorem, presented eventually in [5] (since a graph is perfect if and only if
every orientation of it, for which each complete subgraph is acyclic, has a kernel).
They provide tools for analysing some games, where their existence implies a
winning strategy, e.g., [4, 13]. In classical logic, kernels can be used to capture
logical consistency and, with graph cycles modelling self-reference, support study
of paradoxes, e.g., [6, 14].

A semikernel, generalising the notion of a kernel, is a nonempty independent
subset L of vertices with an incoming edge from every out-neighbour of every
vertex v ∈ L. A graph is kernel perfect, KP, if each of its nonempty induced
subgraphs has a kernel. As shown in [10], a graph is KP if each of its nonempty
induced subgraphs has a semikernel. By this fact, semikernels play often a central
role in proving the existence of a kernel, by showing kernel perfectness.

A finite graph without odd cycles has a kernel. This (consequence of)
Richardson’s theorem [11] has been extended in many ways, e.g., [1–4,7, 9]. The
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theorem holds also for infinite graphs with no infinite out-branching or no rays
(infinite simple outgoing paths), but these are very restrictive conditions. A
concise characterization of kernel perfectness for infinite graphs in [12] provides,
unfortunately, no structural conditions on the graphs. Such conditions from [15],
sufficient for graphs with finitely many ends, are only expected but not known to
suffice for all graphs. Providing sufficient structural conditions for the existence
of kernels in arbitrary infinite graphs remains an open problem.

This note contributes a tool for verifying the (non)existence of a semikernel
in a graph, rather than any such general conditions. In particular, it shows that a
certain form of cardinality restriction is possible when considering infinite graphs.
It introduces a two-player, sequential, perfect information game, which modifies
Poison Game from [8], extending its applicability from finite to arbitrary graphs.
In both variants of the game, Player A has a winning strategy if and only if the
graph has a semikernel. The central feature of the new game is that a winning
strategy for Player B, on an arbitrary graph, allows him to win in finite time.
Thus, even on an uncountable graph, the existence of a semikernel is witnessed
by a strategy allowing A to survive merely ω steps of each play.

Sinks (vertices with no out-neighbours) are semikernels, so we skip the game’s
trivial generalisation to graphs with sinks and consider only those without.

For a brief comparison, we recall the original game from [8].

Poison Game I. Player A starts by choosing a vertex, and then B and A choose
alternately vertices from the out-neighbours of the opponent’s last choice. B poi-
sons the visited vertices, but can re-visit them. On entering a poisoned vertex,
Player A dies and B wins the play. Player A wins by surviving (in particular,
when B has no move).

By Theorem 1 from [8], a graph with no loops, no rays and no infinite out-
branching has a semikernel if and only if A has a winning strategy. We extend this
result to the following version of the game played on arbitrary sink-free graphs.

Poison Game II. Player A starts by choosing a vertex, and then B and A
choose alternately vertices: A from the out-neighbours of the last vertex chosen
by B, while B from the out-neighbours of all vertices chosen so far by A. Player
A poisons all (in- and out-)neighbours of the chosen vertices. Player A loses
visiting a poisoned vertex and wins by surviving. (B can visit poisoned vertices
unharmed.) In a transfinite play, B starts after each limit ordinal.

The limitations of Game I motivate the changes in Game II, as shown by the
examples below.

1. Let Y be the graph (ω,<), with the natural numbers as vertices and edges
from each number to all greater ones. It has no semikernel, but A wins Game
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I on it. Retaining the poisoning rule, we could allow B to choose from the out-
neighbours of all choices of A. Player A still wins such a game, choosing always
a vertex past all chosen by B.

2. Similarly, it does not suffice to change merely the poisoning rule to the
one in Game II, but keep B choosing only from the out-neighbourhood of the last
choice of A. The graph below is obtained from Y by subdividing each edge i < j
twice (the numbered vertices are from the original Y ). It has no semikernel, but
A wins such a game choosing any out-neighbour of the last choice of B. (On this
graph, A wins also Game I.)
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3. Player A cannot choose freely from the out-neighbours of all vertices
chosen by B, since then A could avoid providing witness to some choices of B.
The graph below has no semikernel but, with such a liberal rule, A wins from a1
choosing forever 1, 2, 3, . . . , also after B chose •.
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The following notation is used. For a graph G, we let V denote its vertex set,
E its edge relation, and E− the converse of E. For x ∈ V, by E(x) we denote
the set {y ∈ V : E(x, y)} of out-neighbours of x, by E−(x) its in-neighbours
{y ∈ V : E(y, x)}, and we set E±(x) = E(x) ∪ E−(x). For X ⊆ V, we let
E(X) =

⋃
x∈X E(x) and similarly for E−(X) and E±(X). A kernel is a subset

K of V such that K = V\E−(K), while a semikernel is a nonempty subset L of
V such that E(L) ⊆ E−(L) ⊆ V\ L.

We consider also transfinite games, but only to show that they are not
needed. For an ordinal κ, a κ-game is a function κ → V, indicated by a se-
quence a0b1a1b2a2 · · · biai · · · , with i ≤ κ (i < κ for limit κ), of pairs of vertices
obeying the rules of Poison Game II. (Dropping b0 in the numbering reflects A
starting with a0 and then responding to bi with ai ∈ E(bi).) For i ≤ κ, we let Ai

denote the set of vertices visited by A up to step i; similarly for Bi. Player A wins
a κ-game if Aκ is independent (no edge joins any two vertices in it). Otherwise,
Player B wins.

Player B reaches a winning position choosing a bj such that E(bj) ⊆ E±(Ai),
for some i with 1 ≤ i < j. Player A must then choose an aj ∈ E±(ak), for some
ak ∈ Ai, destroying independence of the set Aj . (Although B has won, the play
can continue.) Each vertex visited in a game on a graph G is reachable from a0 by
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a G-path of the alternating moves of A and B. This path is a finite subsequence
of the game.

A play is the process of forming a game, with κ-plays yielding κ-games.
A winning strategy for a player on a graph G ensures a win for this player in
every play on G, no matter the moves of the opponent. Strategies need not be
computable and, in general, amount to prescience — A knowing a semikernel, or
B how to poison A in a finite time. We establish these two claims.

In Game II, as in I, a winning strategy for A on a graph G is equivalent to
G possessing a semikernel. As a minor difference, in Game II such a semikernel
contains all moves of A.

Theorem 1. Player A has a winning strategy on a sink-free graph G if and only
if G has a semikernel.

Proof. If there is a semikernel, then A never gets poisoned by choosing always
a vertex from it. For the converse, assume that A has a winning strategy. We
design a strategy ensuring that B visits all out-neighbours of all vertices played
by A. The reader accepting existence of such a strategy for B can go directly to
the last paragraph of this proof.

For a vertex x ∈ V, let E⃗(x) denote a well-ordering (assumig Axiom of
Choice) of the out-neighbourhood E(x). This ordering is used by B to visit
systematically all out-neighbours of each vertex visited by A. The successive
moves a0a1 · · · of A order respectively the corresponding out-neighbourhoods:
E⃗(a0) < E⃗(a1) < · · · . The drawing gives a schematic picture of B’s strategy.

a0 : b1 // b2

ww

b4

ww

b7
xx

b11

ww

· · · = E⃗(a0)

a1 : b3

33

b5

ww

b8
ww

◦ ◦ · · · = E⃗(a1)

a2 : b6

55

b9
ww

◦ ◦ · · · = E⃗(a2)

a3 : b10 ◦ ◦ ◦ · · · = E⃗(a3)

...
...

...

A play starts with a0b1a1b2, where b1, b2 ∈ E(a0) are the first two vertices in
E⃗(a0). (If E(a0) has only one vertex, then b2 is the first in E⃗(a1).) For j ≥ 2,
after aj ∈ E(bj) there are two cases for the choice of bj+1. Case (1), marked with

dotted arrows, occurs when bj is the very first vertex of E⃗(ai), for some i ≤ j.

In this case, B finds the first k with k ≤ j such that E⃗(ak) still contains vertices
unvisited by B, and chooses as bj+1 the first such unvisited vertex from E⃗(ak).
(On the drawing, k = 0.) Case (2), marked by solid arrows, occurs when bj is the

n-th vertex of E⃗(ai), for some i ≤ j and n > 1. Player B chooses then as bj+1

the first unvisited vertex of E⃗(ai+1). (If all vertices in E(ai+1) have been visited,
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then B goes to the first E(ak), with i < k ≤ j, having unvisited vertices. If all
such E(ak) have been visited in their entirety, then B restarts with k = 0 as in
case (1).)

In either case, if the search for an unvisited vertex fails, then B has visited
all vertices in

⋃j
1E(ak) and can only make a move bj+1 repeating some earlier

move. Player A can then repeat earlier answer, and the game can continue thus
only repeating earlier moves. The union

⋃j
1E(ak) of out-neighbourhoods of all

vertices played by A is then a finite set, giving a special case of the general
situation.

In general, for a countable graph, this strategy of B exhausts in ω steps the
out-neighbourhood of each vertex played by A. For an uncountable graph, the
play continues in this way transfinitely. At step λ + 1, for each limit ordinal λ,
Player B chooses as in case (1) the least vertex unvisited by B in E⃗(ai), for the
least i with i < λ and E(ai) still having such vertices. The play continues until
B exhausts out-neighbourhoods of all choices of A.

For the (least) ordinal κ at which B has visited all out-neighbours of all
vertices visited by A, we have E(Aκ) ⊆ Bκ ⊆ E−(Aκ). The second inclusion holds
since A provided an out-neighbour for each vertex in Bκ. Since A survived, no
vertex in Aκ is poisoned, Aκ∩E±(Aκ) = ∅, which means that Aκ is independent.
Thus Aκ is a semikernel.

Consequently, the game is determined; on each sink-free graph, exactly one of
the players has a winning strategy. Player A wins moving always in a semikernel,
if one exists. Otherwise B, searching exhaustively through the out-neighbours
of all vertices visited by A, forces eventually A to choose a vertex with an edge
joining it to some vertex chosen earlier by A.

If B follows this brute-force strategy on a countable graph, then the game
ends in no more than ω steps. If the graph has no semikernel, then B wins after
finitely many steps.

Fact 2. If B has a winning strategy on a sink-free countable graph, then B can
win every play after finitely many steps.

On uncountable graphs, this brute-force strategy of B may require uncount-
able plays. To show that such plays are not needed, we consider κ-plays with
ordinals κ possibly smaller than the cardinality of V. Such games are also deter-
mined. If B has a winning strategy, then A does not have it. The less obvious
opposite implication holds because A wins by not losing.

Fact 3. For every graph and ordinal κ, if B does not have a winning strategy for
κ-plays, then A has it.

Proof. If B has no winning strategy for κ-plays, then A can start with some a0
after which B still does not have it. Any move b1 of B can be then answered
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by A with some a1, after which B still does not have a winning strategy. This
ensures survival of A for ω steps without giving B any winning strategy also when
making the first move after the limit. The same holds for all greater successor
and limit ordinals until κ.

One more fact is used.

Fact 4. For each graph and limit ordinal λ, if A has a strategy σ for winning
κ-plays for all κ < λ, then σ is also a winning strategy for A in λ-plays.

Proof. Every λ-play gλ is the limit of its prefixes, κ-plays gκ, for κ < λ. If B wins
gλ, in which A follows σ, then Aλ contains a pair {am, an} with an ∈ E±(am).
Since Aλ =

⋃
κ<λAκ, such a pair is contained in Aκ for some κ < λ. Hence B

wins already gκ, but A following σ wins all κ-plays. This contradiction establishes
the fact.

The three facts give the second main claim.

Theorem 5. For each sink-free graph, B has a winning strategy if and only if B
has one for winning in finitely many steps.

Proof. The if direction is obvious, so we show the other implication. For count-
able graphs the claim is Fact 2, so consider an arbitrary uncountable graph G.
If B has a winning strategy for all plays on G, then B can use it to win every
ω-play, which happens in finitely many steps. However, a winning strategy on G
might possibly require B to play uncountably many moves. So suppose that B
has a winning strategy for the uncountable plays on G, but does not have it for
the countable ones. By Fact 3, A has then a winning strategy for the countable
plays which, by Fact 4, gives also a winning strategy for A in ω1-plays, for the
first uncountable ordinal ω1. This contradicts B having a winning strategy for
all uncountable plays. Hence, if B has a winning strategy for the uncountable
plays on G, then B has one also for the countable plays, in particular, for ω-plays.
Thus B can ensure that no play on G continues past ω, winning each in finitely
many steps.

In short, a sink-free graph G of an arbitrary cardinality has no semikernel if
and only if A, starting from any vertex, gets poisoned by optimally playing B in
finitely many steps. Dually, G has a semikernel if and only if A has a strategy
for surviving ω-plays.

Some examples

(A) The available results ensure typically not only the existence of a kernel but
kernel perfectness. (E.g., the existence of kernels in finite graphs without odd
cycles gives their kernel perfectness, since the absence of odd cycles is inherited
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by the induced subgraphs.) No such results give kernel existence in non-KP
graphs, e.g., in the following one, on which A wins trivially, choosing always
next xi.
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(B) The following two examples from [8] show that Poison Game I is insufficient
on graphs with rays or infinite out-branching. A wins that game on the following
graph starting with any xi and continuing always from xk to xk+1.
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The graph, however, has no semikernel. Player A looses Game II on it arriving
at some xi from which B poisons A playing yi.

Likewise, A survives Poison Game I on graph G in Figure 1, having no
semikernel.
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Figure 1. Graph G.

Player A starts with any di and plays yi ⇆ zi until B moves to bi. After
that, A reaches x1 and then B, forced to play y, enables A to choose a fresh dk.
This strategy does not work in Game II, since A choosing di poisons yi, zi and y.
After B plays yi or zi, A must choose bi. Then, B reaches x1 after which A must
play y poisoned by the initial choice of di.

One verifies easily that A loses Poison Game II on G no matter the starting
position.

(C) A winning strategy for A on a given graph can be used also when arbitrary
new out-going edges or paths are added from vertices that only B can choose
when A follows this strategy. Player A simply moves as before from such vertices
with new out-going edges. For instance, A still wins following the strategy from
(A) on the graph there extended with edges (yj , zi), for all i < j, which add
infinitely many odd cycles to the graph.
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Now, A wins trivially on a ray 0 → 1 → 2 → · · · , starting from any vertex,
e.g., from 0. The same strategy works then on the following graph, modifying
the ray by adding edges from each odd vertex to all greater odd vertices.

0 // 1 // ++ )) **
2 // 3 // ++ ))

4 // 5 // ++6 // · · ·

A variant of this graph is obtained by removing some even vertices. If only
finitely many even vertices are removed, then A wins by starting from any even
vertex after all missing ones. But if infinitely many even vertices are removed,
then A loses every game: with B reaching easily an odd vertex just before some
missing even one, A must move to an odd vertex, after which B’s move to the
next odd vertex just before a missing even one leads to poisoning A in the next
move. Thus, a variant of this graph has a semikernel if and only if at most finitely
many even vertices are missing.

(D) Let graph G have real numbers as vertices and edges from each vertex to all
greater by at most 1, that is, E = {(x, y) : x < y ≤ x + 1}. To A starting at 0,
let B answer by 0.2. Now A must choose some y ∈ E(0.2) outside the interval
(0, 1], poisoned by the first move. Any such move y ∈ (1, 1.2] poisons all vertices
in [1, 2] (and more), so B wins now by playing anywhere between the first move
of A and of B. For instance, B playing 0.1 forces A to choose from the poisoned
E(0.1) = (0.1, 1.1]. This strategy for B works no matter where A starts, so G
has no semikernel.
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