DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2023): 0.5

5-year Journal Impact Factor (2023): 0.6

CiteScore (2023): 2.2

SNIP (2023): 0.681

Discussiones Mathematicae Graph Theory

Article in press


Authors:

S. Kou

Shuai Kou

Department of Mathematics,
Taiyuan University of Technology,
Taiyuan, Shanxi, 030024, China

email: koushuai828@163.com

W. Yang

Weihau Yang

Department of Mathematics, Taiyuan University of Technology, Shanxi Taiyuan-030024

email: ywh222@163.com

0000-0002-3827-7334

Title:

Contractible subgraphs of quasi 5-connected graphs

PDF

Source:

Discussiones Mathematicae Graph Theory

Received: 2023-09-20 , Revised: 2024-08-29 , Accepted: 2024-08-29 , Available online: 2024-09-18 , https://doi.org/10.7151/dmgt.2561

Abstract:

Let $G$ be a quasi $5$-connected graph on at least 14 vertices. If there is a vertex $x\in V_{4}(G)$ such that $G[N_{G}(x)]\cong K_{1,3}$ or $G[N_{G}(x)] \cong C_{4}$, then $G$ can be contracted to a smaller quasi 5-connected graph $H$ such that $0<|V(G)|-|V(H)|<4$.

Keywords:

quasi 5-connected, contraction, minor

References:

  1. J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (North-Holland, New York-Amsterdam-Oxford, 1982).
  2. M. Kriesell, A survey on contractible edges in graphs of a given vertex connectivity, Graphs Combin. 18 (2002) 1–30.
    https://doi.org/10.1007/s003730200000
  3. M. Kriesell, Contractions, cycle double covers, and cyclic colorings in locally connected graphs, J. Combin. Theory Ser. B 96 (2006) 881–900.
    https://doi.org/10.1016/j.jctb.2006.02.009
  4. M. Kriesell, How to contract an essentially $6$-connected graph to a $5$-connected graph, Discrete Math. 307 (2007) 494–510.
    https://doi.org/10.1016/j.disc.2005.09.040
  5. M.D. Plummer and B. Toft, Cyclic coloration of $3$-polytopes, J. Graph Theory 11 (1987) 507–515.
    https://doi.org/10.1002/jgt.3190110407
  6. C. Thomassen, Kuratowski's theorem, J. Graph Theory 5 (1981) 225–241.
    https://doi.org/10.1002/jgt.3190050304
  7. C. Thomassen, Nonseparating cycles in $k$-connected graphs, J. Graph Theory 5 (1981) 351–354.
    https://doi.org/10.1002/jgt.3190050403
  8. W.T. Tutte, A theory of $3$-connected graphs, Indag. Math. (N.S.) 64 (1961) 441–455.
    https://doi.org/10.1016/S1385-7258(61)50045-5

Close