Discussiones Mathematicae Graph Theory 45 (2025) 889–903 https://doi.org/10.7151/dmgt.2561

CONTRACTIBLE SUBGRAPHS OF QUASI 5-CONNECTED GRAPHS

Shuai Kou and Weihua Yang¹

Department of Mathematics Taiyuan University of Technology Taiyuan Shanxi 030024, China e-mail: koushuai828@163.com ywh222@163.com

Abstract

Let G be a quasi 5-connected graph on at least 14 vertices. If there is a vertex $x \in V_4(G)$ such that $G[N_G(x)] \cong K_{1,3}$ or $G[N_G(x)] \cong C_4$, then G can be contracted to a smaller quasi 5-connected graph H such that 0 < |V(G)| - |V(H)| < 4.

Keywords: quasi 5-connected, contraction, minor.

2020 Mathematics Subject Classification: 05C40.

1. INTRODUCTION

In this paper, we only consider finite simple undirected graphs, with undefined terms and notations following [1]. For a graph G, let V(G) and E(G) denote the set of vertices of G and the set of edges of G, respectively. We denote the set of end vertices of an edge e by V(e). For $x \in V(G)$, let $N_G(x) = \{y \in V(G) : xy \in E(G)\}$. We define the *degree* of $x \in V(G)$ by $d_G(x)$, namely $d_G(x) = |N_G(x)|$. Let $V_k(G)$ denote the set of vertices of degree k in G. Let $\delta(G)$ denote the minimum degree of G. For $S \subseteq V(G)$, we define $N_G(S) = \bigcup_{x \in S} N_G(x) - S$. Furthermore, let G[S] denote the subgraph induced by S, and let G - S denote the graph obtained from G by deleting the vertices of S together with the edges incident with them. Let $K_{1,n}$ denote the complete bipartite graph with partite sets of cardinality 1 and n. Let C_n denote a cycle of order n.

An edge e = xy of G is said to be *contracted* if it is deleted and its ends are identified, the resulting graph is denoted by G/e. And the new vertex in G/e

¹Corresponding author.

is denoted by \overline{xy} . Note that, in the contraction, we replace each resulting pair of double edges by a single edge. A subgraph H of G is said to be contracted by identifying each component to a single vertex, removing each of the resulting loops and, finally, replacing each of the resulting duplicate edges by a single edge. The resulting graph is denoted by G/H. Let k be an integer such that $k \ge 2$ and let G be a k-connected graph with $|V(G)| \ge k + 2$. An edge e of G is said to be k-contractible if the contraction of the edge results in a k-connected graph. A kconnected graph without a k-contractible edge is said to be a contraction critical k-connected graph. A subgraph H of G is said to be k-contractible if G/H is still k-connected.

A cut of a connected graph G is a subset V'(G) of V(G) such that G - V'(G)is disconnected. A *k*-cut is a cut of *k* elements. Suppose T is a *k*-cut of G. We say that T is a nontrivial *k*-cut, if the components of G - T can be partitioned into subgraphs G_1 and G_2 such that $|V(G_1)| \ge 2$ and $|V(G_2)| \ge 2$. A (k-1)connected graph is quasi *k*-connected if it has no nontrivial (k-1)-cuts. Clearly, every *k*-connected graph is quasi *k*-connected.

Let G be a quasi k-connected graph. An edge e of G is said to be quasi k-contractible if G/e is still quasi k-connected. If G does not have a quasi k-contractible edge, then G is said to be a contraction critical quasi k-connected graph. A subgraph H of G is said to be quasi k-contractible if its contraction G/H results again in a quasi k-connected graph.

Tutte's [8] famous wheel theorem implies that every 3-connected graph on more than four vertices contains an edge whose contraction yields a new 3connected graph. One can give an inductive proof of Kuratowski's theorem by the wheel theorem [6]. Results on the distribution of 3-contractible edges led also to coloring theorems on planar graphs [3, 5]. So the existence and the distribution of k-contractible subgraphs is an attractive research area within graph connectivity theory.

Thomassen [7] showed that for $k \ge 4$, there are infinitely many contraction critical k-connected k-regular graphs. However, every 4-connected graph on at least seven vertices can be reduced to a smaller 4-connected graph by contracting at most two edges. So, naturally, Kriesell posted the following conjecture [2].

Conjecture 1 [2]. There exist positive integers b and h such that every kconnected graph on more than b vertices can be reduced to a smaller k-connected graph by contracting less than h edges for every $k \ge 1$.

Clearly, Conjecture 1 is true for k = 1 and k = 2. For k = 3 and k = 4, the smallest appropriate values for b, h would be 4, 2 and 6, 3, respectively. But for $k \ge 6$, such a statement fails since toroidal triangulations of large face width is a counterexample [2]. In [4], Kriesell proved that every quasi 6-connected graph on at least 13 vertices can be reduced to a smaller 5-connected graph by contracting less than five edges subsequently. The conjecture is still open for k = 5.

We focus on quasi 5-connected graphs and obtain the following results.

Theorem 2. Let G be a quasi 5-connected graph on at least 13 vertices. If there is a vertex $x \in V_4(G)$ such that $G[N_G(x)] \cong K_{1,3}$, then G can be reduced to a smaller quasi 5-connected graph by contracting less than three edges subsequently.

Theorem 3. Let G be a quasi 5-connected graph on at least 14 vertices. If there is a vertex $x \in V_4(G)$ such that $G[N_G(x)] \cong C_4$, then G can be reduced to a smaller quasi 5-connected graph by contracting less than four edges subsequently.

By Combining Theorems 2 and 3, we have the following corollary.

Corollary 4. Let G be a quasi 5-connected graph on at least 14 vertices. If there is a vertex $x \in V_4(G)$ such that $G[N_G(x)] \cong K_{1,3}$ or $G[N_G(x)] \cong C_4$, then G can be contracted to a smaller quasi 5-connected graph H such that 0 < |V(G)| - |V(H)| < 4.

2. Preliminaries

In this section, we introduce more definitions and several preliminary lemmas.

Let G be a non-complete connected graph and let $\kappa(G)$ denote the vertex connectivity of G. By $\mathcal{T}(G) := \{T \subseteq V(G) : T \text{ is a cut of } G, |T| = \kappa(G)\}$, we denote the set of *smallest cuts* of G. For $T \in \mathcal{T}(G)$, the union of the vertex sets of at least one but not of all components of G - T is called a *T*-fragment of G or, briefly, a fragment. Let F be a T-fragment, and let $\overline{F} = V(G) - (F \cup T)$. Clearly, $\overline{F} \neq \emptyset$, and \overline{F} is also a T-fragment such that $N_G(F) = T = N_G(\overline{F})$.

Let G be a quasi k-connected graph and let $E_0 = \{e \in E(G) : G/e \text{ is } (k-1) \text{-} \text{connected}, \text{ but not quasi } k\text{-connected} \}$. For $xy \in E_0$, G/xy has a nontrivial (k-1)-cut T' by the definition of quasi k-connected. Furthermore, $\overline{xy} \in T'$, for otherwise, T' is also a nontrivial (k-1)-cut of G, contradicts the fact that G is quasi k-connected. This implies that $T = (T' - \overline{xy}) \cup \{x, y\}$ is a k-cut of G. Moreover, G-T can be partitioned into subgraphs F and \overline{F} such that $|V(F)| \geq 2$ and $|V(\overline{F})| \geq 2$. Each of these subgraphs is called a quasi T-fragment of G or, briefly, a quasi fragment. For an edge e of G, a quasi fragment F of G is said to be a quasi fragment with respect to e if $V(e) \subseteq N_G(F)$. For a set of edges $E' \subseteq E(G)$, we say that F is a quasi fragment with respect to E' if F is a quasi fragment with respect to e or E' with least cardinality is called a quasi atom with respect to e and E', respectively.

Lemma 5. Let G be a quasi 5-connected graph. If $xy \in E(G)$ and $\delta(G/xy) \ge 4$, then G/xy is 4-connected.

Proof. Suppose that G/xy is not 4-connected, then there exists a 3-cut T' of G/xy. Since $\delta(G/xy) \geq 4$, we see that each component of G/xy - T' has at least two vertices. Furthermore, $\overline{xy} \in T'$, for otherwise, T' is also a 3-cut of G, a contradiction. Hence, $T = (T' - \{\overline{xy}\}) \cup \{x, y\}$ is a 4-cut of G. And each component of G - T has at least two vertices. It follows that T is a nontrivial 4-cut of G, which contradicts the quasi 5-connectivity of G.

Lemma 6. Let G be a quasi 5-connected graph and let $x \in V_4(G)$ such that $N_G(x) = \{y, z, u, v\}$. If $\{yz, uv\} \subseteq E(G)$ and $\delta(G/\triangle xyz) \ge 4$, then $G/\triangle xyz$ is 4-connected.

Proof. If $G/\triangle xyz$ is not 4-connected, then $G/\triangle xyz$ has a 3-cut T'. Since $\delta(G/\triangle xyz) \geq 4$, each component of $G/\triangle xyz - T'$ has at least two vertices. Furthermore, the vertex resulting from the contraction of triangle xyz belongs to T'. Hence, G has a 5-cut T such that $\{x, y, z\} \subseteq T$ and G - T can be partitioned into two parts, say F and \overline{F} , where each part has at least two vertices. Since $uv \in E(G)$, we see that $N_G(x) \cap F = \emptyset$ or $N_G(x) \cap \overline{F} = \emptyset$, which implies that $T - \{x\}$ is a nontrivial 4-cut of G, a contradiction.

Lemma 7. Let G be a quasi 5-connected graph on at least 8 vertices. If there is a vertex $x \in V(G)$ such that $N_G(x) = \{x_1, x_2, x_3, x_4\}$ and $G[\{x_1, x_2, x_3\}] \cong K_3$, then xx_4 is a quasi 5-contractible edge.

Proof. For i = 1, 2, 3, we have $d_G(x_i) \geq 5$, for otherwise, $N_G(\{x, x_i\})$ is a nontrivial 4-cut of G since $|V(G)| \geq 8$, which contradicts that G is quasi 5connected. This implies $\delta(G/xx_4) \geq 4$. Thus Lemma 5 assures us that G/xx_4 is 4-connected. Suppose that G/xx_4 is not quasi 5-connected, then we see that G/xx_4 has a nontrivial 4-cut T'. Furthermore, $\overline{xx_4} \in T'$, for otherwise, T' is also a nontrivial 4-cut of G, a contradiction. Thus, G has a 5-cut T such that $\{x, x_4\} \subseteq T$. And G - T can be partitioned into two parts, say F and \overline{F} , where each part has at least two vertices. However, since $G[\{x_1, x_2, x_3\}] \cong K_3$, we observe that $N_G(x) \cap F = \emptyset$ or $N_G(x) \cap \overline{F} = \emptyset$. It follows that $T - \{x\}$ is a nontrivial 4-cut of G, a contradiction.

3. Proof of Theorem 2

In this section, we give a proof of Theorem 2. We first introduce a useful lemma.

Lemma 8. Let G be a quasi 5-connected graph on at least 13 vertices. If Figure 1 is a subgraph of G, then the graph G' obtained from G by contracting $A := \{a, a_0\}, B := \{p, p_0\}$ to vertices A', B', respectively, is still quasi 5-connected.

Figure 1. The graph in Lemma 8. Solid edges indicate edges that must exist, and dashed edges indicate edges that may exist. A black circular vertex indicates that the vertex has reached its maximum degree. A black square vertex indicates that its neighbor set is a subset of all vertices adjacent to it by solid and dashed edges. Specifically, the vertex adjacent to it by a solid edge must be a neighbor of it, while the vertex adjacent to it by a dashed edge is not necessarily so.

Proof. We first show that G' is 4-connected. Note that $\{v, w, s, B'\} \subseteq N_{G'}(A')$, then $d_{G'}(A') \geq 4$. If $d_{G'}(B') < 4$, then we see that $N_G(p_0) = \{p, w, s, a_0\}$, and hence $\{t, s, m_0, a_0\}$ is a nontrivial 4-cut of G since $|V(G)| \geq 13$, which contradicts that G is quasi 5-connected. Thus, $d_{G'}(B') \geq 4$. Moreover, it is easy to find that every vertex in G', except A' and B', has degree at least 4. It follows $\delta(G') = 4$. Suppose that G' is not 4-connected, then G' has a 3-cut T' such that each component of G' - T' has at least 2 vertices and $T' \cap \{A', B'\} \neq \emptyset$. If $|T' \cap \{A', B'\}| = 1$, then we find that G has a nontrivial 4-cut, a contradiction. Thus, $\{A', B'\} \subseteq T'$. It follows that G has a 5-cut T containing $\{a, a_0, p, p_0\}$. Since $N_G(p) = \{a_0, p_0, w, s\}$ and $ws \in E(G)$, we see that $T - \{p\}$ is a nontrivial 4-cut of G, a contradiction. Thus, G' is 4-connected.

Suppose, to the contrary, that G' is not quasi 5-connected, then G' has a nontrivial 4-cut T' such that $|T' \cap \{A', B'\}| \ge 1$. Let F' be a T'-fragment of G' and let $\overline{F'} = G' - (T' \cup F')$. Let F, T, \overline{F} be the sets in G corresponding to F', $T', \overline{F'}$ in G'. That is, in each of these sets, we replace the vertices A', B' by the vertices in the sets A, B, respectively.

If $\{A', B'\} \subseteq T'$, then one of v and w is in F, and the other is in \overline{F} . Otherwise, $N_G(\{a, p\}) \cap F = \emptyset$ or $N_G(\{a, p\}) \cap \overline{F} = \emptyset$, which implies that $T - \{a, p\}$ is a nontrivial 4-cut of G, a contradiction. Without loss of generality, we may assume that $v \in F$ and $w \in \overline{F}$. Since $\{sv, sw, xv, xw\} \subseteq E(G)$, we have $T = \{a, a_0, p, p_0, s, x\}$. Hence we obtain $N_G(w) \subseteq T$. Since $mv \in E(G)$, $m \in F$. Then the fact that $mt \in E(G)$ assures us that $t \in F$. Hence, we see that $N_G(\{a, p, x\}) \cap \overline{F} = \{w\}$ and, thus, $\{a_0, p_0, s\}$ forms a 3-cut of G since $|\overline{F}| \ge 2$, a contradiction.

Consequently, $|T' \cap \{A', B'\}| = 1$. Suppose that $A' \notin T'$ and $B' \in T'$. We may assume that $A' \in F'$ without loss of generality. Then $\{w, s\} \subseteq F \cup T$ because $\{aw, as\} \subseteq E(G)$, and hence $N_G(p) \cap \overline{F} = \emptyset$. This implies that $T - \{p\}$ is a nontrivial 4-cut of G, a contradiction. Thus, $A' \in T'$ and $B' \notin T'$. We may assume that $B' \in F'$ without loss of generality. Then $|F| \geq 3$. If $N_G(a) \cap F = \emptyset$ or $N_G(a) \cap \overline{F} = \emptyset$, then $T - \{a\}$ is a nontrivial 4-cut of G, a contradiction. So $N_G(a) \cap F \neq \emptyset$ and $N_G(a) \cap \overline{F} \neq \emptyset$. Then we see that $s \in T$ since $N_G(a) =$ $\{a_0, v, w, s\}$ and $\{vs, ws\} \subseteq E(G)$. Since $p \in F$ and $wp \in E(G)$, we have $w \in F$ and $v \in \overline{F}$. Notice that $\{xw, xv\} \subseteq E(G)$, then $x \in T$. If $N_G(\{a, x\}) \cap F = \{w\}$, then we find that $(T - \{a, x\}) \cup \{w\}$ is a nontrivial 4-cut of G since $|F| \ge 3$, a contradiction. Hence, $t \in F$, and thus $N_G(\{a, x\}) \cap \overline{F} = \{v\}$. This implies that $|\overline{F}| = 2$, for otherwise, $(T - \{a, x\}) \cup \{v\}$ forms a nontrivial 4-cut of G. Let $\overline{F} = \{v, z\}$. Then $d_G(z) = 4$ and $\{v, s, a_0\} \subseteq N_G(z)$. Clearly, $z \neq m$ since m is not adjacent to a_0 . If $vm_0 \notin E(G)$, then we obtain a contradiction, since there is no such a vertex z in G. If $vm_0 \in E(G)$, then $z = m_0$, and thus $N_G(m_0) = \{v, s, a_0, m\}$. It follows that $\{t, s, a_0, p_0\}$ forms a nontrivial 4-cut of G by the fact that $|V(G)| \ge 13$, a contradiction.

Now we are prepared to prove Theorem 2.

Proof of Theorem 2. If G has a quasi 5-contractible edge, Theorem 2 holds immediately. Thus we assume that G is a contraction critical quasi 5-connected graph. Let $N_G(x) = \{x_1, x_2, x_3, x_4\}$. Without loss of generality, we suppose that $\{x_1x_4, x_2x_4, x_3x_4\} \subseteq E(G)$. If $d_G(x_4) = 4$, then $\{x_1, x_2, x_3\}$ forms a 3-cut of G. So, $d_G(x_4) \ge 5$. Hence, for $i = 1, 2, 3, \delta(G/xx_i) \ge 4$, and hence Lemma 5 assures us that G/xx_i is 4-connected.

Let $E' = \{xx_1, xx_2, xx_3\}$ and let F_1 be a quasi atom with respect to E'. Let $T_1 = N_G(F_1)$ and let $\overline{F_1} = V(G) - (F_1 \cup T_1)$. Then $|\overline{F_1}| \ge |F_1| \ge 2$. Without loss of generality, we assume that F_1 is a quasi fragment with respect to xx_1 . Since $x_2x_4 \in E(G)$ and $x_3x_4 \in E(G)$, we see that $x_4 \in T_1$ and we may assume that $x_2 \in F_1$, $x_3 \in \overline{F_1}$. Let F_2 be a quasi fragment with respect to xx_2 and let $T_2 = N_G(F_1)$, $\overline{F_2} = V(G) - (F_2 \cup T_2)$. Then $x_4 \in T_2$ and we may assume that $x_1 \in F_2$, $x_3 \in \overline{F_2}$. Now, we find that $\{x, x_4\} \subseteq T_1 \cap T_2$, $x_1 \in T_1 \cap F_2$, $x_2 \in F_1 \cap T_2$ and $x_3 \in \overline{F_1} \cap \overline{F_2}$. Let $X_1 = (T_1 \cap F_2) \cup (T_1 \cap T_2) \cup (F_1 \cap T_2)$, $X_2 = (T_1 \cap F_2) \cup (T_1 \cap T_2) \cup (\overline{F_1} \cap T_2)$, $X_3 = (\overline{F_1} \cap T_2) \cup (T_1 \cap \overline{F_2})$, $X_4 = (F_1 \cap T_2) \cup (T_1 \cap T_2) \cup (T_1 \cap \overline{F_2})$.

Claim 1. $F_1 \cap T_2 = \{x_2\}.$

Proof. Assume, to the contrary, that $|F_1 \cap T_2| \ge 2$. Then $|(T_1 \cap T_2) \cup (\overline{F_1} \cap T_2)| \le 3$. Since $x_3 \in \overline{F_1} \cap \overline{F_2}$, we see that $|X_3| \ge 4$. Hence, $|T_1 \cap \overline{F_2}| \ge 1$, and thus, $|T_1 \cap F_2| \le 2$. If $|T_1 \cap F_2| = 1$, then $|X_2| \le 4$. Since $N_G(x) \cap (\overline{F_1} \cap F_2) = \emptyset$, we observe that $\overline{F_1} \cap F_2 = \emptyset$. This implies that $|F_2| < |F_1|$, a contradiction.

Therefore, $|T_1 \cap F_2| = 2$. It follows that $|T_1 \cap T_2| = |F_1 \cap T_2| = 2$ and $|T_1 \cap \overline{F_2}| = |\overline{F_1} \cap T_2| = 1$. Now, $|X_2| = 5$ and $|X_3| = 4$. Since G has no nontrivial 4-cuts, we find that $|\overline{F_1} \cap F_2| \le 1$ and $\overline{F_1} \cap \overline{F_2} = \{x_3\}$. This implies that $|\overline{F_1}| \le 3$. Hence, $|F_1| \le |\overline{F_1}| \le 3$, which implies that $|V(G)| \le 11$, a contradiction.

By Claim 1, we have $F_1 \cap F_2 \neq \emptyset$. Otherwise, we see that $N_G(x_1) \cap F_1 = \emptyset$ since $x_1x_2 \notin E(G)$, and then $T_1 - \{x_1\}$ is a nontrivial 4-cut of G, a contradiction. Since $N_G(x) \cap (F_1 \cap F_2) = \emptyset$, $|X_1| \ge 5$. Hence, $|F_1 \cap T_2| \ge |T_1 \cap \overline{F_2}|$. Then we have $|T_1 \cap \overline{F_2}| \le 1$ by Claim 1.

Claim 2. $|T_1 \cap \overline{F_2}| = 1$ and $|F_1 \cap F_2| = 1$.

Proof. Suppose $T_1 \cap \overline{F_2} = \emptyset$. Then $|X_1| = 6$ and $|X_3| = 4$. This implies $\overline{F_1} \cap \overline{F_2} = \{x_3\}$. Then $|\overline{F_2}| < |F_1|$, a contradiction. So $|T_1 \cap \overline{F_2}| = 1$. Then we see that $|(T_1 \cap F_2) \cup (T_1 \cap T_2)| = 4$, and hence $|X_1| = 5$. This implies $|F_1 \cap F_2| = 1$ since $N_G(x) \cap (F_1 \cap F_2) = \emptyset$ and G has no nontrivial 4-cuts.

Let $F_1 \cap F_2 = \{a\}$. Then we see that $d_G(a) = 4$ and $\{x_1, x_2, x_4\} \subseteq N_G(a)$. Let $N_G(a) = \{x_1, x_2, x_4, a_0\}$. Note that $a_0 \in (T_1 \cap F_2) \cup (T_1 \cap T_2)$. We next show that G/aa_0 is 4-connected. Suppose $\delta(G/aa_0) < 4$. It follows that there exist a vertex $z \in N_G(a) \cap N_G(a_0)$ such that $d_G(z) = 4$. Clearly, $z \neq x_4$ since $d_G(x_4) \geq 5$. If $z = x_1$, then we see that $N_G(x_1) \cap \overline{F_1} = \emptyset$, which implies that $T_1 - \{x_1\}$ is a nontrivial 4-cut of G, a contradiction. If $z = x_2$, then $N_G(x_2) \cap \overline{F_2} = \emptyset$, which implies that $T_2 - \{x_2\}$ is a nontrivial 4-cut of G, a contradiction. Thus, there is no such a vertex z in G. Then $\delta(G/aa_0) \geq 4$, and then Lemma 5 assures us that G/aa_0 is 4-connected.

Let F_3 and F_4 be the quasi fragments with respect to xx_3 and aa_0 , respectively. For i = 3, 4, let $T_i = N_G(F_i)$, $\overline{F_i} = V(G) - (F_i \cup T_i)$. Since $\{x_1x_4, x_2x_4\} \subseteq E(G)$, we see that $x_4 \in T_3$ and we may assume that $x_1 \in F_3$, $x_2 \in \overline{F_3}$ without loss of generality. Then $a \in T_3$ since $\{ax_1, ax_2\} \subseteq E(G)$. Similarly, $\{x_4, x\} \subseteq T_4$ and we may assume that $x_1 \in F_4$, $x_2 \in \overline{F_4}$. If $a_0 \in T_3$, then $N_G(\{x, a\}) \cap F_3 = \{x_1\}$ and $N_G(\{x, a\}) \cap \overline{F_3} = \{x_2\}$. Since $|V(G)| \ge 13$, we have $|F_3| \ge 4$ or $|\overline{F_3}| \ge 4$. It follows that $(T_3 - \{x, a\}) \cup \{x_1\}$ or $(T_3 - \{x, a\}) \cup \{x_2\}$ is a nontrivial 4-cut of G, a contradiction. Thus $a_0 \notin T_3$. Similarly, $x_3 \notin T_4$. Now, we see that $x_1 \in F_3 \cap F_4$, $x_2 \in \overline{F_3} \cap \overline{F_4}$ and $\{x, x_4, a\} \subseteq T_3 \cap T_4$. Since $x_3 \notin T_4$ and $a_0 \notin T_3$, $x_3 \in (T_3 \cap F_4) \cup (T_3 \cap \overline{F_4})$, $A_6 = (T_3 \cap F_4) \cup (T_3 \cap T_4) \cup (\overline{F_3} \cap T_4)$, $X_7 = (\overline{F_3} \cap T_4) \cup (T_3 \cap T_4) \cup (T_3 \cap \overline{F_4})$, $X_8 = (F_3 \cap T_4) \cup (T_3 \cap \overline{F_4})$.

Claim 3. $|F_3 \cap F_4| \leq 2$ and $|\overline{F_3} \cap \overline{F_4}| \leq 2$.

Proof. We only show that $|F_3 \cap F_4| \leq 2$. Suppose $|F_3 \cap F_4| \geq 3$. Let $W = (F_3 \cap F_4) - \{x_1\}$. Thus $|W| \geq 2$. Since G is quasi 5-connected, we see that $|N_G(W)| \geq 5$. Note that $N_G(\{x, a\}) \cap (F_3 \cap F_4) = \{x_1\}$. It follows $N_G(\{x, a\}) \cap W = \emptyset$, and hence, $|X_5| \geq 6$. Thus $|X_7| \leq 4$. This implies that $\overline{F_3} \cap \overline{F_4} = \{x_2\}$ and $\overline{F_3} \cap T_4 = \emptyset$

Figure 2. The explanations for Figures 2(a) and 2(b) are identical to the explanation for the graph in Figure 1.

or $T_3 \cap \overline{F_4} = \emptyset$. Without loss of generality, we may assume $\overline{F_3} \cap T_4 = \emptyset$. Then $|X_6| \leq 5$, Since $N_G(\{x, a\}) \cap (\overline{F_3} \cap F_4) = \emptyset$, we find $\overline{F_3} \cap F_4 = \emptyset$. Then $|\overline{F_3}| = 1$, a contradiction.

Claim 4. Either $F_3 \cap \overline{F_4} = \emptyset$ or $\overline{F_3} \cap F_4 = \emptyset$.

Proof. Note that, $N_G(\{x, a\}) \cap (F_3 \cap \overline{F_4}) = \emptyset$ and $N_G(\{x, a\}) \cap (\overline{F_3} \cap F_4) = \emptyset$. This implies that $|X_8| \ge 6$ if $F_3 \cap \overline{F_4} \ne \emptyset$ and $|X_6| \ge 6$ if $\overline{F_3} \cap F_4 \ne \emptyset$. By the fact that $|X_6| + |X_8| = 10$, we have $F_3 \cap \overline{F_4} = \emptyset$ or $\overline{F_3} \cap F_4 = \emptyset$.

If $F_3 \cap \overline{F_4} = \emptyset$, then $|\overline{F_3} \cap F_4| \ge 2$. Otherwise, we see that $|V(G)| \le 12$ by Claim 3, which contradicts the fact that $|V(G)| \ge 13$. This implies that $|X_6| \ge 7$ since $N_G(\{x,a\}) \cap (\overline{F_3} \cap F_4) = \emptyset$. Thus, $|T_3 \cap T_4| = 3$, $|T_3 \cap F_4| = |\overline{F_3} \cap T_4| = 2$ and $F_3 \cap T_4 = T_3 \cap \overline{F_4} = \emptyset$. It follows that $x_3 \in T_3 \cap F_4$ and $a_0 \in \overline{F_3} \cap T_4$. Furthermore, $|F_3| = |F_3 \cap F_4| = 2$ and $|\overline{F_4}| = |\overline{F_3} \cap \overline{F_4}| = 2$ by Claim 3. Let $F_3 \cap F_4 = \{x_1, m\}$ and let $T_3 \cap F_4 = \{x_3, m_0\}$. Let $\overline{F_3} \cap \overline{F_4} = \{x_2, p\}$ and let $\overline{F_3} \cap T_4 = \{a_0, p_0\}$. Now, we find that G has a subgraph isomorphic to the graph in Figure 1. Then $G/aa_0/pp_0$ is quasi 5-connected by Lemma 8. If $\overline{F_3} \cap F_4 = \emptyset$, we can also obtain that G has a subgraph isomorphic to the graph in Figure 1 by similar argument. And then Theorem 2 holds by Lemma 8.

4. Proof of Theorem 3

In this section, we consider the quasi 5-connected graph G that contains a 4degree vertex x such that $G[N_G(x)] \cong C_4$. If $x' \in N_G(x)$ and $d_G(x') = 4$, then we see that $N_G(\{x, x'\})$ is a nontrivial 4-cut of G, which contradicts the quasi 5-connectivity of G. Hence, every neighborhood of x has degree at least 5 (*).

Lemma 9. Let G be a quasi 5-connected graph that contains either Figure 2(a) or Figure 2(b) as a subgraph. If $d_G(x_3) = 6$ or $d_G(x_4) = 6$, then Theorem 3 holds.

Proof. If $d_G(x_3) = 6$, we see that either $G[N_G(a)] \cong K_{1,3}$ or $G[N_G(a)]$ contains a K_3 -subgraph. It follows immediately from Theorem 2 and Lemma 7 that G has a quasi 5-contractible subgraph containing at most two edges. Hence, Theorem 3 holds. If $d_G(x_4) = 6$, we can obtain the same result similarly.

Lemma 10. Let G be a contraction critical quasi 5-connected graph on at least 14 vertices. If Figure 2(a) is a subgraph of G satisfying $d_G(x_3) = d_G(x_4) = 5$, then $\triangle xx_3x_4$ is a quasi 5-contractible subgraph of G.

Proof. Since $d_G(x_3) = d_G(x_4) = 5$, either $a_1 \in N_G(x_3)$ or $c \in N_G(x_3)$, and also either $b_1 \in N_G(x_4)$ or $c \in N_G(x_4)$.

Claim 1. $N_G(x_3) = \{x, x_2, x_4, a, a_1\}$ and $N_G(x_4) = \{x, x_1, x_3, b, b_1\}.$

Proof. We only show that $N_G(x_3) = \{x, x_2, x_4, a, a_1\}$. Let us assume, to the contrary, that $N_G(x_3) = \{x, x_2, x_4, a, c\}$. We next show that aa_1 is quasi 5-contractible, which contradicts that G is a contraction critical quasi 5-connected graph. We first show that $\delta(G/aa_1) = 4$. If $\delta(G/aa_1) < 4$, then we have that there exist a vertex $z \in N_G(a) \cap N_G(a_1)$ such that $d_G(z) = 4$. Clearly, $z \neq x_2$ since $d_G(x_2) \geq 5$. Similarly, $z \neq x_3$. Thus z = c. However, we see that $N_G(\{a, c\})$ is a nontrivial 4-cut of G, a contradiction. So $\delta(G/aa_1) = 4$. Then Lemma 5 assures us that G/aa_1 is 4-connected. Suppose that G/aa_1 is not quasi 5-connected. Let C be a quasi fragment with respect to aa_1 and let $R = N_G(C)$, $\overline{C} = G - (C \cup R)$.

Since $\{x_2x_3, x_3c\} \subseteq E(G), x_3 \in R$ and we may assume that $x_2 \in C$ and $c \in \overline{C}$. Since $\{xx_2, x_1x_2\} \subseteq E(G), \{x, x_1\} \subseteq C \cup R$. If $x_4 \in C \cup R$, then $N_G(\{a, x_3\}) \cap \overline{C} = \{c\}$. It follows that $|\overline{C}| = 2$, for otherwise, $(R - \{a, x_3\}) \cup \{c\}$ forms a nontrivial 4-cut of G. Let $\overline{C} = \{c, w\}$. Then we see that $d_G(w) = 4$ and $\{c, a_1\} \subseteq N_G(w)$. Since $cb \in E(G)$ and $ba_1 \notin E(G), b \in R$, and then we have $w \in N_G(b)$. This implies that $w = b_1$. Since $c \in N_G(x_4)$ or $b_1 \in N_G(x_4)$, we find that $x_4 \in R$. It follows that $N_G(c) \subseteq \{a, b, x_3, b_1, a_1, x_4\}$ and $N_G(b_1) = \{c, a_1, b, x_4\}$, which implies that $\{a_1, x_1, x_2\}$ forms a 3-cut of G since $|V(G)| \ge 14$, a contradiction. Therefore, $x_4 \in \overline{C}$, and hence $\{x, x_1\} \subseteq R$. Then we see that $R = \{a, a_1, x_3, x, x_1\}$ and $N_G(\{a, x, x_3\}) \cap C = \{x_2\}$. Since $|C| \ge 2$, we find that $\{x_1, x_2, a_1\}$ is a 3-cut of G, which is absurd.

In the following, we show that $\triangle xx_3x_4$ is a quasi 5-contractible subgraph of G. By (*), $d_G(x_1) \ge 5$ and $d_G(x_2) \ge 5$. Then $\delta(G/\triangle xx_3x_4) = 4$, which implies that $G/\triangle xx_3x_4$ is 4-connected by Lemma 6. Suppose that $G/\triangle xx_3x_4$ is not quasi 5-connected, then $G/\triangle xx_3x_4$ has a nontrivial 4-cut T'. Let F' be a T'-fragment of $G/\triangle xx_3x_4$ and let $\overline{F'} = G/\triangle xx_3x_4 - (T' \cup F')$. Let F, T, \overline{F} be the sets in G corresponding to F', T', $\overline{F'}$ in $G/\triangle xx_3x_4$. So, $\{x, x_3, x_4\} \subseteq T$. Without loss of generality, we may assume $\{x_1, x_2\} \subseteq F \cup T$.

Claim 2. $|\{x_1, x_2\} \cap T| = 1.$

Proof. Suppose $|\{x_1, x_2\} \cap T| \neq 1$, then either $\{x_1, x_2\} \subseteq T$ or $\{x_1, x_2\} \subseteq F$. If $\{x_1, x_2\} \subseteq T$, then we see that $N_G(\{x, x_3\}) \cap F = \emptyset$ or $N_G(\{x, x_3\}) \cap \overline{F} = \emptyset$, which implies that $T - \{x, x_3\}$ is a nontrivial 4-cut of G, a contradiction.

If $\{x_1, x_2\} \subseteq F$, then $N_G(x) \cap \overline{F} = \emptyset$. If $N_G(x_3) \cap \overline{F} = \emptyset$, then $T - \{x, x_3\}$ is a nontrivial 4-cut of G, a contradiction. Thus $N_G(x_3) \cap \overline{F} \neq \emptyset$, and then $a \in T$ and $a_1 \in \overline{F}$ since $ax_2 \in E(G)$. Similarly, $b \in T$ and $b_1 \in \overline{F}$. If $c \in T$, then $\{x, x_3, x_4, a, b\} \cap F = \{x_1, x_2\}$ and $\{x, x_3, x_4, a, b\} \cap \overline{F} = \{a_1, b_1\}$, which implies $|F| = |\overline{F}| = 2$, for otherwise, $\{x_1, x_2, c\}$ or $\{a_1, b_1, c\}$ is a 3-cut of G, a contradiction. It follows |V(G)| = 10, which contradicts $|V(G)| \ge 14$. Hence, $c \notin T$. If $c \in F$, then $\{x, x_3, x_4, a, b\} \cap F = \{x_1, x_2, c\}$ and $\{x, x_3, x_4, a, b\} \cap \overline{F} = \{a_1, b_1\}$. This implies that $|F| \le 4$ and $|\overline{F}| = 2$, for otherwise, $(T - \{x, x_3, x_4, a, b\}) \cup \{x_1, x_2, c\}$ is a nontrivial 4-cut or $(T - \{x, x_3, x_4, a, b\}) \cup \{a_1, b_1\}$ is a 3-cut of G, a contradiction. Then we have $|V(G)| \le 12$, a contradiction. If $c \in \overline{F}$, we can also obtain $|V(G)| \le 12$ by similar argument.

We may assume that $x_2 \in F$ and $x_1 \in T$ without loss of generality. Similar to what is described above, we have $a \in T$, $a_1 \in \overline{F}$ and $\{b, b_1\} \cap \overline{F} \neq \emptyset$. It follows $\{b, b_1\} \cap F = \emptyset$ since $bb_1 \in E(G)$. If $c \notin F$, then $N_G(\{x, x_3, x_4, a\}) \cap$ $F = \{x_2\}$, and then $(T - \{x, x_3, x_4, a\}) \cup \{x_2\}$ is a 3-cut of G since $|F| \ge 2$, a contradiction. Thus, $c \in F$, and thus $b \in T$ and $b_1 \in \overline{F}$. Then we can find that $|N_G(\{x, x_3, x_4, a, b\}) \cap F| = |N_G(\{x, x_3, x_4, a, b\}) \cap \overline{F}| = 2$, which implies $|F| = |\overline{F}| = 2$. It follows |V(G)| = 10, a contradiction.

Lemma 11. Let G be a contraction critical quasi 5-connected graph on at least 14 vertices. If Figure 2(b) is a subgraph of G satisfying $d_G(x_3) = d_G(x_4) = 5$, and without loss of generality, we assume $N_G(x_3) = \{x, x_2, x_4, a, a_1\}$ and $N_G(x_4) = \{x, x_1, x_3, b, b_1\}$, then one of the following statements holds.

- (i) $G/\triangle xx_3x_4$ is quasi 5-connected.
- (ii) The graph obtained from G by contracting $A := \{b, b_2\}, B := \{b_1, x_4\}, C := \{x, x_1\}$ to vertices A', B', C', respectively, is quasi 5-connected.

Proof. Assume neither (i) nor (ii) holds. Similar to Lemma 10, we have that $G/\triangle xx_3x_4$ is 4-connected. Since $G/\triangle xx_3x_4$ is not quasi 5-connected, we know that $G/\triangle xx_3x_4$ has a nontrivial 4-cut T'_1 . Let F'_1 be a T'_1 -fragment of $G/\triangle xx_3x_4$ and let $\overline{F'_1} = G/\triangle xx_3x_4 - (T'_1 \cup F'_1)$. Let $F_1, T_1, \overline{F_1}$ be the sets in G corresponding to $F'_1, T'_1, \overline{F'_1}$ in $G/\triangle xx_3x_4$. Then we have $T_1 \supset \{x, x_3, x_4\}$. Without loss of generality, we may assume $\{x_1, x_2\} \subseteq F_1 \cup T_1$. It follows that $N_G(x) \cap \overline{F_1} = \emptyset$. If $N_G(x_3) \cap \overline{F_1} = \emptyset$, then we see that $N_G(\{x, x_3\}) \cap \overline{F_1} = \emptyset$, and hence $T_1 - \{x, x_3\}$ is

a nontrivial 4-cut of G, a contradiction. Consequently, $\{a, a_1\} \cap \overline{F_1} \neq \emptyset$. Similarly, $\{b, b_1\} \cap \overline{F_1} \neq \emptyset$. It follows $\{a, a_1, b, b_1\} \subseteq T_1 \cup \overline{F_1}$ since $\{aa_1, bb_1\} \subseteq E(G)$.

Claim 1. $\{x_1, x_2\} \subseteq F_1$.

Proof. Suppose $\{x_1, x_2\} \notin F_1$. If $\{x_1, x_2\} \subseteq T_1$, then $N_G(x) \cap F_1 = \emptyset$. Since $\{a, a_1\} \subseteq T_1 \cap \overline{F_1}$, we see that $N_G(x_3) \cap F_1 = \emptyset$. This implies that $T_1 - \{x, x_3\}$ is a nontrivial 4-cut of G, a contradiction. Thus $|\{x_1, x_2\} \cap T_1| = 1$. Without loss of generality, we assume that $x_1 \in T_1$ and $x_2 \in F_1$. Then $a \in T_1$ and $a_1 \in \overline{F_1}$ since $ax_2 \in E(G)$. Now, we observe that $N_G(\{x, x_3, x_4\}) \cap F_1 = \{x_2\}$. It follows that $|F_1| = 2$, for otherwise, $(T_1 - \{x, x_3, x_4\}) \cup \{x_2\}$ is a nontrivial 4-cut of G. Let $|F_1| = \{x_2, z\}$, then $d_G(z) = 4$ and $\{x_1, x_2, a\} \subseteq N_G(z)$. This implies that $z = a_2$. Let $N_G(a_2) = \{x_1, x_2, a, z'\}$. Then we see that $\{a_1, x_1, x_4, z'\}$ is a nontrivial 4-cut of G since $|V(G)| \ge 14$, a contradiction.

By Claim 1, we see that $\{a, b\} \subseteq T_1$ and $\{a_1, b_1\} \subseteq \overline{F_1}$ because $\{ax_2, bx_1\} \subseteq E(G)$.

Claim 2. $\{a_2, b_2\} \subseteq \overline{F_1}$.

Proof. If $a_2 \in T_1$, then $N_G(\{x, x_3, a\}) \cap F_1 = \{x_2\}$ and $N_G(\{x, x_3, a\}) \cap \overline{F_1} = \{a_1\}$. Since $|V(G)| \ge 14$, $|F_1| \ge 3$ or $|\overline{F_3}| \ge 3$, which implies that $(T_1 - \{x, x_3, a\}) \cup \{x_2\}$ or $(T_1 - \{x, x_3, a\}) \cup \{a_1\}$ is a nontrivial 4-cut of G, a contradiction. Thus $a_2 \notin T_1$. Similarly, $b_2 \notin T_1$. In the following, we show that $a_2 \in \overline{F_1}$, and the other one can be handled similarly. Suppose $a_2 \notin \overline{F_1}$. Hence, $a_2 \in F_1$ and, thus, $N_G(\{x, x_3, a\}) \cap \overline{F_1} = \{a_1\}$. It follows that $|\overline{F_1}| = \{a_1, b_1\}$. Let $T_1 = \{x, x_3, x_4, a, b, u\}$. Then we see that $N_G(a_1) = \{x_3, a, b_1, u\}$ and $N_G(b_1) = \{x_4, b, a_1, u\}$. Note that $u \neq b_2$, for otherwise, $\{x_1, x_2, a_2, b_2\}$ is a nontrivial 4-cut of G.

We next show that either aa_2 or bb_2 is quasi 5-contractible, which contradicts that G is a contraction critical quasi 5-connected graph. Suppose that neither aa_2 nor bb_2 is quasi 5-contractible. Clearly, $\delta(G/aa_2) = 4$. Then Lemma 5 assures us that G/aa_2 is 4-connected. Let C be a quasi fragment with respect to aa_2 and let $R = N_G(C)$, $\overline{C} = G - (R \cup C)$. Then $x_3 \in R$ and we may assume that $x_2 \in C$, $a_1 \in \overline{C}$ without loss of generality. If $N_G(x_3) \cap C = \{x_2\}$, then we see that $x \in R$ since $xx_2 \in E(G)$. Furthermore, $N_G(\{a, x_3\}) = \{x_2\}$. This implies that |C| = 2. Let $C = \{x_2, z\}$. Then $d_G(z) = 4$ and $zx \in E(G)$, which contradicts to (*). Thus $\{x, x_4\} \cap C \neq \emptyset$. Then $N_G(\{a, x_3\}) \cap \overline{C} = \{a_1\}$, which implies that $|\overline{C}| = 2$. Let $\overline{C} = \{a_1, w\}$. Then we see that the vertex w satisfies $d_G(w) = 4$ and $\{a_1, a_2\} \subseteq N_G(w)$. So we must have w = u. By similar argument for bb_2 , we can deduce that $ub_2 \in E(G)$. Thus, $N_G(u) = \{a_1, a_2, b_1, b_2\}$, and thus, $\{x_1, x_2, a_2, b_2\}$ is a nontrivial 4-cut of G since $|V(G)| \geq 14$, a contradiction. By Claim 2, we see that $N_G(\{x, x_3, x_4, a, b\}) \cap F_1 = \{x_1, x_2\}$. Hence, $F_1 = \{x_1, x_2\}$, for otherwise, $(T_1 - \{x, x_3, x_4, a, b\}) \cup \{x_1, x_2\}$ is a 3-cut of G, a contradiction. Let $T_1 - \{x, x_3, x_4, a, b\} = \{v\}$. Then we have that $N_G(x_1) = \{x, x_2, x_4, b, v\}$ and $N_G(x_2) = \{x, x_1, x_3, a, v\}$. Let $G' = G/bb_2/b_1x_4/xx_1$. Clearly, $\delta(G') = 4$.

Claim 3. G' is 4-connected.

Proof. Assume, to the contrary, that G' is not 4-connected, then G' has a 3cut T' such that each component of G' - T' has at least 2 vertices and $|T' \cap \{A', B', C'\}| \ge 2$. Let T be the set in G corresponding to T' in G'. We first find that $T' \cap \{A', B', C'\} \ne \{A', B'\}$ and $T' \cap \{A', B', C'\} \ne \{A', C'\}$, for otherwise, $T - \{b\}$ is a nontrivial 4-cut of G. Therefore, the set $T' \cap \{A', B', C'\}$ is $\{B', C'\}$ or $\{A', B', C'\}$. In the former, $T - \{x\}$ forms a nontrivial 4-cut of G. In the latter, $T - \{b, x_4, x\}$ forms a 3-cut of G. Both of which contradict the fact that G is quasi 5-connected.

Since G' is not quasi 5-connected, there exists a nontrivial 4-cut T'_2 of G' by Claim 3. Furthermore, $|T'_2 \cap \{A', B', C'\}| \ge 1$. Let F'_2 be a T'_2 -fragment of G' and let $\overline{F'_2} = G' - (T'_2 \cup F'_2)$. Let $F_2, T_2, \overline{F_2}$ be the sets in G corresponding to $F'_2, T'_2, \overline{F'_2}$ in G'. Note that the three vertices A', B', C' are adjacent to each other in G'. Hence, we may assume that the vertices in $\{A', B', C'\} - T'_2$ belong to F'_2 without loss of generality.

Claim 4. $|T'_2 \cap \{A', B', C'\}| \neq 1$.

Proof. Suppose $|T'_2 \cap \{A', B', C'\}| = 1$. Then $|T_2| = 5$ and $|F_2| \ge 4$. If $T'_2 \cap \{A', B', C'\} = \{A'\}$, then we see that $N_G(b) \cap \overline{F_2} = \emptyset$, which implies that $T_2 - \{b\}$ is a nontrivial 4-cut of G, a contradiction. If $T'_2 \cap \{A', B', C'\} = \{B'\}$, we can get that $T_2 - \{x_4\}$ is a nontrivial 4-cut of G.

Therefore, $T'_2 \cap \{A', B', C'\} = \{C'\}$. If $N_G(x) \cap \overline{F_2} = \emptyset$, then $T_2 - \{x\}$ is a nontrivial 4-cut of G, a contradiction. Hence, $x_3 \in T_2$ and $x_2 \in \overline{F_2}$ since $x_3x_4 \in E(G)$. If $N_G(x_3) \cap F_2 = \{x_4\}$, then $(T_2 - \{x, x_3\}) \cup \{x_4\}$ is a nontrivial 4-cut of G. Hence, $a_1 \in F_2$ and $a \in T_2$ since $\{ax_2, aa_1\} \subseteq E(G)$. Note that $N_G(\{x, x_3\}) \cap \overline{F_2} = \{x_2\}$, which implies that $N_G(a) \cap \overline{F_2} \neq \{x_2\}$. Otherwise, $(T_2 - \{x, x_3, a\}) \cup \{x_2\}$ is a 3-cut of G, which is absurd. So $a_2 \in \overline{F_2}$. It follows $N_G(\{x, x_3, a\}) \cap F_2 = \{x_4, a_1\}$. This implies $(T_2 - \{x, x_3, a\}) \cup \{x_4, a_1\}$ is a nontrivial 4-cut of G, a contradiction.

Claim 5. $|T'_2 \cap \{A', B', C'\}| \neq 2.$

Proof. Suppose $|T'_2 \cap \{A', B', C'\}| = 2$. Then $|T_2| = 6$ and $|F_2| \ge 3$. If $T'_2 \cap \{A', B', C'\} = \{A', B'\}$, then $x_3 \in F_2 \cap T_2$ since $xx_3 \in E(G)$. This implies $N_G(\{b, x_4\}) \cap \overline{F_2} = \emptyset$, and hence $T_2 - \{b, x_4\}$ is a nontrivial 4-cut of G, a contradiction.

If $T'_2 \cap \{A', B', C'\} = \{A', C'\}$, then we see that $N_G(b) \cap \overline{F_2} = \emptyset$. If $N_G(x) \cap \overline{F_2} = \emptyset$, then $T_2 - \{b, x\}$ is a nontrivial 4-cut of G, a contradiction. So, $N_G(x) \cap \overline{F_2} \neq \emptyset$. This implies $x_2 \in \overline{F_2}$ and $x_3 \in T_2$ since $x_3x_4 \in E(G)$. Since $vx_2 \in E(G)$, we see that $v \in \overline{F_2} \cup T_2$. It follows $N_G(\{x, x_1\}) \cap F_2 = \{x_4\}$. Then $N_G(x_3) \cap F_2 \neq \{x_4\}$, for otherwise, $(T_2 - \{x, x_1, x_3\}) \cup \{x_4\}$ is a nontrivial 4-cut since $|F_2| \geq 3$. Hence, $a_1 \in F_2$ and $a \in T_2$ since $ax_2 \in E(G)$. Now, $T_2 = \{b, b_2, x, x_1, x_3, a\}$ and $v \in \overline{F_2}$. Then we see that $|\overline{F_2}| = 2$, for otherwise, $\{a, v, b_2\}$ is a 3-cut of G. However, we observe that $d_G(v) < 4$ since $va \notin E(G)$, a contradiction.

Therefore, $T'_2 \cap \{A', B', C'\} = \{B', C'\}$. If $\{x_2, x_3\} \subseteq F_2 \cup T_2$, then $N_G(\{x_4, x\}) \cap \overline{F_2} = \emptyset$, which implies that $T_2 - \{x_4, x\}$ is a nontrivial 4-cut of G, a contradiction. Then $\{x_2, x_3\} \cap \overline{F_2} \neq \emptyset$, and then $\{x_2, x_3\} \subseteq T_2 \cup \overline{F_2}$ since $x_2 x_3 \in E(G)$. If $N_G(x_1) \cap F_2 = \{b\}$, then $N_G(\{x, x_1, x_4\}) \cap F_2 = \{b\}$, and then, $(T_2 - \{x, x_1, x_4\}) \cup \{b\}$ is a nontrivial 4-cut of G. Thus, $v \in F_2$, and thus, $x_2 \in T_2$ and $x_3 \in \overline{F_2}$. If $a \notin \overline{F_2}$, then $N_G(\{x, x_1, x_2, x_4\}) \cap \overline{F_2} = \{x_3\}$. It follows that $(T_1 - \{x, x_1, x_2, x_4\}) \cup \{x_3\}$ is a 3-cut of G, a contradiction. Hence $a \in \overline{F_2}$. This implies $\{a_1, a_2\} \subseteq T_2 \cup \overline{F_2}$. Note that $\{b_1, x, x_1, x_2, x_4\} \subseteq T_2$ and $|T_2| = 6$, we have $\{a_1, a_2\} \cap \overline{F_2} \neq \emptyset$. It follows $|\overline{F_3}| \ge 3$. Then we see that $(T_2 - \{x, x_1, x_4\}) \cup \{x_3\}$ is a nontrivial 4-cut of G, a contradiction.

By Claims 4 and 5, we have $\{A', B', C'\} \subseteq T'_2$. Then $|T_2| = 7$. Moreover, we see that $N_G(\{b, x_4, x\}) \cap F_2 = \emptyset$ or $N_G(\{b, x_4, x\}) \cap \overline{F_2} = \emptyset$. This implies that $T_2 - \{b, x_4, x\}$ is a nontrivial 4-cut of G, a contradiction.

Now we are prepared to prove Theorem 3.

Proof of Theorem 3. If G has a quasi 5-contractible edge, Theorem 3 holds immediately. Thus we assume that G is a contraction critical quasi 5-connected graph. Let $N_G(x) = \{x_1, x_2, x_3, x_4\}$. Without loss of generality, we suppose $\{x_1x_2, x_2x_3, x_3x_4, x_4x_1\} \subseteq E(G)$. For $i = 1, 2, 3, 4, d_G(x_i) \geq 5$ by (*). Thus Lemma 5 assures us that G/xx_i is 4-connected.

For i = 1, 2, let F_i be quasi fragments with respect to xx_i . Let $T_i = N_G(F_i)$ and $\overline{F_i} = V(G) - (F_i \cup T_i)$. Then $x_3 \in T_1$ and $x_4 \in T_2$. Without loss of generality, we may assume $x_2 \in F_1$, $x_4 \in \overline{F_1}$ and $x_1 \in F_2$, $x_3 \in \overline{F_2}$. Thus, $x \in T_1 \cap T_2$, $x_1 \in T_1 \cap F_2$, $x_2 \in F_1 \cap T_2$, $x_3 \in T_1 \cap \overline{F_2}$ and $x_4 \in \overline{F_1} \cap T_2$. Let $X_1 = (T_1 \cap F_2) \cup (T_1 \cap T_2) \cup (F_1 \cap T_2)$, $X_2 = (T_1 \cap F_2) \cup (T_1 \cap T_2) \cup (\overline{F_1} \cap T_2)$, $X_3 = (\overline{F_1} \cap T_2) \cup (T_1 \cap T_2) \cup (T_1 \cap \overline{F_2})$ and $X_4 = (F_1 \cap T_2) \cup (T_1 \cap \overline{F_2})$.

Claim 1. There exists $i \in \{1, 2, 3, 4\}$ such that $|X_i| \leq 4$.

Proof. To the contrary, we assume that for all i = 1, 2, 3, 4, $|X_i| \ge 5$. The fact $|X_1| + |X_3| = |X_2| + |X_4| = 10$ shows that $|X_1| = |X_2| = |X_3| = |X_4| = 5$. Since $N_G(x) \cap (F_1 \cap F_2) = \emptyset$, we see that $|F_1 \cap F_2| \le 1$, for otherwise, $X_1 - \{x\}$ is a nontrivial 4-cut of G, a contradiction. Similarly, we have that $|\overline{F_1} \cap F_2| \le 1$,

 $|\overline{F_1} \cap \overline{F_2}| \leq 1$ and $|F_1 \cap \overline{F_2}| \leq 1$. It follows $|V(G)| \leq 13$, which contradicts the fact that $|V(G)| \geq 14$.

Without loss of generality, we may assume $|X_3| \leq 4$. Since $N_G(x) \cap (\overline{F_1} \cap \overline{F_2}) = \emptyset$, $\overline{F_1} \cap \overline{F_2} = \emptyset$.

Claim 2. $|\overline{F_1} \cap T_2| = |T_1 \cap \overline{F_2}| = 1.$

Proof. We only show that $|\overline{F_1} \cap T_2| = 1$, and the other one can be handled similarly. Suppose $|\overline{F_1} \cap T_2| \ge 2$. Then $|\overline{F_1} \cap T_2| = 2$ and $|T_1 \cap T_2| = |T_1 \cap \overline{F_2}| = 1$. Hence, $|F_1 \cap T_2| = 2$, which implies $|X_4| = 4$. Since $N_G(x) \cap (F_1 \cap \overline{F_2}) = \emptyset$, we see that $F_1 \cap \overline{F_2} = \emptyset$. It follows $|\overline{F_2}| = 1$, a contradiction.

Claim 3. $|F_1 \cap \overline{F_2}| = |\overline{F_1} \cap F_2| = 1.$

Proof. We only show that $|F_1 \cap \overline{F_2}| = 1$. By Claim 2, we see that $|X_4| = 5$, which implies that $|F_1 \cap \overline{F_2}| \le 1$ since $N_G(x) \cap (F_1 \cap \overline{F_2}) = \emptyset$. If $F_1 \cap \overline{F_2} = \emptyset$, then we find $|\overline{F_2}| = 1$, a contradiction. So $|F_1 \cap \overline{F_2}| = 1$.

Let $F_1 \cap \overline{F_2} = \{a\}$ and let $\overline{F_1} \cap F_2 = \{b\}$. Note that $|T_1 \cap T_2| \leq 2$ by Claim 1. If $|T_1 \cap T_2| = 2$, then we see that G has the subgraph shown in Figure 2(a). If $|T_1 \cap T_2| = 1$, then G has the subgraph shown in Figure 2(b). Then Theorem 3 holds by Lemmas 9, 10 and 11.

Acknowledgements

The authors express their sincere thanks to the reviewers for their careful reading, and for the valuable comments which greatly improved the exposition of the paper.

References

- J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (North-Holland, New York-Amsterdam-Oxford, 1982).
- M. Kriesell, A survey on contractible edges in graphs of a given vertex connectivity, Graphs Combin. 18 (2002) 1–30. https://doi.org/10.1007/s003730200000
- M. Kriesell, Contractions, cycle double covers, and cyclic colorings in locally connected graphs, J. Combin. Theory Ser. B 96 (2006) 881–900. https://doi.org/10.1016/j.jctb.2006.02.009
- M. Kriesell, How to contract an essentially 6-connected graph to a 5-connected graph, Discrete Math. 307 (2007) 494–510. https://doi.org/10.1016/j.disc.2005.09.040
- [5] M.D. Plummer and B. Toft, Cyclic coloration of 3-polytopes, J. Graph Theory 11 (1987) 507–515. https://doi.org/10.1002/jgt.3190110407

- [6] C. Thomassen, Kuratowski's theorem, J. Graph Theory 5 (1981) 225–241. https://doi.org/10.1002/jgt.3190050304
- [7] C. Thomassen, Nonseparating cycles in k-connected graphs, J. Graph Theory 5 (1981) 351–354. https://doi.org/10.1002/jgt.3190050403
- [8] W.T. Tutte, A theory of 3-connected graphs, Indag. Math. (N.S.) 64 (1961) 441–455. https://doi.org/10.1016/S1385-7258(61)50045-5

Received 20 September 2023 Revised 29 August 2024 Accepted 29 August 2024 Available online 18 September 2024

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License https://creativecommons.org/licenses/by-nc-nd/4.0/