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Abstract

Let G be a quasi 5-connected graph on at least 14 vertices. If there is
a vertex € V4(G) such that G[Ng(z)] = K13 or G[Ng(x)] = C4, then
G can be contracted to a smaller quasi 5-connected graph H such that
0<|V(G)|-I|V(H) < 4.
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1. INTRODUCTION

In this paper, we only consider finite simple undirected graphs, with undefined
terms and notations following [1]. For a graph G, let V(G) and E(G) denote the
set of vertices of G and the set of edges of G, respectively. We denote the set of
end vertices of an edge e by V(e). For x € V(G), let Ng(z) ={y € V(G) : zy €
E(G)}. We define the degree of x € V(G) by dg(x), namely dg(x) = |[Ng(x)|. Let
Vi(G) denote the set of vertices of degree k in G. Let §(G) denote the minimum
degree of G. For S C V(G), we define Ng(S) = UzesNg(x)—S. Furthermore, let
G|[S] denote the subgraph induced by S, and let G — S denote the graph obtained
from G by deleting the vertices of S together with the edges incident with them.
Let K1, denote the complete bipartite graph with partite sets of cardinality 1
and n. Let C, denote a cycle of order n.

An edge e = zy of G is said to be contracted if it is deleted and its ends are
identified, the resulting graph is denoted by G/e. And the new vertex in G/e
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is denoted by Ty. Note that, in the contraction, we replace each resulting pair
of double edges by a single edge. A subgraph H of G is said to be contracted
by identifying each component to a single vertex, removing each of the resulting
loops and, finally, replacing each of the resulting duplicate edges by a single edge.
The resulting graph is denoted by G/H. Let k be an integer such that k£ > 2 and
let G be a k-connected graph with |[V(G)| > k4 2. An edge e of G is said to be
k-contractible if the contraction of the edge results in a k-connected graph. A k-
connected graph without a k-contractible edge is said to be a contraction critical
k-connected graph. A subgraph H of G is said to be k-contractible if G/H is still
k-connected.

A cut of a connected graph G is a subset V/(G) of V(G) such that G —V'(G)
is disconnected. A k-cut is a cut of k£ elements. Suppose T is a k-cut of G. We
say that T' is a nontrivial k-cut, if the components of G — T can be partitioned
into subgraphs G7 and G9 such that |V(G1)| > 2 and |V(G2)| > 2. A (k—1)-
connected graph is quasi k-connected if it has no nontrivial (k — 1)-cuts. Clearly,
every k-connected graph is quasi k-connected.

Let G be a quasi k-connected graph. An edge e of GG is said to be quasi
k-contractible if G/e is still quasi k-connected. If G does not have a quasi k-
contractible edge, then G is said to be a contraction critical quasi k-connected
graph. A subgraph H of G is said to be quasi k-contractible if its contraction
G/H results again in a quasi k-connected graph.

Tutte’s [8] famous wheel theorem implies that every 3-connected graph on
more than four vertices contains an edge whose contraction yields a new 3-
connected graph. One can give an inductive proof of Kuratowski’s theorem by
the wheel theorem [6]. Results on the distribution of 3-contractible edges led
also to coloring theorems on planar graphs [3, 5]. So the existence and the dis-
tribution of k-contractible subgraphs is an attractive research area within graph
connectivity theory.

Thomassen [7] showed that for k& > 4, there are infinitely many contraction
critical k-connected k-regular graphs. However, every 4-connected graph on at
least seven vertices can be reduced to a smaller 4-connected graph by contracting
at most two edges. So, naturally, Kriesell posted the following conjecture [2].

Conjecture 1 [2|. There exist positive integers b and h such that every k-
connected graph on more than b vertices can be reduced to a smaller k-connected
graph by contracting less than h edges for every k > 1.

Clearly, Conjecture 1 is true for kK =1 and k = 2. For k = 3 and k = 4, the
smallest appropriate values for b, h would be 4, 2 and 6, 3, respectively. But for
k > 6, such a statement fails since toroidal triangulations of large face width is a
counterexample [2]. In [4], Kriesell proved that every quasi 6-connected graph on
at least 13 vertices can be reduced to a smaller 5-connected graph by contracting
less than five edges subsequently. The conjecture is still open for k = 5.
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We focus on quasi 5-connected graphs and obtain the following results.

Theorem 2. Let G be a quasi 5-connected graph on at least 13 vertices. If there
is a vertex x € V4(G) such that G[Ng(x)] = K13, then G can be reduced to a
smaller quasi 5-connected graph by contracting less than three edges subsequently.

Theorem 3. Let G be a quasi 5-connected graph on at least 14 vertices. If there
is a verter x € Vi(QG) such that G[Ng(x)] = C4, then G can be reduced to a
smaller quasi 5-connected graph by contracting less than four edges subsequently.

By Combining Theorems 2 and 3, we have the following corollary.

Corollary 4. Let G be a quasi 5-connected graph on at least 14 wvertices. If
there is a verter x € Vi(G) such that G[Ng(z)] = Ki3 or G[Ng(x)] = Cu,
then G can be contracted to a smaller quasi 5-connected graph H such that 0 <
V(G| = V(H)| <4.

2. PRELIMINARIES

In this section, we introduce more definitions and several preliminary lemmas.

Let G be a non-complete connected graph and let x(G) denote the vertex
connectivity of G. By T(G) := {T C V(G) : T is a cut of G, |T| = k(G)}, we
denote the set of smallest cuts of G. For T' € T(G), the union of the vertex sets
of at least one but not of all components of G —T is called a T-fragment of G or,
briefly, a fragment. Let F be a T-fragment, and let F = V(G) — (FUT). Clearly,
F # (), and F is also a T-fragment such that Ng(F) =T = Ng(F).

Let G be a quasi k-connected graph and let Ey = {e € E(G) : G/e is (k—1)-
connected, but not quasi k-connected}. For zy € Ey, G/xy has a nontrivial
(k — 1)-cut T” by the definition of quasi k-connected. Furthermore, Ty € T’, for
otherwise, T” is also a nontrivial (k — 1)-cut of G, contradicts the fact that G
is quasi k-connected. This implies that 7' = (7" — Zy) U {z, y} is a k-cut of G.
Moreover, G —T can be partitioned into subgraphs F and F such that |V (F)| > 2
and |V(F)| > 2. Each of these subgraphs is called a quasi T-fragment of G or,
briefly, a quasi fragment. For an edge e of G, a quasi fragment F' of G is said
to be a quasi fragment with respect to e if V(e) C Ng(F'). For a set of edges
E' C E(G), we say that F is a quasi fragment with respect to E" if F is a quasi
fragment with respect to some e € E’. A quasi fragment with respect to e or E’
with least cardinality is called a quasi atom with respect to e and E’, respectively.

Lemma 5. Let G be a quasi 5-connected graph. If xy € E(G) and §(G/xy) > 4,
then G /xy is 4-connected.
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Proof. Suppose that G/xy is not 4-connected, then there exists a 3-cut T" of
G/zy. Since §(G/xy) > 4, we see that each component of G/zy — T' has at
least two vertices. Furthermore, 7y € T”, for otherwise, T” is also a 3-cut of G,
a contradiction. Hence, T' = (T" — {zy}) U {z,y} is a 4-cut of G. And each
component of G — T has at least two vertices. It follows that 7' is a nontrivial
4-cut of G, which contradicts the quasi 5-connectivity of G. [ |

Lemma 6. Let G be a quasi 5-connected graph and let © € Vi(G) such that
Na(z) =y, z,u,v}. If {yz,uwv} C E(G) and §(G/Azxyz) > 4, then G/Azxyz is

4-connected.

Proof. 1If G/Azyz is not 4-connected, then G/Axyz has a 3-cut T’. Since
(G/Axyz) > 4, each component of G/Azyz — T’ has at least two vertices.
Furthermore, the vertex resulting from the contraction of triangle xyz belongs to
T'. Hence, G has a 5-cut T such that {z,y,2} C T and G — T can be partitioned
into two parts, say F' and F, where each part has at least two vertices. Since
w € E(G), we see that Ng(z) N F = () or Ng(z) N F = 0, which implies that
T — {x} is a nontrivial 4-cut of G, a contradiction. ]

Lemma 7. Let G be a quasi 5-connected graph on at least 8 vertices. If there is
a verter x € V(G) such that Ng(z) = {x1, 22,23, 24} and G[{z1,z2,23}] = K3,
then xx4 is a quasi 5-contractible edge.

Proof. For i = 1,2,3, we have dg(x;) > 5, for otherwise, Ng({z,x;}) is a
nontrivial 4-cut of G since |V(G)| > 8, which contradicts that G is quasi 5-
connected. This implies 6(G/xx4) > 4. Thus Lemma 5 assures us that G/xxs
is 4-connected. Suppose that G/zx4 is not quasi 5-connected, then we see that
G/zz4 has a nontrivial 4-cut T”. Furthermore, Tz5 € T’, for otherwise, T" is
also a nontrivial 4-cut of GG, a contradiction. Thus, G has a 5-cut 1" such that
{z,74} CT. And G — T can be partitioned into two parts, say F and F', where
each part has at least two vertices. However, since G[{x1,x2,z3}] = K3, we
observe that Ng(z) N F = () or Ng(z) N F = . It follows that T — {z} is a
nontrivial 4-cut of G, a contradiction. [ |

3. PROOF OF THEOREM 2
In this section, we give a proof of Theorem 2. We first introduce a useful lemma.
Lemma 8. Let G be a quasi 5-connected graph on at least 13 vertices. If Figure 1

is a subgraph of G, then the graph G' obtained from G by contracting A := {a,ap},
B :={p,po} to vertices A', B', respectively, is still quasi 5-connected.
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Figure 1. The graph in Lemma 8. Solid edges indicate edges that must exist, and dashed
edges indicate edges that may exist. A black circular vertex indicates that the vertex
has reached its maximum degree. A black square vertex indicates that its neighbor set is
a subset of all vertices adjacent to it by solid and dashed edges. Specifically, the vertex
adjacent to it by a solid edge must be a neighbor of it, while the vertex adjacent to it by
a dashed edge is not necessarily so.

Proof. We first show that G’ is 4-connected. Note that {v,w, s, B’} C Ngi(A'),
then dgr(A') > 4. If dg(B’) < 4, then we see that Ng(po) = {p,w, s,a0}, and
hence {t, s, mo, ap} is a nontrivial 4-cut of G since |V (G)| > 13, which contradicts
that G is quasi 5-connected. Thus, dg/(B’) > 4. Moreover, it is easy to find
that every vertex in G’, except A’ and B’, has degree at least 4. It follows
6(G’) = 4. Suppose that G’ is not 4-connected, then G’ has a 3-cut 7" such
that each component of G’ — T has at least 2 vertices and 7" N {A’, B’} # . If
|T" N {A’, B'}| = 1, then we find that G has a nontrivial 4-cut, a contradiction.
Thus, {A’, B’} C T'. It follows that G has a 5-cut T containing {a, ag, p, po}-
Since Ng(p) = {ao, po, w, s} and ws € E(G), we see that T'— {p} is a nontrivial
4-cut of G, a contradiction. Thus, G’ is 4-connected.

Suppose, to the contrary, that G’ is not quasi 5-connected, then G’ has a
nontrivial 4-cut 7" such that |[T" N {A’, B'}| > 1. Let F’ be a T'-fragment of G’
and let F/ = G' — (T'" U F"). Let F, T, F be the sets in G corresponding to F’,
T', F"in G'. That is, in each of these sets, we replace the vertices A’, B’ by the
vertices in the sets A, B, respectively.

If {A’, B’} C T’, then one of v and w is in F', and the other is in F. Otherwise,
Ne({a,p}) N F = 0 or N¢({a,p}) N F = 0, which implies that T — {a,p} is
a nontrivial 4-cut of G, a contradiction. Without loss of generality, we may
assume that v € F and w € F. Since {sv, sw,zv,7w} C E(G), we have T' =
{a,ap,p,po,s,z}. Hence we obtain Ng(w) C T. Since mv € E(G), m € F.
Then the fact that mt € E(G) assures us that ¢ € F. Hence, we see that
N¢({a,p,z}) N F = {w} and, thus, {ag, po, s} forms a 3-cut of G since [F| > 2,
a contradiction.
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Consequently, |7 N {A’, B'}| = 1. Suppose that A" ¢ T’ and B’ € T". We
may assume that A’ € F’ without loss of generality. Then {w,s} C FUT
because {aw,as} C E(G), and hence Ng(p) N F = (. This implies that T' — {p}
is a nontrivial 4-cut of G, a contradiction. Thus, A’ € T/ and B’ ¢ T'. We may
assume that B’ € F’ without loss of generality. Then |F| > 3. If Ng(a)NF =)
or Ng(a) N F = (), then T — {a} is a nontrivial 4-cut of G, a contradiction. So
Ng(a) N F # () and Ng(a) N F # (. Then we see that s € T since Ng(a) =
{ag,v,w, s} and {vs,ws} C F(G). Since p € F and wp € E(G), we have w € F
and v € F. Notice that {zw,zv} C E(G), then x € T. If Ng({a,z}) N F = {w},
then we find that (T — {a,z}) U {w} is a nontrivial 4-cut of G since |F| > 3,
a contradiction. Hence, t € F, and thus Ng({a,z}) N F = {v}. This implies
that |F| = 2, for otherwise, (T — {a,z}) U {v} forms a nontrivial 4-cut of G.
Let ' = {v,2z}. Then dg(z) = 4 and {v,s,a0} C Ng(z). Clearly, z # m
since m is not adjacent to ag. If vmg ¢ E(G), then we obtain a contradiction,
since there is no such a vertex z in G. If vmy € E(G), then z = mg, and thus
Ng(mo) = {v, s,ag,m}. It follows that {¢, s, ap,po} forms a nontrivial 4-cut of G
by the fact that |V(G)| > 13, a contradiction. [ ]

Now we are prepared to prove Theorem 2.

Proof of Theorem 2. If G has a quasi 5-contractible edge, Theorem 2 holds
immediately. Thus we assume that G is a contraction critical quasi 5-connected
graph. Let Ng(x) = {x1, 22, x3,24}. Without loss of generality, we suppose that
{z124, T2, 2324} C E(G). If dg(x4) = 4, then {x1,x2, 23} forms a 3-cut of G.
So, dg(x4) > 5. Hence, for i = 1,2,3, §(G/zx;) > 4, and hence Lemma 5 assures
us that G/zz; is 4-connected.

Let F' = {xx1,xx9, x5} and let Fy be a quasi atom with respect to E’. Let
Ty = Ng(Fy) and let Fy = V(G) — (F4 UTY). Then |[Fy| > |Fy| > 2. Without
loss of generality, we assume that F} is a quasi fragment with respect to zz;.
Since xoz4 € E(G) and z3z4 € E(G), we see that x4 € T7 and we may assume
that 2o € Fy, x3 € . Let I, be a quasi fragment with respect to zxs and
let Ty = Ng(F1), F» = V(G) — (F, UT3). Then x4 € Ty and we may assume
that 21 € Fy, v3 € Fy. Now, we find that {z,24} C Ty N Ty, 21 € Ty N Fy,
2o € 1 NTy and 23 € F1 N Fy. Let X1 = (Th N Fy) U (Th NTy) U (F1 NTy),
X9 = (Tl N Fg) U (T1 N TQ) U (Fl ﬂzg), X3 = (Fl N TQ) U (Tl N TQ) U (Tl N Fg),
X4 = (F1 N Tg) U (Tl N TQ) U (Tl N FQ).

Claim 1. Fy, N1y = {1’2}

Proof. Assume, to the contrary, that |FyNT5| > 2. Then |(T3 NT2)U(F1NT3)| <
3. Since z3 € F1 N Iy, we see that |X3| > 4. Hence, |7} N F»| > 1, and thus,
Ty N Fy| < 2. If [Ty N Fy| = 1, then |X3| < 4. Since Ng(x) N (Fy N Fp) = 0,
we observe that F; N Fy = (). This implies that |Fy| < |Fy|, a contradiction.
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Therefore, |T1 N Fp| = 2. It follows that [Ty NTy| = |[FyNTe| =2 and [TA N F| =
|F1 NTy| = 1. Now, | X3| =5 and | X3| = 4. Since G has no nontrivial 4-cuts, we
find that |[F; N Fy| <1 and F; N Fy = {x3}. This implies that [F}| < 3. Hence,
|Fy| < |F1| < 3, which implies that |V (G)| < 11, a contradiction. O

By Claim 1, we have Fy N Fy # (). Otherwise, we see that Ng(x1) N Fy =
since z122 ¢ E(G), and then T} — {x1} is a nontrivial 4-cut of G, a contradiction.
Since Ng(z) N (Fy N Fp) = 0, | X1| > 5. Hence, |Fy NTy| > |T1 N F3|. Then we
have [Ty N F,| < 1 by Claim 1.

Claim 2. [Ty N Fy| =1 and |[Fy N Fy| = 1.

Proof. Suppose Ty N Fy = (. Then |X;| = 6 and |X3| = 4. This implies
FiNFy = {x3}. Then |F3| < |Fy|, a contradiction. So [T} N Fy| = 1. Then we see
that [(Th N Fy) U (Th NTs)| = 4, and hence | X1| = 5. This implies |F} N Fy| =1
since Ng(z) N (F1 N Fy) = 0 and G has no nontrivial 4-cuts. 0

Let Fy N Fy = {a}. Then we see that dg(a) = 4 and {z1, 22,24} C Ng(a).
Let Ng(a) = {x1,x2,24,a0}. Note that ag € (T1 N Fy) U (Th NT). We next show
that G/aag is 4-connected. Suppose 6(G/aap) < 4. It follows that there exist a
vertex z € Ng(a)NNg(ap) such that dg(z) = 4. Clearly, z # x4 since dg(x4) > 5.
If 2 = z1, then we see that Ng(z1) N Fy = ), which implies that T} — {z1} is a
nontrivial 4-cut of G, a contradiction. If z = x9, then Ng(x2) N Fy = @, which
implies that T5 — {x2} is a nontrivial 4-cut of G, a contradiction. Thus, there is
no such a vertex z in G. Then §(G/aagp) > 4, and then Lemma 5 assures us that
G/aay is 4-connected.

Let F3 and F, be the quasi fragments with respect to xz3 and aag, re-
spectively. For i = 3,4, let T, = Ng(F)), F; = V(G) — (F; UT;). Since
{z124, 2924} C E(G), we see that x4 € T3 and we may assume that xz; € F3,
ro € F3 without loss of generality. Then a € T3 since {ax1,azx2} C F(G). Simi-
larly, {x4,2} C Ty and we may assume that z; € Fy, 9 € Fy. If ag € T3, then
Ng({z,a})NF3 = {21} and Ng({x,a}) N F3 = {z2}. Since |V (G)| > 13, we have
|F3| > 4 or |F3| > 4. It follows that (T3 — {z,a}) U {z1} or (T3 — {z,a}) U {2} is
a nontrivial 4-cut of G, a contradiction. Thus ag ¢ T3. Similarly, x5 ¢ Ty. Now,
we see that 1 € F3 N Fy, x5 € F3N Fy and {x,24,a} C T3 NTy. Since x3 ¢ Ty
and ag ¢ T3, w3 € (T3 N Fy) U (T3 N Fy) and ag € (Ty N F3) U (Ty N F3). Let
X5 = (E N F4) ) (T3 N T4) U (Fg 024), X6 = (Tg N F4) U (Tg N T4) U (Fg 1T4),
Xe=(F5NTy)U(Ts5NTy)U(TsNFy), Xg=(F3NTy) U (T5NTy) U(T5N Fy).
Claim 3. |F3N Fy| <2 and |F3N Fy| < 2.

Proof. We only show that |F3 N Fy| < 2. Suppose |F3N Fy| > 3. Let W = (F3N
Fy)—{x1}. Thus |W| > 2. Since G is quasi 5-connected, we see that |[Ng(W)| > 5.

Note that Ng({z,a}) N (F3 N Fy) = {21}. It follows Ng({z,a}) N W = ), and
hence, | X5| > 6. Thus | X7| < 4. This implies that FsNFy = {2} and F3sNTy = ()
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Figure 2. The explanations for Figures 2(a) and 2(b) are identical to the explanation for
the graph in Figure 1.

or T3 N Fy = (. Without loss of generality, we may assume F3 N1y = (. Then
| Xg] < 5, Since Ng({x,a}) N (F3N Fy) =0, we find F3N Fy = (. Then |[F3| = 1,
a contradiction. O

Claim 4. Either FsNEy =0 or F3N Fy = 0.

Proof. Note that, Ng({z,a}) N (F3N Fy) = 0 and Ng({z,a}) N (F3 N Fy) = 0.
This implies that [Xg| > 6 if F3 N Fy # 0 and |Xg| > 6 if F3 N Fy # 0. By the
fact that | Xg| 4+ | Xs| = 10, we have F3 N Fy = 0 or F3N Fy = 0. 0

If F3NFy =0, then |F3N Fy| > 2. Otherwise, we see that |[V(G)| < 12 by
Claim 3, which contradicts the fact that |V(G)| > 13. This implies that |Xg| > 7
since Ng({z,a})N(F3NFy) = 0. Thus, |[T3NTy| = 3, [T3NFy| = [F3NTy| = 2 and
FNTy =T3NFy = 0. Tt follows that x3 € T3NFy and ag € F3NTy. Furthermore,
|F3| = |F3N Fy| = 2 and |Fy| = |F3N Fy| = 2 by Claim 3. Let F5N Fy = {x1,m}
and let T3 N Fy = {x3,mp}. Let F3 N Fy = {x2,p} and let F3 N Ty = {ag,po}.
Now, we find that G has a subgraph isomorphic to the graph in Figure 1. Then
G /aag/ppo is quasi 5-connected by Lemma 8. If F3 N Fy = ), we can also obtain
that G has a subgraph isomorphic to the graph in Figure 1 by similar argument.
And then Theorem 2 holds by Lemma 8. [

4. PROOF OF THEOREM 3

In this section, we consider the quasi 5-connected graph G that contains a 4-
degree vertex x such that G[Ng(z)] & Cy. If 2’ € Ng(z) and dg(2') = 4, then
we see that Ng({z,2'}) is a nontrivial 4-cut of G, which contradicts the quasi
5-connectivity of G. Hence, every neighborhood of = has degree at least 5 (k).
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Lemma 9. Let G be a quasi 5-connected graph that contains either Figure 2(a)
or Figure 2(b) as a subgraph. If dg(z3) = 6 or dg(xs4) = 6, then Theorem 3
holds.

Proof. If dg(z3) = 6, we see that either G[Ng(a)] = K 3 or G[Ng(a)] contains
a K3-subgraph. It follows immediately from Theorem 2 and Lemma 7 that G has
a quasi 5-contractible subgraph containing at most two edges. Hence, Theorem
3 holds. If dg(z4) = 6, we can obtain the same result similarly. ]

Lemma 10. Let G be a contraction critical quasi 5-connected graph on at least
14 wvertices. If Figure 2(a) is a subgraph of G satisfying dg(z3) = dg(x4) = 5,
then Axxsry is a quasi b-contractible subgraph of G.

Proof. Since dg(x3) = dg(x4) = 5, either a1 € Ng(x3) or ¢ € Ng(z3), and also
either by € Ng(x4) or ¢ € Ng(z4).

Claim 1. NG(l’3) = {13,(E2,:E4,CL,CL1} and NG($4) = {l’,l'l,l‘g,b, bl}

Proof. We only show that Ng(z3) = {x,22,24,a,a1}. Let us assume, to the
contrary, that Ng(x3) = {z,z2,24,a,c}. We next show that aa; is quasi 5-
contractible, which contradicts that G is a contraction critical quasi 5-connected
graph. We first show that 6(G/aa1) = 4. If 6(G/aa;1) < 4, then we have that
there exist a vertex z € Ng(a)NNg(ay) such that dg(z) = 4. Clearly, z # z since
dg(x2) > 5. Similarly, z # x3. Thus z = ¢. However, we see that Ng({a,c}) is a
nontrivial 4-cut of G, a contradiction. So §(G/aa;) = 4. Then Lemma 5 assures
us that G//aa; is 4-connected. Suppose that G/aa; is not quasi 5-connected. Let
C be a quasi fragment with respect to aa; and let R = Ng(C), C = G— (CUR).

Since {z2z3,23¢} C E(G), 3 € R and we may assume that zo € C and
c € C. Since {wx9,r172} C E(G), {z,721} € CUR. If 24 € C UR, then
Ne({a,z3}) N C = {c}. 1t follows that |C| = 2, for otherwise, (R — {a,z3}) U{c}
forms a nontrivial 4-cut of G. Let C' = {c,w}. Then we see that dg(w) = 4
and {c,a1} C Ng(w). Since ¢b € E(G) and ba; ¢ E(G), b € R, and then we
have w € Ng(b). This implies that w = by. Since ¢ € Ng(x4) or by € Ng(z4),
we find that x4 € R. It follows that Ng(c) C {a,b,x3,b1,a1,24} and Ng(b1) =
{¢,a1,b, x4}, which implies that {a;,z1,z2} forms a 3-cut of G since |V (G)| > 14,
a contradiction. Therefore, 4 € C, and hence {z,71} C R. Then we see that
R ={a,a1,x3,z,21} and Ng({a,z,x3}) N C = {x2}. Since |C| > 2, we find that
{z1, 72,01} is a 3-cut of G, which is absurd. O

In the following, we show that Axzxsxy is a quasi 5-contractible subgraph
of G. By (%), dg(x1) > 5 and dg(z2) > 5. Then §(G/Azxx3zs) = 4, which
implies that G/Azz3z, is 4-connected by Lemma 6. Suppose that G/Azxsxy
is not quasi 5-connected, then G/Axxszy has a nontrivial 4-cut T”. Let F’ be
a T'-fragment of G/Azxxszy and let /' = G/Axx3xy — (T'UF'). Let F, T, F
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be the sets in G corresponding to F’, T, F’ in G/Azx3zys. So, {x, 23,74} C T.
Without loss of generality, we may assume {z1,z2} C FUT.

Claim 2. [{z1, 22} NT| = 1.

Proof. Suppose [{x1,z2} NT| # 1, then either {x1,22} C T or {z1,22} C F.
If {z1,22} C T, then we see that Ng({z,23}) N F = 0 or Ng({x,23}) N F = 0,
which implies that 7' — {z, x3} is a nontrivial 4-cut of G, a contradiction.

If {1,220} C F, then Ng(x) N F = 0. If Ng(z3) N F =, then T — {z, 23}
is a nontrivial 4-cut of G, a contradiction. Thus Ng(x3) N F # (), and then
a € T and a; € F since axy € E(G). Similarly, b € T and by € F. If c € T,
then {z,z3,74,a,b} N F = {x1,22} and {z,73,74,a,b} N F = {a1,b1}, which
implies |F| = |F| = 2, for otherwise, {z1,x2,c} or {ai,b1,c} is a 3-cut of G, a
contradiction. It follows |V (G)| = 10, which contradicts |V (G)| > 14. Hence,
c ¢ T. If c € F, then {z,x3,24,a,b} N F = {z1,22,c} and {z,z3,x4,a,b} N
F = {a1,b1}. This implies that |F| < 4 and |[F| = 2, for otherwise, (T —
{z,x3,24,0a,b})U{x1, x2, c} is a nontrivial 4-cut or (T'—{x, x3,x4,a,b})U{a1, b1}
is a 3-cut of G, a contradiction. Then we have |V(G)| < 12, a contradiction. If
c € F, we can also obtain |V (G)| < 12 by similar argument. 0

We may assume that xo € F and x; € T without loss of generality. Similar
to what is described above, we have a € T, a; € F and {b,b;} N F # 0. It
follows {b,b1} N F = 0 since bby € E(G). If ¢ ¢ F, then Ng({z,z3,24,a}) N
F = {x2}, and then (T — {z,x3,24,a}) U {z2} is a 3-cut of G since |F| > 2,
a contradiction. Thus, ¢ € F, and thus b € T and b; € F. Then we can find
that |Ng({z,23,74,a,b}) N F| = |Ng({x,23,74,a,b}) N F| = 2, which implies
|F| = |F| = 2. It follows |V (G)| = 10, a contradiction. ]

Lemma 11. Let G be a contraction critical quasi 5-connected graph on at least
14 vertices. If Figure 2(b) is a subgraph of G satisfying dg(z3) = dg(x4) = 5, and
without loss of generality, we assume Ng(x3) = {x,x2,x4,a,a1} and Ng(z4) =
{z,x1,23,b,b1}, then one of the following statements holds.

(i) G/Axx3xy is quasi 5-connected.

(ii) The graph obtained from G by contracting A := {b,ba}, B := {b1, x4}, C :=
{z,21} to vertices A', B', C', respectively, is quasi 5-connected.

Proof. Assume neither (i) nor (ii) holds. Similar to Lemma 10, we have that
G/ Azxx3zy is 4-connected. Since G/Axxsxy is not quasi 5-connected, we know
that G/Azxsxs has a nontrivial 4-cut T7. Let F| be a T{-fragment of G/Azxszy
and let Fl’ = G/Arxgzs— (T{UF]). Let Fy, Th, Fy be the sets in G corresponding
to F, T/, F] in G/Axz3zy. Then we have T1 D {z,x3,24}. Without loss of
generality, we may assume {x1, 72} C Fy UTy. It follows that Ng(z) N Fy = 0. If
Ng(x3)NFy = 0, then we see that Ng({z, x3})NFy = 0, and hence Ty — {x, 23} is
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a nontrivial 4-cut of G, a contradiction. Consequently, {a, a1 }NF; # 0. Similarly,
{b,b1} N Fy # 0. Tt follows {a,ay,b,b1} C Ty U Fy since {aay,bb1} C E(G).

Claim 1. {z;,z2} C F.

Proof. Suppose {z1,22} € Fi. If {z1,22} C T1, then Ng(z) N F; = 0. Since
{a,a1} C T1 N Fy, we see that Ng(z3) N Fy = ). This implies that Ty — {z, z3} is
a nontrivial 4-cut of G, a contradiction. Thus [{z1,x2} NT1| = 1. Without loss of
generality, we assume that 1 € T; and xo € Fy. Then a € Ty and a1 € F} since
axs € E(G). Now, we observe that Ng({z,x3,z4}) N F1 = {x2}. It follows that
|F1| = 2, for otherwise, (T} — {x,x3,24}) U {z2} is a nontrivial 4-cut of G. Let
|Fy| = {x2, 2}, then dg(2) = 4 and {x1,x2,a} C Ng(z). This implies that z = as.
Let Ng(az2) = {x1,22,a,2’}. Then we see that {a1,x1, 24,2’} is a nontrivial 4-cut
of G since |V (G)| > 14, a contradiction. 0

By Claim 1, we see that {a,b} C Ty and {a1,b1} C F} because {axa,bzx1} C
E(G).

Claim 2. {as, b2} C .

Proof. 1f ay € T, then Ng({z,73,a}) N F} = {22} and Ng({z,23,a}) N F} =
{a1}. Since |V (GQ)| > 14, |Fy| > 3 or |F3| > 3, which implies that (71 —{z, 3, a})U
{z2} or (T1 — {z,2z3,a}) U {a1} is a nontrivial 4-cut of G, a contradiction. Thus
az ¢ Ty. Similarly, by ¢ T1. In the following, we show that ay € Fj, and
the other one can be handled similarly. Suppose az ¢ Fy. Hence, az € Fy
and, thus, Ng({z,z3,a}) N F1 = {a1}. It follows that |F}| = {a1,b1}. Let
Ty = {z,x3,24,a,b,u}. Then we see that Ng(a1) = {x3,a,b1,u} and Ng(b1) =
{z4,b,a1,u}. Note that u # be, for otherwise, {1, x2, as, b2} is a nontrivial 4-cut
of G.

We next show that either aag or bbs is quasi 5-contractible, which contradicts
that G is a contraction critical quasi 5-connected graph. Suppose that neither aas
nor bby is quasi 5-contractible. Clearly, 6(G/aaz) = 4. Then Lemma 5 assures
us that G/aag is 4-connected. Let C' be a quasi fragment with respect to aas
and let R = Ng(C), C = G — (RUC). Then z3 € R and we may assume that
x9 € C, a1 € C without loss of generality. If Ng(x3)NC = {2}, then we see that
x € R since zxy € E(G). Furthermore, Ng({a,z3}) = {x2}. This implies that
|C| = 2. Let C = {x2,z}. Then dg(z) = 4 and zzx € E(G), which contradicts
to (¥). Thus {x, 24} N C # 0. Then Ng({a,z3}) N C = {a1}, which implies that
|C| = 2. Let C' = {a;1,w}. Then we see that the vertex w satisfies dg(w) = 4 and
{a1,a2} € Ng(w). So we must have w = u. By similar argument for bby, we can
deduce that uby € E(G). Thus, Ng(u) = {a1, a2, b1, b2}, and thus, {z1, z2, az, by}
is a nontrivial 4-cut of G since |V(G)| > 14, a contradiction. 0
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By Claim 2, we see that Ng({z,z3,24,a,b}) N F1 = {z1,z2}. Hence, F} =
{z1,z2}, for otherwise, (11 —{x, x3, x4, a,b})U{z1,z2} is a 3-cut of G, a contradic-
tion. Let 71 —{z, x3,24,a,b} = {v}. Then we have that Ng(x1) = {z, 2, z4,b,v}
and Ng(z2) = {z,z1,23,a,v}. Let G' = G/bba/byxs/xx;. Clearly, §(G') = 4.

Claim 3. G’ is 4-connected.

Proof. Assume, to the contrary, that G’ is not 4-connected, then G’ has a 3-
cut 7" such that each component of G’ — T has at least 2 vertices and |17 N
{A,B’,C"}| > 2. Let T be the set in G corresponding to 7" in G’. We first find
that TN {A",B',C"} # {A', B’} and T'N{A',B',C"} # {A’,C'}, for otherwise,
T — {b} is a nontrivial 4-cut of G. Therefore, the set 7" N{A’, B',C"} is {B’,C"}
or {A",B’,C"}. In the former, T — {2z} forms a nontrivial 4-cut of G. In the
latter, T' — {b, 24, 2} forms a 3-cut of G. Both of which contradict the fact that
G is quasi 5-connected. 0

Since G’ is not quasi 5-connected, there exists a nontrivial 4-cut T3 of G’ by
Claim 3. Furthermore, |75 N{A4’, B’,C'}| > 1. Let F} be a Tj-fragment of G’ and
let [ = G’ — (T} U F3). Let Fy, Ty, Fy be the sets in G corresponding to Fy, T5,
FJ in G'. Note that the three vertices A’, B, C" are adjacent to each other in G'.
Hence, we may assume that the vertices in {A’, B', C'} — T} belong to Fj without
loss of generality.

Claim 4. [Ty, N{A",B,C"}| # 1.

Proof. Suppose [Ty N {A',B’",C'}| = 1. Then |T5| = 5 and |F»| > 4. If Ty N
{A",B',C"} = {A’}, then we see that Ng(b)NFy = (), which implies that T — {b}
is a nontrivial 4-cut of G, a contradiction. If ) N {A’, B',C"} = {B'}, we can get
that Th — {4} is a nontrivial 4-cut of G.

Therefore, Ty N {A’, B',C"} = {C'}. If Ng(z) N Fy = 0, then Ty — {z} is
a nontrivial 4-cut of G, a contradiction. Hence, x5 € T and zo € F5 since
x3xq4 € E(G). If Ng(x3) N Fy = {4}, then (To — {z,x3}) U {z4} is a nontrivial
4-cut of G. Hence, a; € Fy and a € T; since {axs,aa;} C FE(G). Note that
Ng({z,23}) N Fy = {x3}, which implies that Ng(a) N Fy # {x3}. Otherwise,
(Ty — {x,z3,a}) U {2} is a 3-cut of G, which is absurd. So ay € F. It follows
Na({z,z3,a}) N Fy = {x4,a1}. This implies (T2 — {z,z3,a}) U {z4,a1} is a
nontrivial 4-cut of G, a contradiction. 0O

Claim 5. [Ty, N{A4', B, C"}| # 2.

Proof. Suppose [Ty, N {A',B',C'}| = 2. Then |T5| = 6 and |F| > 3. If
TyN{A, B, C'} = {A,B'}, then z3 € F, NT} since zz3 € E(G). This im-
plies Ng({b,74}) N F;, = (), and hence Ty — {b, 24} is a nontrivial 4-cut of G, a
contradiction.
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If ToN{A" B ,C'} = {A’,C"}, then we see that Ng(b) N Iy = ). If Ng(x) N
Fy = (), then Ty — {b,z} is a nontrivial 4-cut of G, a contradiction. So, Ng(z) N
F5 # (. This implies 2o € F5 and a3 € Tj since 2324 € E(G). Since vrs € E(G),
we see that v € Fo UTh. Tt follows Ng({x,z1}) N Fy = {z4}. Then Ng(x3)NFy #
{z4}, for otherwise, (T5 — {z,x1,23}) U {x4} is a nontrivial 4-cut since |F5| > 3.
Hence, a3 € F; and a € Ty since axy € E(G). Now, Ty = {b, by, x,x1,23,a}
and v € F,. Then we see that |Fy| = 2, for otherwise, {a,v,bs} is a 3-cut of G.
However, we observe that dg(v) < 4 since va ¢ E(G), a contradiction.

Therefore, TyN{A’, B',C'} = {B',C"}. If {xg, x5} C FoUTh, then Ng({z4,z})
N Fy = (), which implies that Ty — {4, z} is a nontrivial 4-cut of G, a contra-
diction. Then {xo, 23} N Fy # 0, and then {zy, 23} C Tp U F; since mox3 €
E(G). If Ng(x1) N Fy = {b}, then Ng({z,z1,24}) N F» = {b}, and then,
(T, —{x,x1,24})U{b} is a nontrivial 4-cut of G. Thus, v € Fy, and thus, x5 € Ts
and z3 € Fy. If a ¢ Fy, then Ng({z, 21,79, 74}) N Fy = {x3}. It follows that
(Ty — {x, 71,72, 24}) U {23} is a 3-cut of G, a contradiction. Hence a € F,. This
implies {a1,as} C ToUF,. Note that {by,x,z1, 22,24} C Ts and |Tz| = 6, we have
{ay,a3} N Fy # (. Tt follows |F3| > 3. Then we see that (T — {z, 71, 24}) U {23}
is a nontrivial 4-cut of G, a contradiction. 0

By Claims 4 and 5, we have {A’, B, C'} C T}. Then |Ty| = 7. Moreover, we
see that Ng({b,z4,2}) N Fy» = 0 or Ng({b,x4,2}) N Fy = (. This implies that
Ty — {b,x4,x} is a nontrivial 4-cut of G, a contradiction. ]

Now we are prepared to prove Theorem 3.

Proof of Theorem 3. If G has a quasi 5-contractible edge, Theorem 3 holds
immediately. Thus we assume that GG is a contraction critical quasi 5-connected
graph. Let Ng(x) = {z1,22,23,24}. Without loss of generality, we suppose
{z122, 273, X324, 2421} C E(G). For i = 1,2,3,4, dg(x;) > 5 by (x). Thus
Lemma 5 assures us that G/zz; is 4-connected.

For i = 1,2, let F; be quasi fragments with respect to zx;. Let T; = Ng(F;)
and F; = V(G) — (F; UT;). Then 23 € Ty and 24 € Tp. Without loss of
generality, we may assume zo € Fy, 4 € F| and 21 € Fy, 23 € Fy. Thus,
reTiNTy, x1y € TTYNFy, x0 € F1NT,, x3 € T} QE and x4 € EHTQ. Let
Xy = (ﬁ N FQ) ) (Tl N TQ) U (Fl QTQ), Xy = (Tl N FQ) U (Tl N Tg) U (Fl ﬂ&),
X3 = (Fl ﬂTg) U (T1 QTQ) U (T1 ﬂFg) and Xy = (Fl ﬂTg) U (T1 ﬂTg) U (Tl N F2)

Claim 1. There exists i € {1,2,3,4} such that | X;| < 4.

Proof. To the contrary, we assume that for all i = 1,2,3,4, |X;| > 5. The fact
|X1| + ’X3’ = ‘Xg‘ + ’X4’ = 10 shows that ’Xﬂ = ‘Xg‘ = ’Xg’ = |X4| = 5. Since
Ng(x) N (F1 N Fy) = 0, we see that |F} N Fy| < 1, for otherwise, X; — {z} is
a nontrivial 4-cut of G, a contradiction. Similarly, we have that [F} N Fy| < 1,
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|Fi1 N Fy| <1 and |Fy N Fy| < 1. Tt follows |V(G)| < 13, which contradicts the
fact that |V(G)| > 14.

~ Without loss of generality, we may assume |X3| < 4. Since Ng(z)N(F1NFy) =
@, FFNE,= 0.

Claim 2. |EQT2‘ = |T1 HE| =1.

Proof. We only show that [F} N Ty| = 1, and the other one can be handled
similarly. Suppose |[Fy NTy| > 2. Then |[FiNTs| =2 and [Ty NT3| = [T1NFy| = 1.
Hence, |Fy NT3| = 2, which implies | X4| = 4. Since Ng(x) N (Fy N Fy) = (), we
see that Fy N Fy = (). It follows |F3| = 1, a contradiction. 0

Claim 3. |F1 QE| = |EOF2| =1.

Proof. We only show that |F} NFy| = 1. By Claim 2, we see that [X4| = 5,
which implies that |Fy N Fy| < 1 since Ng(x) N (Fy N Fy) = 0. If FyNFy, =0,
then we find |Fy| = 1, a contradiction. So |Fy N Fy| = 1. 0

Let 4y N Fy = {a} and let Fy N Fy = {b}. Note that [T} NTy| < 2 by Claim
1. If |Th NT3| = 2, then we see that G has the subgraph shown in Figure 2(a). If
|71 NTy| = 1, then G has the subgraph shown in Figure 2(b). Then Theorem 3
holds by Lemmas 9, 10 and 11. [ |
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