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Abstract

Let G be a quasi 5-connected graph on at least 14 vertices. If there is
a vertex x ∈ V4(G) such that G[NG(x)] ∼= K1,3 or G[NG(x)] ∼= C4, then
G can be contracted to a smaller quasi 5-connected graph H such that
0 < |V (G)| − |V (H)| < 4.
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1. Introduction

In this paper, we only consider finite simple undirected graphs, with undefined
terms and notations following [1]. For a graph G, let V (G) and E(G) denote the
set of vertices of G and the set of edges of G, respectively. We denote the set of
end vertices of an edge e by V (e). For x ∈ V (G), let NG(x) = {y ∈ V (G) : xy ∈
E(G)}. We define the degree of x ∈ V (G) by dG(x), namely dG(x) = |NG(x)|. Let
Vk(G) denote the set of vertices of degree k in G. Let δ(G) denote the minimum
degree of G. For S ⊆ V (G), we define NG(S) = ∪x∈SNG(x)−S. Furthermore, let
G[S] denote the subgraph induced by S, and let G−S denote the graph obtained
from G by deleting the vertices of S together with the edges incident with them.
Let K1,n denote the complete bipartite graph with partite sets of cardinality 1
and n. Let Cn denote a cycle of order n.

An edge e = xy of G is said to be contracted if it is deleted and its ends are
identified, the resulting graph is denoted by G/e. And the new vertex in G/e
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is denoted by xy. Note that, in the contraction, we replace each resulting pair
of double edges by a single edge. A subgraph H of G is said to be contracted
by identifying each component to a single vertex, removing each of the resulting
loops and, finally, replacing each of the resulting duplicate edges by a single edge.
The resulting graph is denoted by G/H. Let k be an integer such that k ≥ 2 and
let G be a k-connected graph with |V (G)| ≥ k + 2. An edge e of G is said to be
k-contractible if the contraction of the edge results in a k-connected graph. A k-
connected graph without a k-contractible edge is said to be a contraction critical
k-connected graph. A subgraph H of G is said to be k-contractible if G/H is still
k-connected.

A cut of a connected graph G is a subset V ′(G) of V (G) such that G−V ′(G)
is disconnected. A k-cut is a cut of k elements. Suppose T is a k-cut of G. We
say that T is a nontrivial k-cut, if the components of G − T can be partitioned
into subgraphs G1 and G2 such that |V (G1)| ≥ 2 and |V (G2)| ≥ 2. A (k − 1)-
connected graph is quasi k-connected if it has no nontrivial (k− 1)-cuts. Clearly,
every k-connected graph is quasi k-connected.

Let G be a quasi k-connected graph. An edge e of G is said to be quasi
k-contractible if G/e is still quasi k-connected. If G does not have a quasi k-
contractible edge, then G is said to be a contraction critical quasi k-connected
graph. A subgraph H of G is said to be quasi k-contractible if its contraction
G/H results again in a quasi k-connected graph.

Tutte’s [8] famous wheel theorem implies that every 3-connected graph on
more than four vertices contains an edge whose contraction yields a new 3-
connected graph. One can give an inductive proof of Kuratowski’s theorem by
the wheel theorem [6]. Results on the distribution of 3-contractible edges led
also to coloring theorems on planar graphs [3, 5]. So the existence and the dis-
tribution of k-contractible subgraphs is an attractive research area within graph
connectivity theory.

Thomassen [7] showed that for k ≥ 4, there are infinitely many contraction
critical k-connected k-regular graphs. However, every 4-connected graph on at
least seven vertices can be reduced to a smaller 4-connected graph by contracting
at most two edges. So, naturally, Kriesell posted the following conjecture [2].

Conjecture 1 [2]. There exist positive integers b and h such that every k-
connected graph on more than b vertices can be reduced to a smaller k-connected
graph by contracting less than h edges for every k ≥ 1.

Clearly, Conjecture 1 is true for k = 1 and k = 2. For k = 3 and k = 4, the
smallest appropriate values for b, h would be 4, 2 and 6, 3, respectively. But for
k ≥ 6, such a statement fails since toroidal triangulations of large face width is a
counterexample [2]. In [4], Kriesell proved that every quasi 6-connected graph on
at least 13 vertices can be reduced to a smaller 5-connected graph by contracting
less than five edges subsequently. The conjecture is still open for k = 5.
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We focus on quasi 5-connected graphs and obtain the following results.

Theorem 2. Let G be a quasi 5-connected graph on at least 13 vertices. If there
is a vertex x ∈ V4(G) such that G[NG(x)] ∼= K1,3, then G can be reduced to a
smaller quasi 5-connected graph by contracting less than three edges subsequently.

Theorem 3. Let G be a quasi 5-connected graph on at least 14 vertices. If there
is a vertex x ∈ V4(G) such that G[NG(x)] ∼= C4, then G can be reduced to a
smaller quasi 5-connected graph by contracting less than four edges subsequently.

By Combining Theorems 2 and 3, we have the following corollary.

Corollary 4. Let G be a quasi 5-connected graph on at least 14 vertices. If
there is a vertex x ∈ V4(G) such that G[NG(x)] ∼= K1,3 or G[NG(x)] ∼= C4,
then G can be contracted to a smaller quasi 5-connected graph H such that 0 <
|V (G)| − |V (H)| < 4.

2. Preliminaries

In this section, we introduce more definitions and several preliminary lemmas.

Let G be a non-complete connected graph and let κ(G) denote the vertex
connectivity of G. By T (G) := {T ⊆ V (G) : T is a cut of G, |T | = κ(G)}, we
denote the set of smallest cuts of G. For T ∈ T (G), the union of the vertex sets
of at least one but not of all components of G−T is called a T-fragment of G or,
briefly, a fragment. Let F be a T -fragment, and let F = V (G)− (F ∪T ). Clearly,
F ̸= ∅, and F is also a T -fragment such that NG(F ) = T = NG(F ).

Let G be a quasi k-connected graph and let E0 = {e ∈ E(G) : G/e is (k−1)-
connected, but not quasi k-connected}. For xy ∈ E0, G/xy has a nontrivial
(k − 1)-cut T ′ by the definition of quasi k-connected. Furthermore, xy ∈ T ′, for
otherwise, T ′ is also a nontrivial (k − 1)-cut of G, contradicts the fact that G
is quasi k-connected. This implies that T = (T ′ − xy) ∪ {x, y} is a k-cut of G.
Moreover, G−T can be partitioned into subgraphs F and F such that |V (F )| ≥ 2
and |V (F )| ≥ 2. Each of these subgraphs is called a quasi T-fragment of G or,
briefly, a quasi fragment. For an edge e of G, a quasi fragment F of G is said
to be a quasi fragment with respect to e if V (e) ⊆ NG(F ). For a set of edges
E′ ⊆ E(G), we say that F is a quasi fragment with respect to E′ if F is a quasi
fragment with respect to some e ∈ E′. A quasi fragment with respect to e or E′

with least cardinality is called a quasi atom with respect to e and E′, respectively.

Lemma 5. Let G be a quasi 5-connected graph. If xy ∈ E(G) and δ(G/xy) ≥ 4,
then G/xy is 4-connected.
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Proof. Suppose that G/xy is not 4-connected, then there exists a 3-cut T ′ of
G/xy. Since δ(G/xy) ≥ 4, we see that each component of G/xy − T ′ has at
least two vertices. Furthermore, xy ∈ T ′, for otherwise, T ′ is also a 3-cut of G,
a contradiction. Hence, T = (T ′ − {xy}) ∪ {x, y} is a 4-cut of G. And each
component of G − T has at least two vertices. It follows that T is a nontrivial
4-cut of G, which contradicts the quasi 5-connectivity of G.

Lemma 6. Let G be a quasi 5-connected graph and let x ∈ V4(G) such that
NG(x) = {y, z, u, v}. If {yz, uv} ⊆ E(G) and δ(G/△xyz) ≥ 4, then G/△xyz is
4-connected.

Proof. If G/△xyz is not 4-connected, then G/△xyz has a 3-cut T ′. Since
δ(G/△xyz) ≥ 4, each component of G/△xyz − T ′ has at least two vertices.
Furthermore, the vertex resulting from the contraction of triangle xyz belongs to
T ′. Hence, G has a 5-cut T such that {x, y, z} ⊆ T and G−T can be partitioned
into two parts, say F and F , where each part has at least two vertices. Since
uv ∈ E(G), we see that NG(x) ∩ F = ∅ or NG(x) ∩ F = ∅, which implies that
T − {x} is a nontrivial 4-cut of G, a contradiction.

Lemma 7. Let G be a quasi 5-connected graph on at least 8 vertices. If there is
a vertex x ∈ V (G) such that NG(x) = {x1, x2, x3, x4} and G[{x1, x2, x3}] ∼= K3,
then xx4 is a quasi 5-contractible edge.

Proof. For i = 1, 2, 3, we have dG(xi) ≥ 5, for otherwise, NG({x, xi}) is a
nontrivial 4-cut of G since |V (G)| ≥ 8, which contradicts that G is quasi 5-
connected. This implies δ(G/xx4) ≥ 4. Thus Lemma 5 assures us that G/xx4
is 4-connected. Suppose that G/xx4 is not quasi 5-connected, then we see that
G/xx4 has a nontrivial 4-cut T ′. Furthermore, xx4 ∈ T ′, for otherwise, T ′ is
also a nontrivial 4-cut of G, a contradiction. Thus, G has a 5-cut T such that
{x, x4} ⊆ T . And G− T can be partitioned into two parts, say F and F , where
each part has at least two vertices. However, since G[{x1, x2, x3}] ∼= K3, we
observe that NG(x) ∩ F = ∅ or NG(x) ∩ F = ∅. It follows that T − {x} is a
nontrivial 4-cut of G, a contradiction.

3. Proof of Theorem 2

In this section, we give a proof of Theorem 2. We first introduce a useful lemma.

Lemma 8. Let G be a quasi 5-connected graph on at least 13 vertices. If Figure 1
is a subgraph of G, then the graph G′ obtained from G by contracting A := {a, a0},
B := {p, p0} to vertices A′, B′, respectively, is still quasi 5-connected.



Contractible Subgraphs of Quasi 5-Connected Graphs 5

wv t s

m p

0m
0p

x

a

0a

Figure 1. The graph in Lemma 8. Solid edges indicate edges that must exist, and dashed
edges indicate edges that may exist. A black circular vertex indicates that the vertex
has reached its maximum degree. A black square vertex indicates that its neighbor set is
a subset of all vertices adjacent to it by solid and dashed edges. Specifically, the vertex
adjacent to it by a solid edge must be a neighbor of it, while the vertex adjacent to it by
a dashed edge is not necessarily so.

Proof. We first show that G′ is 4-connected. Note that {v, w, s,B′} ⊆ NG′(A′),
then dG′(A′) ≥ 4. If dG′(B′) < 4, then we see that NG(p0) = {p, w, s, a0}, and
hence {t, s,m0, a0} is a nontrivial 4-cut of G since |V (G)| ≥ 13, which contradicts
that G is quasi 5-connected. Thus, dG′(B′) ≥ 4. Moreover, it is easy to find
that every vertex in G′, except A′ and B′, has degree at least 4. It follows
δ(G′) = 4. Suppose that G′ is not 4-connected, then G′ has a 3-cut T ′ such
that each component of G′ − T ′ has at least 2 vertices and T ′ ∩ {A′, B′} ≠ ∅. If
|T ′ ∩ {A′, B′}| = 1, then we find that G has a nontrivial 4-cut, a contradiction.
Thus, {A′, B′} ⊆ T ′. It follows that G has a 5-cut T containing {a, a0, p, p0}.
Since NG(p) = {a0, p0, w, s} and ws ∈ E(G), we see that T − {p} is a nontrivial
4-cut of G, a contradiction. Thus, G′ is 4-connected.

Suppose, to the contrary, that G′ is not quasi 5-connected, then G′ has a
nontrivial 4-cut T ′ such that |T ′ ∩ {A′, B′}| ≥ 1. Let F ′ be a T ′-fragment of G′

and let F ′ = G′ − (T ′ ∪ F ′). Let F , T , F be the sets in G corresponding to F ′,
T ′, F ′ in G′. That is, in each of these sets, we replace the vertices A′, B′ by the
vertices in the sets A, B, respectively.

If {A′, B′} ⊆ T ′, then one of v and w is in F , and the other is in F . Otherwise,
NG({a, p}) ∩ F = ∅ or NG({a, p}) ∩ F = ∅, which implies that T − {a, p} is
a nontrivial 4-cut of G, a contradiction. Without loss of generality, we may
assume that v ∈ F and w ∈ F . Since {sv, sw, xv, xw} ⊆ E(G), we have T =
{a, a0, p, p0, s, x}. Hence we obtain NG(w) ⊆ T . Since mv ∈ E(G), m ∈ F .
Then the fact that mt ∈ E(G) assures us that t ∈ F . Hence, we see that
NG({a, p, x}) ∩ F = {w} and, thus, {a0, p0, s} forms a 3-cut of G since |F | ≥ 2,
a contradiction.
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Consequently, |T ′ ∩ {A′, B′}| = 1. Suppose that A′ /∈ T ′ and B′ ∈ T ′. We
may assume that A′ ∈ F ′ without loss of generality. Then {w, s} ⊆ F ∪ T
because {aw, as} ⊆ E(G), and hence NG(p) ∩ F = ∅. This implies that T − {p}
is a nontrivial 4-cut of G, a contradiction. Thus, A′ ∈ T ′ and B′ /∈ T ′. We may
assume that B′ ∈ F ′ without loss of generality. Then |F | ≥ 3. If NG(a) ∩ F = ∅
or NG(a) ∩ F = ∅, then T − {a} is a nontrivial 4-cut of G, a contradiction. So
NG(a) ∩ F ̸= ∅ and NG(a) ∩ F ̸= ∅. Then we see that s ∈ T since NG(a) =
{a0, v, w, s} and {vs, ws} ⊆ E(G). Since p ∈ F and wp ∈ E(G), we have w ∈ F
and v ∈ F . Notice that {xw, xv} ⊆ E(G), then x ∈ T . If NG({a, x}) ∩ F = {w},
then we find that (T − {a, x}) ∪ {w} is a nontrivial 4-cut of G since |F | ≥ 3,
a contradiction. Hence, t ∈ F , and thus NG({a, x}) ∩ F = {v}. This implies
that |F | = 2, for otherwise, (T − {a, x}) ∪ {v} forms a nontrivial 4-cut of G.
Let F = {v, z}. Then dG(z) = 4 and {v, s, a0} ⊆ NG(z). Clearly, z ̸= m
since m is not adjacent to a0. If vm0 /∈ E(G), then we obtain a contradiction,
since there is no such a vertex z in G. If vm0 ∈ E(G), then z = m0, and thus
NG(m0) = {v, s, a0,m}. It follows that {t, s, a0, p0} forms a nontrivial 4-cut of G
by the fact that |V (G)| ≥ 13, a contradiction.

Now we are prepared to prove Theorem 2.

Proof of Theorem 2. If G has a quasi 5-contractible edge, Theorem 2 holds
immediately. Thus we assume that G is a contraction critical quasi 5-connected
graph. Let NG(x) = {x1, x2, x3, x4}. Without loss of generality, we suppose that
{x1x4, x2x4, x3x4} ⊆ E(G). If dG(x4) = 4, then {x1, x2, x3} forms a 3-cut of G.
So, dG(x4) ≥ 5. Hence, for i = 1, 2, 3, δ(G/xxi) ≥ 4, and hence Lemma 5 assures
us that G/xxi is 4-connected.

Let E′ = {xx1, xx2, xx3} and let F1 be a quasi atom with respect to E′. Let
T1 = NG(F1) and let F1 = V (G) − (F1 ∪ T1). Then |F1| ≥ |F1| ≥ 2. Without
loss of generality, we assume that F1 is a quasi fragment with respect to xx1.
Since x2x4 ∈ E(G) and x3x4 ∈ E(G), we see that x4 ∈ T1 and we may assume
that x2 ∈ F1, x3 ∈ F1. Let F2 be a quasi fragment with respect to xx2 and
let T2 = NG(F1), F2 = V (G) − (F2 ∪ T2). Then x4 ∈ T2 and we may assume
that x1 ∈ F2, x3 ∈ F2. Now, we find that {x, x4} ⊆ T1 ∩ T2, x1 ∈ T1 ∩ F2,
x2 ∈ F1 ∩ T2 and x3 ∈ F1 ∩ F2. Let X1 = (T1 ∩ F2) ∪ (T1 ∩ T2) ∪ (F1 ∩ T2),
X2 = (T1 ∩ F2) ∪ (T1 ∩ T2) ∪ (F1 ∩ T2), X3 = (F1 ∩ T2) ∪ (T1 ∩ T2) ∪ (T1 ∩ F2),
X4 = (F1 ∩ T2) ∪ (T1 ∩ T2) ∪ (T1 ∩ F2).

Claim 1. F1 ∩ T2 = {x2}.

Proof. Assume, to the contrary, that |F1∩T2| ≥ 2. Then |(T1∩T2)∪(F1∩T2)| ≤
3. Since x3 ∈ F1 ∩ F2, we see that |X3| ≥ 4. Hence, |T1 ∩ F2| ≥ 1, and thus,
|T1 ∩ F2| ≤ 2. If |T1 ∩ F2| = 1, then |X2| ≤ 4. Since NG(x) ∩ (F1 ∩ F2) = ∅,
we observe that F1 ∩ F2 = ∅. This implies that |F2| < |F1|, a contradiction.
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Therefore, |T1 ∩ F2| = 2. It follows that |T1 ∩ T2| = |F1 ∩ T2| = 2 and |T1 ∩ F2| =
|F1 ∩ T2| = 1. Now, |X2| = 5 and |X3| = 4. Since G has no nontrivial 4-cuts, we
find that |F1 ∩ F2| ≤ 1 and F1 ∩ F2 = {x3}. This implies that |F1| ≤ 3. Hence,
|F1| ≤ |F1| ≤ 3, which implies that |V (G)| ≤ 11, a contradiction.

By Claim 1, we have F1 ∩ F2 ̸= ∅. Otherwise, we see that NG(x1) ∩ F1 = ∅
since x1x2 /∈ E(G), and then T1−{x1} is a nontrivial 4-cut of G, a contradiction.
Since NG(x) ∩ (F1 ∩ F2) = ∅, |X1| ≥ 5. Hence, |F1 ∩ T2| ≥ |T1 ∩ F2|. Then we
have |T1 ∩ F2| ≤ 1 by Claim 1.

Claim 2. |T1 ∩ F2| = 1 and |F1 ∩ F2| = 1.

Proof. Suppose T1 ∩ F2 = ∅. Then |X1| = 6 and |X3| = 4. This implies
F1 ∩F2 = {x3}. Then |F2| < |F1|, a contradiction. So |T1 ∩F2| = 1. Then we see
that |(T1 ∩ F2) ∪ (T1 ∩ T2)| = 4, and hence |X1| = 5. This implies |F1 ∩ F2| = 1
since NG(x) ∩ (F1 ∩ F2) = ∅ and G has no nontrivial 4-cuts.

Let F1 ∩ F2 = {a}. Then we see that dG(a) = 4 and {x1, x2, x4} ⊆ NG(a).
Let NG(a) = {x1, x2, x4, a0}. Note that a0 ∈ (T1 ∩F2)∪ (T1 ∩T2). We next show
that G/aa0 is 4-connected. Suppose δ(G/aa0) < 4. It follows that there exist a
vertex z ∈ NG(a)∩NG(a0) such that dG(z) = 4. Clearly, z ̸= x4 since dG(x4) ≥ 5.
If z = x1, then we see that NG(x1) ∩ F1 = ∅, which implies that T1 − {x1} is a
nontrivial 4-cut of G, a contradiction. If z = x2, then NG(x2) ∩ F2 = ∅, which
implies that T2 − {x2} is a nontrivial 4-cut of G, a contradiction. Thus, there is
no such a vertex z in G. Then δ(G/aa0) ≥ 4, and then Lemma 5 assures us that
G/aa0 is 4-connected.

Let F3 and F4 be the quasi fragments with respect to xx3 and aa0, re-
spectively. For i = 3, 4, let Ti = NG(Fi), Fi = V (G) − (Fi ∪ Ti). Since
{x1x4, x2x4} ⊆ E(G), we see that x4 ∈ T3 and we may assume that x1 ∈ F3,
x2 ∈ F3 without loss of generality. Then a ∈ T3 since {ax1, ax2} ⊆ E(G). Simi-
larly, {x4, x} ⊆ T4 and we may assume that x1 ∈ F4, x2 ∈ F4. If a0 ∈ T3, then
NG({x, a})∩F3 = {x1} and NG({x, a})∩F3 = {x2}. Since |V (G)| ≥ 13, we have
|F3| ≥ 4 or |F3| ≥ 4. It follows that (T3 −{x, a})∪{x1} or (T3 −{x, a})∪{x2} is
a nontrivial 4-cut of G, a contradiction. Thus a0 /∈ T3. Similarly, x3 /∈ T4. Now,
we see that x1 ∈ F3 ∩ F4, x2 ∈ F3 ∩ F4 and {x, x4, a} ⊆ T3 ∩ T4. Since x3 /∈ T4

and a0 /∈ T3, x3 ∈ (T3 ∩ F4) ∪ (T3 ∩ F4) and a0 ∈ (T4 ∩ F3) ∪ (T4 ∩ F3). Let
X5 = (T3 ∩ F4) ∪ (T3 ∩ T4) ∪ (F3 ∩ T4), X6 = (T3 ∩ F4) ∪ (T3 ∩ T4) ∪ (F3 ∩ T4),
X7 = (F3 ∩ T4) ∪ (T3 ∩ T4) ∪ (T3 ∩ F4), X8 = (F3 ∩ T4) ∪ (T3 ∩ T4) ∪ (T3 ∩ F4).

Claim 3. |F3 ∩ F4| ≤ 2 and |F3 ∩ F4| ≤ 2.

Proof. We only show that |F3 ∩F4| ≤ 2. Suppose |F3 ∩F4| ≥ 3. Let W = (F3 ∩
F4)−{x1}. Thus |W | ≥ 2. SinceG is quasi 5-connected, we see that |NG(W )| ≥ 5.
Note that NG({x, a}) ∩ (F3 ∩ F4) = {x1}. It follows NG({x, a}) ∩ W = ∅, and
hence, |X5| ≥ 6. Thus |X7| ≤ 4. This implies that F3∩F4 = {x2} and F3∩T4 = ∅
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Figure 2. The explanations for Figures 2(a) and 2(b) are identical to the explanation for
the graph in Figure 1.

or T3 ∩ F4 = ∅. Without loss of generality, we may assume F3 ∩ T4 = ∅. Then
|X6| ≤ 5, Since NG({x, a}) ∩ (F3 ∩ F4) = ∅, we find F3 ∩ F4 = ∅. Then |F3| = 1,
a contradiction.

Claim 4. Either F3 ∩ F4 = ∅ or F3 ∩ F4 = ∅.

Proof. Note that, NG({x, a}) ∩ (F3 ∩ F4) = ∅ and NG({x, a}) ∩ (F3 ∩ F4) = ∅.
This implies that |X8| ≥ 6 if F3 ∩ F4 ̸= ∅ and |X6| ≥ 6 if F3 ∩ F4 ̸= ∅. By the
fact that |X6|+ |X8| = 10, we have F3 ∩ F4 = ∅ or F3 ∩ F4 = ∅.

If F3 ∩ F4 = ∅, then |F3 ∩ F4| ≥ 2. Otherwise, we see that |V (G)| ≤ 12 by
Claim 3, which contradicts the fact that |V (G)| ≥ 13. This implies that |X6| ≥ 7
since NG({x, a})∩(F3∩F4) = ∅. Thus, |T3∩T4| = 3, |T3∩F4| = |F3∩T4| = 2 and
F3∩T4 = T3∩F4 = ∅. It follows that x3 ∈ T3∩F4 and a0 ∈ F3∩T4. Furthermore,
|F3| = |F3 ∩ F4| = 2 and |F4| = |F3 ∩ F4| = 2 by Claim 3. Let F3 ∩ F4 = {x1,m}
and let T3 ∩ F4 = {x3,m0}. Let F3 ∩ F4 = {x2, p} and let F3 ∩ T4 = {a0, p0}.
Now, we find that G has a subgraph isomorphic to the graph in Figure 1. Then
G/aa0/pp0 is quasi 5-connected by Lemma 8. If F3 ∩ F4 = ∅, we can also obtain
that G has a subgraph isomorphic to the graph in Figure 1 by similar argument.
And then Theorem 2 holds by Lemma 8.

4. Proof of Theorem 3

In this section, we consider the quasi 5-connected graph G that contains a 4-
degree vertex x such that G[NG(x)] ∼= C4. If x′ ∈ NG(x) and dG(x

′) = 4, then
we see that NG({x, x′}) is a nontrivial 4-cut of G, which contradicts the quasi
5-connectivity of G. Hence, every neighborhood of x has degree at least 5 (∗).
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Lemma 9. Let G be a quasi 5-connected graph that contains either Figure 2(a)
or Figure 2(b) as a subgraph. If dG(x3) = 6 or dG(x4) = 6, then Theorem 3
holds.

Proof. If dG(x3) = 6, we see that either G[NG(a)] ∼= K1,3 or G[NG(a)] contains
a K3-subgraph. It follows immediately from Theorem 2 and Lemma 7 that G has
a quasi 5-contractible subgraph containing at most two edges. Hence, Theorem
3 holds. If dG(x4) = 6, we can obtain the same result similarly.

Lemma 10. Let G be a contraction critical quasi 5-connected graph on at least
14 vertices. If Figure 2(a) is a subgraph of G satisfying dG(x3) = dG(x4) = 5,
then △xx3x4 is a quasi 5-contractible subgraph of G.

Proof. Since dG(x3) = dG(x4) = 5, either a1 ∈ NG(x3) or c ∈ NG(x3), and also
either b1 ∈ NG(x4) or c ∈ NG(x4).

Claim 1. NG(x3) = {x, x2, x4, a, a1} and NG(x4) = {x, x1, x3, b, b1}.
Proof. We only show that NG(x3) = {x, x2, x4, a, a1}. Let us assume, to the
contrary, that NG(x3) = {x, x2, x4, a, c}. We next show that aa1 is quasi 5-
contractible, which contradicts that G is a contraction critical quasi 5-connected
graph. We first show that δ(G/aa1) = 4. If δ(G/aa1) < 4, then we have that
there exist a vertex z ∈ NG(a)∩NG(a1) such that dG(z) = 4. Clearly, z ̸= x2 since
dG(x2) ≥ 5. Similarly, z ̸= x3. Thus z = c. However, we see that NG({a, c}) is a
nontrivial 4-cut of G, a contradiction. So δ(G/aa1) = 4. Then Lemma 5 assures
us that G/aa1 is 4-connected. Suppose that G/aa1 is not quasi 5-connected. Let
C be a quasi fragment with respect to aa1 and let R = NG(C), C = G− (C ∪R).

Since {x2x3, x3c} ⊆ E(G), x3 ∈ R and we may assume that x2 ∈ C and
c ∈ C. Since {xx2, x1x2} ⊆ E(G), {x, x1} ⊆ C ∪ R. If x4 ∈ C ∪ R, then
NG({a, x3})∩C = {c}. It follows that |C| = 2, for otherwise, (R−{a, x3})∪ {c}
forms a nontrivial 4-cut of G. Let C = {c, w}. Then we see that dG(w) = 4
and {c, a1} ⊆ NG(w). Since cb ∈ E(G) and ba1 /∈ E(G), b ∈ R, and then we
have w ∈ NG(b). This implies that w = b1. Since c ∈ NG(x4) or b1 ∈ NG(x4),
we find that x4 ∈ R. It follows that NG(c) ⊆ {a, b, x3, b1, a1, x4} and NG(b1) =
{c, a1, b, x4}, which implies that {a1, x1, x2} forms a 3-cut of G since |V (G)| ≥ 14,
a contradiction. Therefore, x4 ∈ C, and hence {x, x1} ⊆ R. Then we see that
R = {a, a1, x3, x, x1} and NG({a, x, x3}) ∩ C = {x2}. Since |C| ≥ 2, we find that
{x1, x2, a1} is a 3-cut of G, which is absurd.

In the following, we show that △xx3x4 is a quasi 5-contractible subgraph
of G. By (∗), dG(x1) ≥ 5 and dG(x2) ≥ 5. Then δ(G/△xx3x4) = 4, which
implies that G/△xx3x4 is 4-connected by Lemma 6. Suppose that G/△xx3x4
is not quasi 5-connected, then G/△xx3x4 has a nontrivial 4-cut T ′. Let F ′ be
a T ′-fragment of G/△xx3x4 and let F ′ = G/△xx3x4 − (T ′ ∪ F ′). Let F , T , F
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be the sets in G corresponding to F ′, T ′, F ′ in G/△xx3x4. So, {x, x3, x4} ⊆ T .
Without loss of generality, we may assume {x1, x2} ⊆ F ∪ T .

Claim 2. |{x1, x2} ∩ T | = 1.

Proof. Suppose |{x1, x2} ∩ T | ̸= 1, then either {x1, x2} ⊆ T or {x1, x2} ⊆ F .
If {x1, x2} ⊆ T , then we see that NG({x, x3}) ∩ F = ∅ or NG({x, x3}) ∩ F = ∅,
which implies that T − {x, x3} is a nontrivial 4-cut of G, a contradiction.

If {x1, x2} ⊆ F , then NG(x) ∩ F = ∅. If NG(x3) ∩ F = ∅, then T − {x, x3}
is a nontrivial 4-cut of G, a contradiction. Thus NG(x3) ∩ F ̸= ∅, and then
a ∈ T and a1 ∈ F since ax2 ∈ E(G). Similarly, b ∈ T and b1 ∈ F . If c ∈ T ,
then {x, x3, x4, a, b} ∩ F = {x1, x2} and {x, x3, x4, a, b} ∩ F = {a1, b1}, which
implies |F | = |F | = 2, for otherwise, {x1, x2, c} or {a1, b1, c} is a 3-cut of G, a
contradiction. It follows |V (G)| = 10, which contradicts |V (G)| ≥ 14. Hence,
c /∈ T . If c ∈ F , then {x, x3, x4, a, b} ∩ F = {x1, x2, c} and {x, x3, x4, a, b} ∩
F = {a1, b1}. This implies that |F | ≤ 4 and |F | = 2, for otherwise, (T −
{x, x3, x4, a, b})∪{x1, x2, c} is a nontrivial 4-cut or (T −{x, x3, x4, a, b})∪{a1, b1}
is a 3-cut of G, a contradiction. Then we have |V (G)| ≤ 12, a contradiction. If
c ∈ F , we can also obtain |V (G)| ≤ 12 by similar argument.

We may assume that x2 ∈ F and x1 ∈ T without loss of generality. Similar
to what is described above, we have a ∈ T , a1 ∈ F and {b, b1} ∩ F ̸= ∅. It
follows {b, b1} ∩ F = ∅ since bb1 ∈ E(G). If c /∈ F , then NG({x, x3, x4, a}) ∩
F = {x2}, and then (T − {x, x3, x4, a}) ∪ {x2} is a 3-cut of G since |F | ≥ 2,
a contradiction. Thus, c ∈ F , and thus b ∈ T and b1 ∈ F . Then we can find
that |NG({x, x3, x4, a, b}) ∩ F | = |NG({x, x3, x4, a, b}) ∩ F | = 2, which implies
|F | = |F | = 2. It follows |V (G)| = 10, a contradiction.

Lemma 11. Let G be a contraction critical quasi 5-connected graph on at least
14 vertices. If Figure 2(b) is a subgraph of G satisfying dG(x3) = dG(x4) = 5, and
without loss of generality, we assume NG(x3) = {x, x2, x4, a, a1} and NG(x4) =
{x, x1, x3, b, b1}, then one of the following statements holds.

(i) G/△xx3x4 is quasi 5-connected.

(ii) The graph obtained from G by contracting A := {b, b2}, B := {b1, x4}, C :=
{x, x1} to vertices A′, B′, C ′, respectively, is quasi 5-connected.

Proof. Assume neither (i) nor (ii) holds. Similar to Lemma 10, we have that
G/△xx3x4 is 4-connected. Since G/△xx3x4 is not quasi 5-connected, we know
that G/△xx3x4 has a nontrivial 4-cut T ′

1. Let F
′
1 be a T ′

1-fragment of G/△xx3x4
and let F ′

1 = G/△xx3x4−(T ′
1∪F ′

1). Let F1, T1, F1 be the sets in G corresponding
to F ′

1, T
′
1, F

′
1 in G/△xx3x4. Then we have T1 ⊃ {x, x3, x4}. Without loss of

generality, we may assume {x1, x2} ⊆ F1 ∪ T1. It follows that NG(x)∩F1 = ∅. If
NG(x3)∩F1 = ∅, then we see that NG({x, x3})∩F1 = ∅, and hence T1−{x, x3} is
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a nontrivial 4-cut of G, a contradiction. Consequently, {a, a1}∩F1 ̸= ∅. Similarly,
{b, b1} ∩ F1 ̸= ∅. It follows {a, a1, b, b1} ⊆ T1 ∪ F1 since {aa1, bb1} ⊆ E(G).

Claim 1. {x1, x2} ⊆ F1.

Proof. Suppose {x1, x2} ⊈ F1. If {x1, x2} ⊆ T1, then NG(x) ∩ F1 = ∅. Since
{a, a1} ⊆ T1 ∩F1, we see that NG(x3)∩F1 = ∅. This implies that T1 −{x, x3} is
a nontrivial 4-cut of G, a contradiction. Thus |{x1, x2}∩T1| = 1. Without loss of
generality, we assume that x1 ∈ T1 and x2 ∈ F1. Then a ∈ T1 and a1 ∈ F1 since
ax2 ∈ E(G). Now, we observe that NG({x, x3, x4}) ∩ F1 = {x2}. It follows that
|F1| = 2, for otherwise, (T1 − {x, x3, x4}) ∪ {x2} is a nontrivial 4-cut of G. Let
|F1| = {x2, z}, then dG(z) = 4 and {x1, x2, a} ⊆ NG(z). This implies that z = a2.
Let NG(a2) = {x1, x2, a, z′}. Then we see that {a1, x1, x4, z′} is a nontrivial 4-cut
of G since |V (G)| ≥ 14, a contradiction.

By Claim 1, we see that {a, b} ⊆ T1 and {a1, b1} ⊆ F1 because {ax2, bx1} ⊆
E(G).

Claim 2. {a2, b2} ⊆ F1.

Proof. If a2 ∈ T1, then NG({x, x3, a}) ∩ F1 = {x2} and NG({x, x3, a}) ∩ F1 =
{a1}. Since |V (G)| ≥ 14, |F1| ≥ 3 or |F3| ≥ 3, which implies that (T1−{x, x3, a})∪
{x2} or (T1 − {x, x3, a}) ∪ {a1} is a nontrivial 4-cut of G, a contradiction. Thus
a2 /∈ T1. Similarly, b2 /∈ T1. In the following, we show that a2 ∈ F1, and
the other one can be handled similarly. Suppose a2 /∈ F1. Hence, a2 ∈ F1

and, thus, NG({x, x3, a}) ∩ F1 = {a1}. It follows that |F1| = {a1, b1}. Let
T1 = {x, x3, x4, a, b, u}. Then we see that NG(a1) = {x3, a, b1, u} and NG(b1) =
{x4, b, a1, u}. Note that u ̸= b2, for otherwise, {x1, x2, a2, b2} is a nontrivial 4-cut
of G.

We next show that either aa2 or bb2 is quasi 5-contractible, which contradicts
that G is a contraction critical quasi 5-connected graph. Suppose that neither aa2
nor bb2 is quasi 5-contractible. Clearly, δ(G/aa2) = 4. Then Lemma 5 assures
us that G/aa2 is 4-connected. Let C be a quasi fragment with respect to aa2
and let R = NG(C), C = G − (R ∪ C). Then x3 ∈ R and we may assume that
x2 ∈ C, a1 ∈ C without loss of generality. If NG(x3)∩C = {x2}, then we see that
x ∈ R since xx2 ∈ E(G). Furthermore, NG({a, x3}) = {x2}. This implies that
|C| = 2. Let C = {x2, z}. Then dG(z) = 4 and zx ∈ E(G), which contradicts
to (∗). Thus {x, x4} ∩ C ̸= ∅. Then NG({a, x3}) ∩ C = {a1}, which implies that
|C| = 2. Let C = {a1, w}. Then we see that the vertex w satisfies dG(w) = 4 and
{a1, a2} ⊆ NG(w). So we must have w = u. By similar argument for bb2, we can
deduce that ub2 ∈ E(G). Thus, NG(u) = {a1, a2, b1, b2}, and thus, {x1, x2, a2, b2}
is a nontrivial 4-cut of G since |V (G)| ≥ 14, a contradiction.
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By Claim 2, we see that NG({x, x3, x4, a, b}) ∩ F1 = {x1, x2}. Hence, F1 =
{x1, x2}, for otherwise, (T1−{x, x3, x4, a, b})∪{x1, x2} is a 3-cut of G, a contradic-
tion. Let T1−{x, x3, x4, a, b} = {v}. Then we have that NG(x1) = {x, x2, x4, b, v}
and NG(x2) = {x, x1, x3, a, v}. Let G′ = G/bb2/b1x4/xx1. Clearly, δ(G

′) = 4.

Claim 3. G′ is 4-connected.

Proof. Assume, to the contrary, that G′ is not 4-connected, then G′ has a 3-
cut T ′ such that each component of G′ − T ′ has at least 2 vertices and |T ′ ∩
{A′, B′, C ′}| ≥ 2. Let T be the set in G corresponding to T ′ in G′. We first find
that T ′ ∩ {A′, B′, C ′} ≠ {A′, B′} and T ′ ∩ {A′, B′, C ′} ≠ {A′, C ′}, for otherwise,
T −{b} is a nontrivial 4-cut of G. Therefore, the set T ′ ∩ {A′, B′, C ′} is {B′, C ′}
or {A′, B′, C ′}. In the former, T − {x} forms a nontrivial 4-cut of G. In the
latter, T − {b, x4, x} forms a 3-cut of G. Both of which contradict the fact that
G is quasi 5-connected.

Since G′ is not quasi 5-connected, there exists a nontrivial 4-cut T ′
2 of G′ by

Claim 3. Furthermore, |T ′
2∩{A′, B′, C ′}| ≥ 1. Let F ′

2 be a T ′
2-fragment of G′ and

let F ′
2 = G′ − (T ′

2 ∪ F ′
2). Let F2, T2, F2 be the sets in G corresponding to F ′

2, T
′
2,

F ′
2 in G′. Note that the three vertices A′, B′, C ′ are adjacent to each other in G′.

Hence, we may assume that the vertices in {A′, B′, C ′}−T ′
2 belong to F ′

2 without
loss of generality.

Claim 4. |T ′
2 ∩ {A′, B′, C ′}| ≠ 1.

Proof. Suppose |T ′
2 ∩ {A′, B′, C ′}| = 1. Then |T2| = 5 and |F2| ≥ 4. If T ′

2 ∩
{A′, B′, C ′} = {A′}, then we see that NG(b)∩F2 = ∅, which implies that T2−{b}
is a nontrivial 4-cut of G, a contradiction. If T ′

2 ∩{A′, B′, C ′} = {B′}, we can get
that T2 − {x4} is a nontrivial 4-cut of G.

Therefore, T ′
2 ∩ {A′, B′, C ′} = {C ′}. If NG(x) ∩ F2 = ∅, then T2 − {x} is

a nontrivial 4-cut of G, a contradiction. Hence, x3 ∈ T2 and x2 ∈ F2 since
x3x4 ∈ E(G). If NG(x3) ∩ F2 = {x4}, then (T2 − {x, x3}) ∪ {x4} is a nontrivial
4-cut of G. Hence, a1 ∈ F2 and a ∈ T2 since {ax2, aa1} ⊆ E(G). Note that
NG({x, x3}) ∩ F2 = {x2}, which implies that NG(a) ∩ F2 ̸= {x2}. Otherwise,
(T2 − {x, x3, a}) ∪ {x2} is a 3-cut of G, which is absurd. So a2 ∈ F2. It follows
NG({x, x3, a}) ∩ F2 = {x4, a1}. This implies (T2 − {x, x3, a}) ∪ {x4, a1} is a
nontrivial 4-cut of G, a contradiction.

Claim 5. |T ′
2 ∩ {A′, B′, C ′}| ≠ 2.

Proof. Suppose |T ′
2 ∩ {A′, B′, C ′}| = 2. Then |T2| = 6 and |F2| ≥ 3. If

T ′
2 ∩ {A′, B′, C ′} = {A′, B′}, then x3 ∈ F2 ∩ T2 since xx3 ∈ E(G). This im-

plies NG({b, x4}) ∩ F2 = ∅, and hence T2 − {b, x4} is a nontrivial 4-cut of G, a
contradiction.
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If T ′
2 ∩ {A′, B′, C ′} = {A′, C ′}, then we see that NG(b) ∩ F2 = ∅. If NG(x) ∩

F2 = ∅, then T2 − {b, x} is a nontrivial 4-cut of G, a contradiction. So, NG(x) ∩
F2 ̸= ∅. This implies x2 ∈ F2 and x3 ∈ T2 since x3x4 ∈ E(G). Since vx2 ∈ E(G),
we see that v ∈ F2∪T2. It follows NG({x, x1})∩F2 = {x4}. Then NG(x3)∩F2 ̸=
{x4}, for otherwise, (T2 − {x, x1, x3}) ∪ {x4} is a nontrivial 4-cut since |F2| ≥ 3.
Hence, a1 ∈ F2 and a ∈ T2 since ax2 ∈ E(G). Now, T2 = {b, b2, x, x1, x3, a}
and v ∈ F2. Then we see that |F2| = 2, for otherwise, {a, v, b2} is a 3-cut of G.
However, we observe that dG(v) < 4 since va /∈ E(G), a contradiction.

Therefore, T ′
2∩{A′, B′, C ′} = {B′, C ′}. If {x2, x3} ⊆ F2∪T2, thenNG({x4, x})

∩ F2 = ∅, which implies that T2 − {x4, x} is a nontrivial 4-cut of G, a contra-
diction. Then {x2, x3} ∩ F2 ̸= ∅, and then {x2, x3} ⊆ T2 ∪ F2 since x2x3 ∈
E(G). If NG(x1) ∩ F2 = {b}, then NG({x, x1, x4}) ∩ F2 = {b}, and then,
(T2−{x, x1, x4})∪{b} is a nontrivial 4-cut of G. Thus, v ∈ F2, and thus, x2 ∈ T2

and x3 ∈ F2. If a /∈ F2, then NG({x, x1, x2, x4}) ∩ F2 = {x3}. It follows that
(T1 − {x, x1, x2, x4}) ∪ {x3} is a 3-cut of G, a contradiction. Hence a ∈ F2. This
implies {a1, a2} ⊆ T2∪F2. Note that {b1, x, x1, x2, x4} ⊆ T2 and |T2| = 6, we have
{a1, a2} ∩ F2 ̸= ∅. It follows |F3| ≥ 3. Then we see that (T2 − {x, x1, x4}) ∪ {x3}
is a nontrivial 4-cut of G, a contradiction.

By Claims 4 and 5, we have {A′, B′, C ′} ⊆ T ′
2. Then |T2| = 7. Moreover, we

see that NG({b, x4, x}) ∩ F2 = ∅ or NG({b, x4, x}) ∩ F2 = ∅. This implies that
T2 − {b, x4, x} is a nontrivial 4-cut of G, a contradiction.

Now we are prepared to prove Theorem 3.

Proof of Theorem 3. If G has a quasi 5-contractible edge, Theorem 3 holds
immediately. Thus we assume that G is a contraction critical quasi 5-connected
graph. Let NG(x) = {x1, x2, x3, x4}. Without loss of generality, we suppose
{x1x2, x2x3, x3x4, x4x1} ⊆ E(G). For i = 1, 2, 3, 4, dG(xi) ≥ 5 by (∗). Thus
Lemma 5 assures us that G/xxi is 4-connected.

For i = 1, 2, let Fi be quasi fragments with respect to xxi. Let Ti = NG(Fi)
and Fi = V (G) − (Fi ∪ Ti). Then x3 ∈ T1 and x4 ∈ T2. Without loss of
generality, we may assume x2 ∈ F1, x4 ∈ F1 and x1 ∈ F2, x3 ∈ F2. Thus,
x ∈ T1 ∩ T2, x1 ∈ T1 ∩ F2, x2 ∈ F1 ∩ T2, x3 ∈ T1 ∩ F2 and x4 ∈ F1 ∩ T2. Let
X1 = (T1 ∩ F2) ∪ (T1 ∩ T2) ∪ (F1 ∩ T2), X2 = (T1 ∩ F2) ∪ (T1 ∩ T2) ∪ (F1 ∩ T2),
X3 = (F1 ∩ T2)∪ (T1 ∩ T2)∪ (T1 ∩F2) and X4 = (F1 ∩ T2)∪ (T1 ∩ T2)∪ (T1 ∩F2).

Claim 1. There exist i ∈ {1, 2, 3, 4} such that |Xi| ≤ 4.

Proof. To the contrary, we assume that for all i = 1, 2, 3, 4, |Xi| ≥ 5. The fact
|X1|+ |X3| = |X2|+ |X4| = 10 shows that |X1| = |X2| = |X3| = |X4| = 5. Since
NG(x) ∩ (F1 ∩ F2) = ∅, we see that |F1 ∩ F2| ≤ 1, for otherwise, X1 − {x} is
a nontrivial 4-cut of G, a contradiction. Similarly, we have that |F1 ∩ F2| ≤ 1,
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|F1 ∩ F2| ≤ 1 and |F1 ∩ F2| ≤ 1. It follows |V (G)| ≤ 13, which contradicts the
fact that |V (G)| ≥ 14.

Without loss of generality, we may assume |X3| ≤ 4. SinceNG(x)∩(F1∩F2) =
∅, F1 ∩ F2 = ∅.

Claim 2. |F1 ∩ T2| = |T1 ∩ F2| = 1.

Proof. We only show that |F1 ∩ T2| = 1, and the other one can be handled
similarly. Suppose |F1∩T2| ≥ 2. Then |F1∩T2| = 2 and |T1∩T2| = |T1∩F2| = 1.
Hence, |F1 ∩ T2| = 2, which implies |X4| = 4. Since NG(x) ∩ (F1 ∩ F2) = ∅, we
see that F1 ∩ F2 = ∅. It follows |F2| = 1, a contradiction.

Claim 3. |F1 ∩ F2| = |F1 ∩ F2| = 1.

Proof. We only show that |F1 ∩ F2| = 1. By Claim 2, we see that |X4| = 5,
which implies that |F1 ∩ F2| ≤ 1 since NG(x) ∩ (F1 ∩ F2) = ∅. If F1 ∩ F2 = ∅,
then we find |F2| = 1, a contradiction. So |F1 ∩ F2| = 1.

Let F1 ∩ F2 = {a} and let F1 ∩ F2 = {b}. Note that |T1 ∩ T2| ≤ 2 by Claim
1. If |T1 ∩ T2| = 2, then we see that G has the subgraph shown in Figure 2(a). If
|T1 ∩ T2| = 1, then G has the subgraph shown in Figure 2(b). Then Theorem 3
holds by Lemmas 9, 10 and 11.
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