DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2023): 0.5

5-year Journal Impact Factor (2023): 0.6

CiteScore (2023): 2.2

SNIP (2023): 0.681

Discussiones Mathematicae Graph Theory

Article in press


Authors:

H. Yang

Hong Yang

Xinjiang University

email: honger9506@126.com

J. Liu

Juan Liu

Guizhou University of Finance and Economics

email: liujuan1999@126.com

J.X. Meng

Jixiang Meng

Xinjiang
University

email: mjx@xju.edu.cn

0000000168538163

Title:

Antidirected spanning trail of digraphs with $\alpha_{2}$-stable number 3

PDF

Source:

Discussiones Mathematicae Graph Theory

Received: 2023-12-13 , Revised: 2024-08-16 , Accepted: 2024-08-16 , Available online: 2024-09-13 , https://doi.org/10.7151/dmgt.2560

Abstract:

Let $D$ be a digraph with vertex set $V(D)$ and arc set $A(D)$. An antidirected spanning trail of $D$ is a spanning trail in which consecutive arcs have opposite directions and each arc of $D$ occurs at most once. Let $\alpha_{2}(D) = \max\{|X|: X \subseteq V(D)$ and $D[X]$ has no 2-cycle$\}$ be the $\alpha_{2}(D)$-stable number. When $\alpha_{2}(D)=2$, we have demonstrated that every weakly connected digraph $D$ with $\alpha_{2}(D)=2$ has an antidirected Hamiltonian path, and have provided a necessary and sufficient condition for strongly connected digraph $D$ with $\alpha_{2}(D)=2$ to have an antidirected Hamiltonian cycle. In this paper, we first determine two families $\mathcal{D}_{1}$ and $\mathcal{D}_{2}$ of well-characterized strongly connected digraphs with $\alpha_{2}$-stable number 3 such that, for any strongly connected digraph $D\in \mathcal{D}_{1}\cup \mathcal{D}_{2}$, $D$ does not have an antidirected spanning trail. And, we further prove that every strongly connected digraph $D$ with $\alpha_{2}(D)=3$ has an antidirected spanning trail if and only if $D\not\in \mathcal{D}_{1}\cup \mathcal{D}_{2}$.

Keywords:

$\alpha_{2}$-stable set, antidirected spanning trail, complete graph, digraph

References:

  1. J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications, 2nd Edition (Springer, London, 2009).
    https://doi.org/10.1007/978-1-84800-998-1
  2. J.A. Bondy and U.S.R. Murty, Graph Theory, Grad. Texts in Math. 244 (Springer-Verlag, London, 2008).
    https://doi.org/10.1007/978-1-84628-970-5
  3. A.H. Busch, M.S. Jacobson, T. Morris, M.J. Plantholt and S.K. Tipnis, Improved sufficient conditions for the existence of anti-directed Hamiltonian cycles in digraphs, Graphs Combin. 29 (2013) 359–364.
    https://doi.org/10.1007/s00373-011-1116-0
  4. M.C. Cai, A counterexample to a conjecture of grant, Discrete Math. 44 (1983) 111.
    https://doi.org/10.1016/0012-365X(83)90010-9
  5. N. Chakroun and D. Sotteau, Chvátal-Erdős theorem for digraphs, Cycles and Rays, G. Hahn, G. Sabidussi and R.E. Woodrow (Ed(s)), NATO ASI Series 301, (Springer, Dordrecht, 1990) 75–86.
    https://doi.org/10.1007/978-94-009-0517-7\_7
  6. B. Chen, S. Gerke, G. Gutin, H. Lei, H. Parker-Cox and Y.C. Zhou, On the $k$-anti-traceability Conjecture (2024).
    arXiv: 2403.19312
  7. V. Chvátal and P. Erdős, A note on Hamiltonian circuits, Discrete Math. 2 (1972) 111–113.
    https://doi.org/10.1016/0012-365X(72)90079-9
  8. B. Grünbaum, Antidirected Hamiltonian paths in tournaments, J. Combin. Theory Ser. B 11 (1971) 249–257.
    https://doi.org/10.1016/0095-8956(71)90035-9
  9. P. Hell and M. Rosenfeld, Antidirected Hamiltonian paths between specified vertices of a tournament, Discrete Appl. Math. 117 (2002) 87–98.
    https://doi.org/10.1016/S0166-218X(01)00197-4
  10. B. Jackson and O. Ordaz, Chvátal-Erdős conditions for paths and cycles in graphs and digraphs. A survey, Discrete Math. 84 (1990) 241–254.
    https://doi.org/10.1016/0012-365X(90)90130-A
  11. V. Petrović, Antidirected Hamiltonian circuits in tournaments, in: Proc. 4th Yugoslav Seminar on Graph Theory, Novi Sad (1983) 259–269.
  12. M.J. Plantholt and S.K. Tipnis, Vertex-oriented Hamilton cycles in directed graphs, Electron. J. Combin. 16(1) (2009) #R115.
    https://doi.org/10.37236/204
  13. M. Rosenfeld, Antidirected Hamiltonian paths in tournaments, J. Combin. Theory Ser. B 12 (1972) 93–99.
    https://doi.org/10.1016/0095-8956(72)90035-4
  14. M. Rosenfeld, Antidirected Hamiltonian circuits in tournaments, J. Combin. Theory Ser. B 16 (1974) 234–242.
    https://doi.org/10.1016/0095-8956(74)90069-0
  15. C. Thomassen, Antidirected Hamilton circuits and paths in tournaments, Math. Ann. 201 (1973) 231–238.
    https://doi.org/10.1007/BF01427945
  16. H. Yang, J. Liu and J.X. Meng, Antidirected Hamiltonian paths and cycles of digraphs with $\alpha_{2}$-stable number $2$, Graphs Combin. 39 (2023) 73.
    https://doi.org/10.1007/s00373-023-02667-3

Close