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Abstract

Let D be a digraph with vertex set V (D) and arc set A(D). An antidi-
rected spanning trail of D is a spanning trail in which consecutive arcs have
opposite directions and each arc of D occurs at most once. Let α2(D) =
max{|X| : X ⊆ V (D) and D[X] has no 2-cycle} be the α2(D)-stable num-
ber. When α2(D) = 2, we have demonstrated that every weakly connected
digraph D with α2(D) = 2 has an antidirected Hamiltonian path, and have
provided a necessary and sufficient condition for strongly connected digraph
D with α2(D) = 2 to have an antidirected Hamiltonian cycle. In this paper,
we first determine two families D1 and D2 of well-characterized strongly
connected digraphs with α2-stable number 3 such that, for any strongly
connected digraph D ∈ D1 ∪ D2, D does not have an antidirected spanning
trail. And, we further prove that every strongly connected digraph D with
α2(D) = 3 has an antidirected spanning trail if and only if D ̸∈ D1 ∪ D2.

Keywords: α2-stable set, antidirected spanning trail, complete graph, di-
graph.
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1. Introduction

For standard terminology and notation in graph theory and digraph theory, not
specifically defined in this paper, the reader is referred to [2] for graphs and [1]
for digraphs. All graphs G = (V (G), E(G)) with vertex set V (G) and edge set
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E(G), and all digraphsD = (V (D), A(D)) with vertex set V (D) and arc set A(D)
considered in this paper are finite, loopless and without parallel edges or arcs.
We use (x, y) to denote an arc oriented from a vertex x to a vertex y of D and
use xy to denote an edge in G incident with both vertices x and y. Sometimes,
we also use x→ y to denote an arc oriented from a vertex x to a vertex y of D.
A digraph D with n vertices is complete digraph if, for any two distinct vertices
x, y ∈ V (D), we have (x, y), (y, x) ∈ A(D), denoted by K∗

n.
We shall adopt the following notational convenience. For vertex subsets

X,Y ⊆ V (D), define

(X,Y )D = {(x, y) ∈ A(D) : x ∈ X, y ∈ Y } and [X,Y ]D = (X,Y )D ∪ (Y,X)D.

If X = {x} (respectively, Y = {y}), then we often use (x, Y )D (respectively,
(X, y)D) for (X,Y )D. Hence (x, y)D = ({x}, {y})D. For a vertex x ∈ V (D), let
N+

D (x) = {y ∈ V (D) : (x, y) ∈ A(D)} and N−
D (x) = {y ∈ V (D) : (y, x) ∈ A(D)}.

Thus, d+D(x) = |N
+
D (x)| and d−D(x) = |N

−
D (x)| are the out-degree and the in-degree

of vertex x in D, respectively. For vertex subset X ⊆ V (D), D −X denotes the
subdigraph of D whose vertex set is V (D) \X and whose arc set consists of all
arcs of D which have both end-vertices in V (D) \X. D[X] denotes the vertex
induced subdigraph of D induced by X whose vertex set is X and whose arc set
consists of all arcs of D which have both ending vertices in X. The corresponding
notation for graphs are similarly defined. In particular, for a graph G and vertex
subsets X,Y ⊆ V (G), [X,Y ]G = {xy ∈ E(G) : x ∈ X, y ∈ Y }.

Let D = (V (D), A(D)) be a digraph. An alternating sequence of vertices
and arcs in D, beginning and ending with vertices, is called a walk. If all arcs in
a walk are distinct, then the walk is called a trail, and if, in addition, the vertices
are also distinct, then the trail is a path. A path in which the beginning and
end-vertices are the same will be said to be cycle. A cycle that contains k arcs
is called a k-cycle. A trail (respectively, path) from a vertex x to a vertex y is
often called an (x, y)-trail (respectively, (x, y)-path). And we say that x and y
are the ending vertices of this trail (respectively, path). If a digraph D contains
a path which includes all the vertices of D, then the path is called a Hamiltonian
path of D. A cycle in D is a Hamiltonian cycle of D if the cycle contains all
vertices of D. D is Hamiltonian if D has a Hamiltonian cycle. A digraph D is
strongly connected if, for any two distinct vertices x and y of D, there exist an
(x, y)-walk and a (y, x)-walk in D. D is weakly connected if underlying graph
G(D) is connected, where the underlying graph G(D) of D is the graph obtained
from D by erasing all orientations on the arcs of D.

A digraph D is k-strongly connected if |V (D)| ≥ k + 1 and there exists no
vertex subset X1 of D with less than k vertices such that D−X1 is not strongly
connected, and a graph G is k-connected if |V (G)| ≥ k + 1 and there exists no
vertex subset X2 of G with less than k vertices such that G−X2 is not connected.
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The largest integer k such that digraph D is k-strongly connected is the vertex
connectivity of D (denoted by κ(D)), and the largest integer k such that graph
G is k-connected is the vertex connectivity of G (denoted by κ(G)). Let D be a
digraph and D be a digraph family. Digraph D is D-free if D does not have a
vertex induced subgraph isomorphic to a member in D.

For digraphs, we may consider the following definition. Given a digraph
D = (V (D), A(D)) and a vertex subset X ⊆ V (D), X is an α2(D)-stable set of
D if D[X] has no 2-cycles. Define α2(D) = max{|X| : X is an α2(D)-stable set
of D} to be the α2(D)-stable number. Readers interested in problems and results
on this subject can refer to the well structured survey of Jackson and Ordaz [10].
LetM2 andM3 denote the digraph families as depicted in Figure 1. Chakroun
and Sotteau [5] proved that every 2-strongly connected digraph with α2(D) ≤ 2
is Hamiltonian except if D is isomorphic to a digraph of the family M2, and
every 3-strongly connected digraph with α2(D) ≤ 3 is Hamiltonian except if D is
isomorphic to a digraph of the familyM3. It is easy to check that every digraph
in families M2 and M3 has a hamiltonian path. Hence, it is routine to deduce
that if α2(D) ≤ κ(D) and α2(D) ≤ 3, then D has a Hamiltonian path.

K∗
p K∗

q K∗
r K∗

s K∗
t

M2 M3

Figure 1. Digraph familiesM2 andM3 with p, q ≥ 2, r, s, t ≥ 3 and p+ q ≥ 5.

The notion of an antidirected Hamiltonian path was introduced by Grünbaum
in [8] and defined as follows: a path in a digraph D = (V (D), A(D)) is an
antidirected path, provided that every two adjacent arcs of the path have opposing
orientations. An antidirected Hamiltonian path (respectively, cycle) in D is an
antidirected path (respectively, cycle) containing all vertices of D. Let x1 →
x2 ← · · ·xk be an antidirected Hamiltonian path of D, x1 is called a starting
vertex and xk is called a starting vertex (respectively, terminal vertex ) of this
path if k is odd (respectively, even).

There have been lots of investigations on antidirected Hamiltonian path and
cycle problems. The first result about antidirected Hamiltonian path was given
by Grünbaum [8], Grünbaum indicated concerning the existence of antidirected
Hamiltonian paths in tournaments and proved that except for T c

3 , T
c
5 and T c

7 (see
Figure 2), every tournament contains an antidirected Hamiltonian path. In 1972,
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Rosenfeld [13] improved proof of Grünbaum’s theorem concerning the existence
of antidirected Hamiltonian paths in tournaments. And he further proved that
for every tournament T with n ≥ 12 vertices, there is an antidirected Hamiltonian
path starting at any vertex. In 1974, Rosenfeld [14] showed that every tournament
T with n = 2k ≥ 28 vertices has an antidirected Hamiltonian cycle, as conjectured
by Grünbaum [8]. In 1983, Petrović [11] proved that any even tournament with
at least 16 vertices has an antidirected Hamiltonian cycle, which was the best
result supporting this conjecture by far. In [16], we showed that every weakly
connected digraph with α2(D) = 2 has an antidirected Hamiltonian path. We
also gave a necessary and sufficient condition for a strongly connected digraph D
with α2(D) = 2 to have an antidirected Hamiltonian cycle. Additional researches
on antidirected Hamiltonian problem can be found in [3, 4, 6, 9, 11, 12, 15], among
others.

T c
3 T c

5 T c
7

Figure 2. Three distinct tournaments T c
3 , T

c
5 and T c

7 .

An antidirected trail in a digraph is a trail that alternates between forward
and backward arcs. If both the beginning vertex and end-vertex of an antidirected
trail are the same, then it is called an antidirected closed trail. A trail that starts
and ends with forward arcs and alternates between forward and backward arcs is
referred to as a forward antidirected trail. Similarly, a forward-backward antidi-
rected trail is a walk that begins with a forward arc and ends with a backward arc,
with no repeated arcs, and where the arcs alternate between forward and back-
ward directions. A backward-forward antidirected trail is defined analogously. If
an antidirected trail contains all vertices of a digraph, then the antidirected trail
is called antidirected spanning (ADS) trail of the digraph. An ADS trail with
beginning vertex and ending vertex being same, is called ADS closed trail of di-
graph. If x → x1 ← · · · y (respectively, x ← x1 → · · · y) is an ADS trail in D,
then x is also called a starting vertex (respectively, terminal vertex ). Both x and
y are called ending vertices of this antidirected trail.

The purpose of this paper is to seek a sufficient and necessary condition
for digraph D with α2(D) = 3 which has an ADS trail. The rest of the paper
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is arranged as follows. In section 2, we summarize and develop some of the
preliminaries that will be needed in the proofs. In section 3, we construct well-
characterized strongly connected digraph families D1 and D2, which are then
applied to show that every strongly connected digraph D with α2(D) = 3 has an
ADS trail if and only if D ̸∈ D1 ∪ D2.

2. Preliminaries

First, let us review the following results that will be applied later, and then
introduce additional findings that will support our arguments.

Theorem 1 [7]. Let G be a graph with n ≥ 3 vertices. If α(G) ≤ κ(G), then G
is Hamiltonian.

Theorem 2 [7]. Let G be a graph with n vertices and n ̸= 2. If α(G) ≤ κ(G)−1,
then for any two vertices x, y ∈ V (G), G contains a Hamiltonian path such that
x and y are ending vertices.

The proof of the following lemma is very similar to that of Lemma 1 in [16],
and hence we omit it.

Lemma 3. Let D be a complete digraph with n vertices. Then each of the fol-
lowing holds.

(i) D contains a forward ADS trail with x as the starting vertex and y as the
terminal vertex for any two distinct vertices x, y ∈ V (D) if and only if n ≥ 2.

(ii) D contains a forward-backward ADS trail with x and y as starting vertices
and contains a backward-forward ADS trail with x and y as terminal vertices
for any two distinct vertices x, y ∈ V (D) if and only if n ≥ 3.

(iii) D contains an ADS closed trail starting at x and contains an ADS closed
trail terminating at x for any vertex x ∈ V (D) if and only if n ̸= 2.

(iv) D contains a forward ADS trail with starting at x and terminating at x if
and only if n ≥ 3.

In the following, a special graph from the digraphD will be introduced, which
plays a key role in our arguments.

Definition 4. Given a digraph D = (V (D), A(D)), the graph GD of D is con-
structed as follows. The vertex set of GD is V (D) and two distinct vertices x and
y of GD are adjacent if and only if (x, y), (y, x) ∈ A(D).

A digraph D can be covered by k vertex-disjoint complete digraphs if V (D)
can be partitioned into k vertex-disjoint vertex subsets X1, X2, . . . , Xk such that
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D[Xi] is a complete digraph for any i ∈ {1, 2, . . . , k}. A graph G that can be
covered by k vertex-disjoint complete graphs is defined analogously. In [16], the
following result was presented.

Lemma 5 [16]. Let G be a connected graph with κ(G) < 2 and α(G) = 2. Then
G can be covered by two vertex-disjoint complete graphs.

3. Antidirected Spanning Trails in Digraphs with α2-Stable
Number 3

In this section, a sufficient and necessary condition will be provided for strongly
connected digraph with α2(D) = 3 to have an ADS trail. To complete our proof,
the following notation will be defined.

Let D be a digraph and GD be a graph defined as in Definition 4. We say
that T = (T, T ′, T ′′) is a spanning 3-tuple of mixed trails, if T is a trail of GD

with x and x′ as ending vertices, T ′′ is a trail of GD with y and y′ as end-vertices
and T ′ is an antidirected trail of D with x′ and y′ as end-vertices such that
V (T ) ∩ V (T ′) = {x′}, V (T ′) ∩ V (T ′′) = {y′}, V (T ) ∩ V (T ′′) = ∅ for |V (T ′)| ≥ 2
or V (T ) ∩ V (T ′′) = V (T ′) for |V (T ′)| = 1, and V (T ) ∪ V (T ′) ∪ V (T ′′) = V (D).

By the definition of GD, for any edge zz′ ∈ E(GD), we have that (z, z
′), (z′, z)

∈ A(D). Thus, for any trail z1z2 · · · zk of GD, D has an antidirected trail with
z1 as the starting vertex which contains all vertices in {z1, z2, . . . , zk}, and has
an antidirected trail with z1 as the terminal vertex which contains all vertices in
{z1, z2, . . . , zk}. Therefore, we conclude the following.

If T is a spanning 3-tuple of mixed trails, then D contains an ADS trail.(1)

Especially, if |V (T ′)| = 1, then T ∪ T ′′ is a spanning trail of GD. Thus, by
(1), we also conclude that as follows.

If GD contains a spanning trail, then D contains an ADS trail.(2)

We now consider two special digraph families of digraphs, referred to as D1

and D2. Let D1 = {Di : 1 ≤ i ≤ 16} ∪ {C3} denote the collection of all digraphs
depicted as in Figure 3.

Definition 6. LetH1, H2 andH3 be three vertex-disjoint complete digraphs with
V (H2) = {h2, h′2}. We construct a digraph family D2 such that every digraphD ∈
D2 satisfies V (D) = V (H1)∪V (H2)∪V (H3), (V (H1), V (H2))D = (V (H1), h2)D,
(V (H2), V (H3))D = (h2, V (H3))D, (V (H3), V (H2))D = (V (H3), h

′
2)D, (V (H2),

V (H1))D = (h′2, V (H1))D and [V (H1), V (H3)]D = ∅ (see Figure 4).
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D1 D2 D3 D4

D5 D6 D7 D8

D9 D10 D11 D12

D13 D14 D15 D16

Figure 3. The sixteen digraphs D1, D2, . . . , D16.

h2

h′2

H1 H2 H3

Figure 4. Digraph family D2.

Let D be a digraph. By the definition of ADS trail, if D contains an
ADS trail T , then all arcs in ADS trail T of D are distinct, and there exist
at most two distinct vertices x, y ∈ V (D) such that max{d+D(x), d

−
D(x)} = 1 and

max{d+D(y), d
−
D(y)} = 1. Thus, every digraph in {D1, D2, D3, D4, D9, D10, D13,
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D14, D15, D16} does not contain an ADS trail. It is also not difficult to check that
every digraph in (D1 − {D1, D2, D3, D4, D9, D10, D13, D14, D15, D16}) ∪ D2 does
not contain an ADS trail. Therefore, we conclude the following.

Every digraph D ∈ D1 ∪ D2 does not contain an ADS trail.(3)

Let us state a proposition that is a particular case of Theorem 9 and is useful
to make the proof of the theorem more clear.

Proposition 7. Let D be a strongly connected digraph with α2(D) = 3 and
D ̸∈ D1 ∪ D2. If D can be covered by three vertex-disjoint complete digraphs
H1, H2 and H3, then D contains an ADS trail.

Proof. Let D be a strongly connected digraph with α2(D) = 3 and D ̸∈ D1∪D2,
and let us consider graph GD of D defined as in Definition 4. Clearly, α2(D) =
α(GD) = 3. Assume that D can be covered by three vertex-disjoint complete
digraphs H1, H2 and H3. Then GD[V (Hi)] is a complete graph for any i with
i ∈ {1, 2, 3}, denoted by H ′

i. By contradiction, assume that D does not con-
tain an ADS trail. Since D is strongly connected, we may assume that ei-
ther (V (H1), V (H2))D ̸= ∅, (V (H2), V (H3))D ̸= ∅ and (V (H3), V (H1))D ̸=
∅, or (V (H1), V (H2))D ̸= ∅, (V (H2), V (H3))D ̸= ∅, (V (H3), V (H2))D ̸= ∅,
(V (H2), V (H1))D ̸= ∅ and [V (H1), V (H3)]D = ∅. Next, we will consider the
following two cases.

Case 1. (V (H1), V (H2))D ̸= ∅, (V (H2), V (H3))D ̸= ∅ and (V (H3), V (H1))D
̸= ∅.

Then we have the following Claim.

Claim 8. (i) There exist vertices hi ∈ V (Hi) for any i ∈ {1, 2, 3} such that
(V (H1), V (H2))D = {(h1, h2)}, (V (H2), V (H3))D = {(h2, h3)} and (V (H3),
V (H1))D = {(h3, h1)}.

(ii) |V (H)i| ≤ 2 for any i with i ∈ {1, 2, 3} and there exists a complete digraph
Hi′ with i′ ∈ {1, 2, 3} such that |V (Hi′)| = 2.

(iii) For any vertex h′i ∈ V (Hi) \ {hi}, (h′i, hi+2), (hi−2, h
′
i) ̸∈ A(D) (consider

module 3).

Proof. If there exists a complete digraph, says H2, and two distinct vertices
h21, h22 ∈ V (H2) such that (V (H1), h21)D ̸= ∅ and (h22, V (H3))D ̸= ∅, then let
arcs (h11, h21) ∈ (V (H1), h21)D and (h22, h31) ∈ (h22, V (H3))D. It is clear that
H ′

1 contains a Hamiltonian path with h11 as the ending vertex, denoted by P 1
h11

,
and H ′

3 contains a Hamiltonian path with h31 as the end-vertex, denoted by P 3
h31

.
It follows by Lemma 3(i) that H2 contains a forward ADS trail with h22 as the
starting vertex and h21 as the terminal vertex, denoted by h22 → · · · → h21.
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Thus, (P 1
h11

, h11 → h21 ← · · · ← h22 → h31, P
3
h31

) is a spanning 3-tuple of mixed
trails, and so by (1), D contains an ADS trail, a contradiction. This proves (i).

By (i), assume that there exist vertices hi ∈ V (Hi) for any i with i ∈ {1, 2, 3}
such that (V (H1), V (H2))D = {(h1, h2)}, (V (H2), V (H3))D = {(h2, h3)} and
(V (H3), V (H1))D = {(h3, h1)}. It is clear that H ′

i contains a Hamiltonian path
with hi as the end-vertex, denoted by P i

hi
for any i with i ∈ {1, 2, 3}.

To prove (ii). If there exists a complete digraph, saysH3, such that |V (H3)| ≥
3, then by Lemma 3 (iv), H3 contains a forward ADS trail such that starting at h3
and terminating at h3, denoted by h3 → · · · → h3. Thus, (P

2
h2
, h2 → h3 ← · · · ←

h3 → h1, P
1
h1
) is a spanning 3-tuple of mixed trails, and so by (1), D contains an

ADS trail, a contradiction. Hence for any Hi with i ∈ {1, 2, 3}, |V (Hi)| ≤ 2. If
|V (H1)| = |V (H2)| = |V (H3)| = 1, then, as D is C3-free, we may assume that
(h1, h3) ∈ A(D). Thus, h3 ← h1 → h2 is an ADS trail of D, a contradiction.
Hence (ii) holds.

To prove (iii). If there exists a vertex h′j ∈ V (Hj) \ {hj} for some j with
j ∈ {1, 2, 3} such that (h′j , hj+2) ∈ A(D) (consider module 3), then by Lemma
3(i), Hj contains a forward ADS trail with h′j as the starting vertex and hj as

the terminal vertex, denoted by h′j → · · · → hj . Thus, (P j+2
hj+2

, hj+2 → hj ←
· · · ← h′j → hj+2 ← hj+1, P

j+1
hj+1

) is a spanning 3-tuple of mixed trails, and

so by (1), D contains an ADS trail, a contradiction. If there exists a vertex
h′j′ ∈ V (Hj′) \ {hj′} for some j′ with j′ ∈ {1, 2, 3} such that (hj′−2, h

′
j′) ∈ A(D)

(consider module 3), then by Lemma 3(i), Hj′ contains a forward ADS trail
with hj′ as the starting vertex and h′j′ as the terminal vertex, denoted by hj′ →
· · · → h′j′ . Thus, (P j′+2

hj′+2
, hj′+2 ← hj′−2 → h′j′ ← · · · ← hj′ → hj′−2, P

j′−2
hj′−2

) is

a spanning 3-tuple of mixed trails, and so by (1), D contains an ADS trail, a
contradiction. This proves (iii) and completes the proof of Claim 8. □

By Claim 8(ii), without loss of generality, we assume that |V (H3)| = 2. Let
V (H3) = {h3, h′3}. Assume first that |V (H1)| = 2 and |V (H2)| = 2. Let V (H1) =
{h1, h′1} and V (H2) = {h2, h′2}. If there exist two distinct integers i1, i2 ∈ {1, 2, 3}
such that (hi1 , hi1−1), (h

′
i2
, h′i2−1)D ∈ A(D) (consider module 3), then assume that

(h′1, h
′
3) ∈ A(D). Thus, h′2 ← h2 → h1 ← h′1 → h′3 ← h3 or h1 ← h′1 → h′3 ←

h3 → h2 ← h′2 is an ADS trail ofD, a contradiction. Therefore, for any integer i ∈
{1, 2, 3} (consider module 3), if (hi, hi−1) ∈ A(D), then (h′i+1, h

′
i), (h

′
i+2, h

′
i+1) ̸∈

A(D), and if (h′i, h
′
i−1) ∈ A(D), then (hi+1, hi), (hi+2, hi+1) ̸∈ A(D), and so by

Claim 8(i) and (iii), D ∈ {D1, D2, . . . , D8}, contrary to D ̸∈ D1.

Assume now that |V (H1)| = 1. It is clear that H2 contains an ADS trail
with h2 as the starting vertex, denoted by h2 → · · ·, and contains an ADS
trail with h2 as the terminal vertex, denoted by h2 ← · · ·. If (h1, h3) ∈ A(D),
then h′3 → h3 ← h1 → h2 ← · · · is an ADS trail of D, a contradiction. If
(h2, h1) ∈ A(D), then h′3 ← h3 → h1 ← h2 → · · · is an ADS trail of D, a
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contradiction. Hence (h1, h3), (h2, h1) ̸∈ A(D), and so by Claim 8(i) and (iii), the
out-degree and in-degree of h1 are 1 in D. Again by Claim 8(i) and (iii), we have
that (h2, h

′
3), (h

′
3, h2) ̸∈ A(D) and if |V (H2)| = 2, choose h′2 ∈ V (H2) \ {h2}, then

(h′2, h3), (h3, h
′
2), (h

′
2, h

′
3) ̸∈ A(D). As D is {D9, D10, D11, D12, D13}-free, we have

that |V (H2)| = 1 and (h3, h2) ∈ A(D). Thus, h′3 ← h3 → h2 ← h1 is an ADS
trail of D, a contradiction.

Finally, assume that |V (H1)| = 2 and |V (H2)| = 1. Let V (H1) = {h1, h′1}.
If (h2, h1) ∈ A(D), then h′3 → h3 ← h2 → h1 ← h′1 is an ADS trail of D; if
(h3, h2) ∈ A(D), then h′3 ← h3 → h2 ← h1 → h′1 is an ADS trail of D. In both
cases, a contradiction occurs. Hence (h2, h1), (h3, h2) ̸∈ A(D) and by Claim 8(i)
and (iii), the out-degree and in-degree of h2 both are 1 in D. Again by Claim
8(i) and (iii), we have (h1, h

′
3), (h

′
3, h1), (h3, h

′
1), (h

′
3, h

′
1), (h

′
1, h3) ̸∈ A(D), and so

D ∈ {D9, D10, D11, D12}, contrary to D ̸∈ D1.

Case 2. (V (H1), V (H2))D ̸= ∅, (V (H2), V (H3))D ̸= ∅, (V (H3), V (H2))D ̸= ∅,
(V (H2), V (H1))D ̸= ∅ and [V (H1), V (H3)]D = ∅.

If there exist two distinct vertices h21, h22 ∈ V (H2) such that (V (H1), h21)D ̸=
∅ and (h22, V (H3))D ̸= ∅, or (V (H3), h21)D ̸= ∅ and (h22, V (H1))D ̸= ∅, then we,
without loss of generality, assume that (V (H1), h21)D ̸= ∅, (h22, V (H3))D ̸= ∅
and (h11, h21), (h22, h31) ∈ A(D) with h11 ∈ V (H1) and h31 ∈ V (H3). It is clear
that H ′

1 contains a Hamiltonian path with h11 as the end-vertex, denoted by P 1
h11

,
and H ′

3 contains a Hamiltonian path with h31 as the end-vertex, denoted by P 3
h31

.
It follows by Lemma 3(i) that H2 contains a forward ADS trail with h22 as the
starting vertex and h21 as the terminal vertex, denoted by h22 → · · · → h21.
Thus, (P 1

h11
, h11 → h21 ← · · · ← h22 → h31, P

3
h31

) is a spanning 3-tuple of mixed
trails, and so by (1), D contains an ADS trail, a contradiction.

Hence assume that there exist two vertices h23, h24 ∈ V (H2) such that
(V (H1), V (H2))D = (V (H1), h23)D, (V (H2), V (H3))D = (h23, V (H3))D, (V (H3),
V (H2))D = (V (H3), h24)D and (V (H2), V (H1))D = (h24, V (H1))D. Let (h12, h23)
∈ (V (H1), h23)D and (h32, h24) ∈ (V (H3), h24)D with h12 ∈ V (H1) and h32 ∈
V (H3). It is clear that H ′

1 contains a Hamiltonian path with h12 as the end-
vertex, denoted by P 1

h12
, and H ′

3 contains a Hamiltonian path with h32 as the
end-vertex, denoted by P 3

h32
. If |V (H2)| ̸= 2, then by Lemma 3(ii) or (iii), H2

contains a backward-forward ADS trail with h23 and h24 as terminal vertices,
denoted by h23 ← · · · → h24. Thus, (P 1

h12
, h12 → h23 ← · · · → h24 ← h32, P

3
h32

)
is a spanning 3-tuple of mixed trails, and so by (1), D contains an ADS trail, a
contradiction.

Hence assume that |V (H2)| = 2. As D ̸∈ D2, we have h23 = h24. Let
h25 ∈ V (H2) \ {h23}. Since D is {D14, D15, D16}-free, we have that there exists
a complete digraph, says H1, such that either |V (H1)| ≥ 3 or, |V (H1)| = 2
and for any vertex h1 ∈ V (H1), [h1, V (H2)]D ̸= ∅. If |V (H1)| ≥ 3, then let
(h23, h13) ∈ (h23, V (H1))D. By Lemma 3(i) or (iv), H1 contains a forward ADS
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trail with h12 as the starting vertex and h13 as the terminal vertex, denoted by
h12 → · · · → h13. Thus, (h25h23, h23 → h13 ← · · · ← h12 → h23 ← h32, P

3
h32

)
is a spanning 3-tuple of mixed trails, and so by (1), D contains an ADS trail, a
contradiction. If |V (H1)| = 2 and for any vertex h1 ∈ V (H1), [h1, V (H2)]D ̸=
∅, then assume that V (H1) = {h′1, h′′1} such that (h′1, h23), (h23, h

′′
1) ∈ A(D)

as (V (H1), V (H2))D = (V (H1), h23)D and (V (H2), V (H1))D = (h23, V (H1))D.
Thus, (h25h23, h23 → h′′1 ← h′1 → h23 ← h32, P

3
h32

) is a spanning 3-tuple of mixed
trails, and so by (1), D contains an ADS trail, a contradiction. This proves the
theorem.

Theorem 9. Let D be a strongly connected digraph with α2(D) = 3. Then D
contains an ADS trail if and only if D ̸∈ D1 ∪ D2.

Proof. If D ∈ D1 ∪ D2, then by (3), D does not contain an ADS trail. Hence
assume that D ̸∈ D1 ∪ D2, we want to prove that D contains an ADS trail. Let
D be a strongly connected digraph with α2(D) = 3 and let us consider graph GD

of D defined as in Definition 4. Clearly, α2(D) = α(GD) = 3. As α2(D) = 3,
we have |V (D)| = |V (GD)| ≥ 3. If κ(GD) ≥ 3, then by Theorem 1, GD has a
Hamiltonian cycle, and hence by (2), D contains an ADS trail. Assume now that
κ(GD) ≤ 2. Let S be a minimum vertex cut of GD. Then |S| ≤ 2 and GD−S has
at least two connected components and one of the them, says K, is a complete
graph since α(GD) = 3.

Let H = GD − S − V (K). We have α(H) ≤ 2. Otherwise, if α(H) ≥ 3, then
let {h1, h2, h3} be an independent set of H and let k1 ∈ V (K) be an arbitrary
vertex. Since K and H are connected components of GD − S, we have that
h1k1, h2k1, h3k1 ̸∈ E(GD). Thus {h1, h2, h3, k1} is an independent set of GD,
contrary to α(GD) = 3.

If α(H) = 1, then H is complete graph, and so H contains a Hamiltonian
cycle orG is an edge; if α(H) = 2 and κ(H) ≥ 2, then |V (H)| ≥ 3 and by Theorem
1, H contains a Hamiltonian cycle. In both cases above, either H contains a
Hamiltonian cycle or G is an edge. If H contains a Hamiltonian cycle, then let
C=h1h2 · · ·hn2h1 be a Hamiltonian cycle of H and let Ch1hn2

= h1h2 · · ·hn2 ; if
H is an edge, then let h1h2 ∈ E(H).

First, we investigate the case in which |S| = 0. Then [V (K), V (H)]D ̸= ∅ as
D is strongly connected. Without loss of generality, assume that (V (K), V (H))D
̸= ∅ and (k, h1) ∈ (V (K), V (H))D as the case when (V (H), V (K))D ̸= ∅ can
be justified by a similar argument. It is clear that K contains a Hamiltonian
path with k as the end-vertex, denoted by Pk. Thus, (Pk, k → h1, Ch1hn2

) or
(Pk, k → h1, h1h2) can serve as a spanning 3-tuple of mixed trails. It follows by
(1) that D contains an ADS trail.

We now investigate the case in which |S| = 1. Let S = {s}. Since S is a
minimum vertex cut of GD, we have [V (K), s]GD

̸= ∅ and [V (H), s]GD
̸= ∅, says
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ks, h1s ∈ E(GD). It is clear that K contains a Hamiltonian path with k as the
end-vertex, denoted by Pk. Thus, Pk ∪ ksh1 ∪ Ch1hn2

or Pk ∪ ksh1 ∪ h1h2 can
serve as a Hamiltonian path of GD. By (2), D contains an ADS trail.

Finally, we investigate the case in which |S| = 2. Then κ(GD) = 2. Let
S = {s1, s2}. As S is a minimum vertex cut of GD, we have that there exist
edges hℓs1, hℓ′s2, k1s1, k2s2 ∈ E(GD) with hℓ, hℓ′ ∈ V (H) and k1, k2 ∈ V (K) such
that hℓ ̸= hℓ′ if |V (H)| ≥ 2 and k1 ̸= k2 if |V (K)| ≥ 2. It follows by Theorem
2 that K contains a Hamiltonian path Pk1k2 with k1 and k2 as end-vertices.
Thus, s1k1 ∪ Pk1k2 ∪ k2s2hℓ′hℓ′+1 · · ·hn2h1 · · ·hℓ′−1 or s1k1 ∪ Pk1k2 ∪ k2s2hℓ′hℓ is
a Hamiltonian path of GD, and so by (2), D contains an ADS trail.

So let us now assume that α(H) = 2 and κ(H) ≤ 1. Then by Lemma 5, H
can be covered by two vertex-disjoint complete graphs, denoted by H1 and H2.
If |S| = 0, then GD can be covered by three vertex-disjoint complete graphs K,
H1 and H2, and so D can be covered by three vertex-disjoint complete digraphs.
It follows by Proposition 7 that D contains an ADS trail. In the remaining proof,
we assume that 1 ≤ |S| ≤ 2 and we will now divide the proof into several cases,
depending on the connectivity of H.

Case 1. κ(H) = 1. Then [V (H1), V (H2)]GD
̸= ∅. As α(H) = 2, we have

|V (H)| ≥ 3.

Subcase 1.1. |S| = 1. Let S = {s}. As S is a minimum vertex cut of GD,
we have [s, V (H)]GD

̸= ∅ and [s, V (K)]GD
̸= ∅. If GD[K ∪ S] is a complete

graph, then GD can be covered by three vertex-disjoint complete graphs, and so
D can be covered by three vertex-disjoint complete digraphs. By Proposition 7,
D contains an ADS trail. Hence assume that GD[K ∪S] is not a complete graph.
Let sk1 ∈ [s, V (K)]GD

. It is clear that K contains a Hamiltonian path with k1
as the end-vertex, denoted by Pk1 .

If there exist Hi with i ∈ {1, 2} and three distinct vertices hi1, hi2 ∈ V (Hi)
and h(3−i)1 ∈ V (H3−i) such that hi1h(3−i)1 ∈ [V (H1), V (H2)]GD

and hi2s ∈
[V (Hi), s]GD

, then Hi contains a Hamiltonian path P i
hi1hi2

with hi1 and hi2 as
end-vertices, and H3−i contains a Hamiltonian path with h(3−i)1 as the end-

vertex, denoted by P 3−i
h(3−i)1

. Thus, P 3−i
h(3−i)1

∪ h(3−i)1hi1 ∪ P i
hi1hi2

∪ hi2sk1 ∪ Pk1 is

a Hamiltonian path of GD, and so by (2), D contains an ADS trail.

Hence assume that there exist two distinct vertices h1 ∈ V (H1) and h2 ∈
V (H2) such that [V (H1), V (H2)]GD

= [h1, V (H2)]GD
, h1h2 ∈ [h1, V (H2)]GD

and
if |[h1, V (H2)]GD

| = 1, then [s, V (H)]GD
= [s, {h1, h2}]GD

; if |[h1, V (H2)]GD
| ≥ 2,

then [s, V (H)]GD
= [s, h1]GD

. Since [s, V (H)]GD
̸= ∅, we may assume that

h1s ∈ [s, V (H)]GD
. It is clear that H2 contains a Hamiltonian path with h2 as

the end-vertex, denoted by P 2
h2
. If |V (H1)| = 1, then P 2

h2
∪ h2h1sk1 ∪ Pk1 is a

Hamiltonian path of GD, and so by (2), D contains an ADS trail. If |V (H1)| ≥ 2,
then, as α(GD) = 3 and GD[K ∪ S] is not a complete graph, we have that
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|[h1, V (H2)]GD
| = 1, sh2 ∈ [s, V (H)]GD

and |V (H2)| = 1. It is clear that H1

contains a Hamiltonian path with h1 as the end-vertex, denoted by P 1
h1
. Thus,

P 1
h1
∪ h1h2sk1 ∪ Pk1 is a Hamiltonian path of GD, and so by (2), D contains an

ADS trail.

Subcase 1.2. |S| = 2. Then κ(GD) = 2. Let S = {s1, s2}. As S is a
minimum vertex cut of GD, we have that there exist edges h1s1, h2s2, k1s1, k2s2 ∈
E(GD) with h1, h2 ∈ V (H), k1, k2 ∈ V (K) and h1 ̸= h2 such that k1 ̸= k2 if
|V (K)| ≥ 2. Assume that h1 ∈ V (H1). If h2 ∈ V (H2), then it is clear that
H1 contains a Hamiltonian path with h1 as the end-vertex, denoted by P 1

h1
, H2

contains a Hamiltonian path with h2 as the end-vertex, denoted by P 2
h2
, and

K contains a Hamiltonian path Pk1k2 with k1 and k2 as end-vertices. Thus,
P 2
h2
∪ h2s2k2 ∪ Pk2k1 ∪ k1s1h1 ∪ P 1

h1
is a Hamiltonian path of GD, and so by (2),

D contains an ADS trail.
Hence assume that h2 ∈ V (H1). As [V (H1), V (H2)]GD

̸= ∅, we may assume
that there exists edge h11h21 ∈ [V (H1), V (H2)]GD

with h11 ̸= h1. It is clear that
H1 contains a Hamiltonian h11h1-path P 1

h11h1
, K contains a Hamiltonian path

Pk1k2 with k1 and k2 as end-vertices, and H2 contains a Hamiltonian path with
h21 as the end-vertex, denoted by P 2

h21
. Thus, P 2

h21
∪ h21h11 ∪ P 1

h11h1
∪ h1s1k1 ∪

Pk1k2∪k2s2 is a Hamiltonian path of GD, and so by (2), D contains an ADS trail.

Case 2. κ(H) = 0. Then [V (H1), V (H2)]GD
= ∅ and |V (H)| ≥ 2. If |S| = 1,

then, as α(GD) = 3, we have that GD[V (K)∪S] is a complete graph or GD[V (Hi)
∪ S] is a complete graph for some i with i ∈ {1, 2}. Thus, GD can be covered by
three vertex-disjoint complete graphs, and so D can be covered by three vertex-
disjoint complete digraphs. By Proposition 7, D contains an ADS trail.

Hence assume that |S| = 2. Then κ(GD) = 2. Let S = {s1, s2}. As S is a
minimum vertex cut of GD, we have that there exist edges s1h1, s2h

′
1, s1h2, s2h

′
2,

s1k, s2k
′ ∈ E(GD) with h1, h

′
1 ∈ V (H1), h2, h

′
2 ∈ V (H2) and k, k′ ∈ V (K) such

that h1 ̸= h′1 if |V (H1)| ≥ 2, h2 ̸= h′2 if |V (H2)| ≥ 2 and k ̸= k′ if |V (K)| ≥ 2.
Since H1, H2 and K are complete graphs, we have that Hi contains a Hamiltonian
path P i

hih′
i
with hi and h′i as ending vertices for any i with i ∈ {1, 2} and K

contains a Hamiltonian path Pkk′ with k and k′ as end-vertices. Thus, P 1
h′
1h1
∪

h1s1h2∪P 2
h2h′

2
∪h′2s2k′∪Pk′k is a spanning trail of GD, and so by (2), D contains

an ADS trail. This completes the proof of the theorem.

Using the definitions of D1 and D2, along with Theorem 9, the following
corollaries can be immediately obtained.

Corollary 10. Let D be a 2-strongly connected digraph with α2(D) = 3. Then
D contains an ADS trail if and only if D ̸∼= D7.

Corollary 11. Every 3-strongly connected digraph D with α2(D) = 3 contains
an ADS trail.
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