DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2023): 0.5

5-year Journal Impact Factor (2023): 0.6

CiteScore (2023): 2.2

SNIP (2023): 0.681

Discussiones Mathematicae Graph Theory

Article in press


Authors:

M. Chellali

Mustapha Chellali

Department of Mathematic
University of Blida
B.P. 270, Blida, ALGERIA

email: m_chellali@yahoo.com

0000-0001-5231-6195

T. W. Haynes

Teresa W. Haynes

Department of Mathematics and Statistics, East Tenessee State University

email: haynes@etsu.edu

0000-0002-0865-0871

S.T. Hedetniemi

Stephen T. Hedetniemi

Clemson Universty, Clemson, SC

email: hedet@clemson.edu

N. Meddah

Nacéra Meddah

LAMDA-RO Laboratory, Department of Mathematics, University of Blida, B.P. 270, Blida

email: meddahn11@yahoo.fr

Title:

Bounds on the $k$-conversion number

PDF

Source:

Discussiones Mathematicae Graph Theory

Received: 2024-01-16 , Revised: 2024-07-31 , Accepted: 2024-08-02 , Available online: 2024-09-09 , https://doi.org/10.7151/dmgt.2559

Abstract:

We consider a graphical model of the spread of influence through social networks, where the goal is to find a set of vertices in the network, such that if this initial set is ``influenced'', then after the application of a certain propagation process eventually every vertex in the graph will also be influenced. In particular, we seek a minimum set of vertices to be initially influenced and follow an iterative process, where for a fixed integer threshold $k \ge0$, a vertex outside the influenced set becomes influenced if at least $k$ of its neighbors are influenced. We determine bounds on the minimum number of vertices required in such a set for every integer $k\ge0$ and focus our study on the case for $k= 2$.

Keywords:

domination, irreversible $k$-threshold conversion, influence spread, conversion sets, target set selection process

References:

  1. X. Baogen, E.J. Cockayne, T.W. Haynes, S.T. Hedetniemi and Z. Shangchao, Extremal graphs for inequalities involving domination parameters, Discrete Math. 216 (2000) 1–10.
    https://doi.org/10.1016/S0012-365X(99)00251-4
  2. E.J. Cockayne, B. Gamble and B. Shepherd, An upper bound for the $k$-domination number of a graph, J. Graph Theory 9 (1985) 533–534.
    https://doi.org/10.1002/jgt.3190090414
  3. N. Chen, On the approximability of influence in social networks, SIAM J. Discrete Math. 23 (2009) 1400–1415.
    https://doi.org/10.1137/08073617X
  4. C.-Y. Chiang, L.-H. Huang and H.-G. Yeh, Target set selection problem for honeycomb networks, SIAM J. Discrete Math. 27 (2013) 310–328.
    https://doi.org/10.1137/120868864
  5. C.-Y. Chiang, L.-H. Huang, B.-J. Li, J. Wu and H.-G. Yeh, Some results on the target set selection problem, J. Comb. Optim. 25 (2013) 702–715.
    https://doi.org/10.1007/s10878-012-9518-3
  6. P.A. Dreyer, Applications and Variations of Domination in Graphs, PhD Thesis (Rutgers University, Piscataway, NJ, 2000).
  7. P.A. Dreyer Jr. and F.S. Roberts, Irreversible $k$-threshold processes: Graph-theoretical threshold models of the spread of disease and of opinion, Discrete Appl. Math. 157 (2009) 1615–1627.
    https://doi.org/10.1016/j.dam.2008.09.012
  8. O. Favaron, A. Hansberg and L. Volkmann, On $k$-domination and minimum degree in graphs, J. Graph Theory 57 (2008) 33–40.
    https://doi.org/10.1002/jgt.20279
  9. M.A. Fazli, M. Ghodsi, J. Habibi, P. Jalaly, V. Mirrokni and S. Sadeghian, On non-progressive spread of influence through social networks, Theoret. Comput. Sci. 550 (2014) 36–50.
    https://doi.org/10.1016/j.tcs.2014.07.009
  10. J.F. Fink and M.S. Jacobson, $n$-domination in graphs, in: Graph Theory with Applications to Algorithms and Computer Science, Y. Alavi and A.J. Schwenk (Ed(s)), (Wiley, New York 1985) 282–300.
  11. J.F. Fink and M.S. Jacobson, On $n$-domination, $n$-dependence and forbidden subgraphs, in: Graph Theory with Applications to Algorithms and Computer Science, Y. Alavi and A.J. Schwenk (Ed(s)), (Wiley, New York 1985) 301–311.
  12. J.F. Fink, M.S. Jacobson, L.F. Kinch and J. Roberts, On graphs having domination number half their order, Period. Math. Hungar. 16 (1985) 287–293.
    https://doi.org/10.1007/BF01848079
  13. A. Hansberg and L. Volkmann, Multiple domination, in: Topics in Domination in Graphs, T.W. Haynes, S.T. Hedetniemi and M.A. Henning (Ed(s)), Dev. Math. 64, (Springer, Cham, 2020) 151–203.
    https://doi.org/10.1007/978-3-030-51117-3_6
  14. H. Jiang and H. Wan, Target set selection in Cartesian product graphs, Ars Combin. 147 (2019) 361–373.
  15. D. Kempe, J. Kleinberg and É. Tardos, Maximizing the spread of influence through a social network, in: Proc. 9th ACM SIGKDD Int. Conf., (Washington, D.C. 2003) 137–146.
    https://doi.org/10.1145/956750.956769
  16. D. Kempe, J. Kleinberg and É. Tardos, Influential nodes in a diffusion model for social networks, in: Proc. 32nd Int. Colloq. Automata, Languages, and Programming (ICALP 2005), L. Caires, G.F. Italiano, L. Mateiro, C. Palamidessi and M. Yung (Ed(s)), Lecture Notes in Comput. Sci. 3580, (Springer, Berlin, Heidelberg, 2005) 1127–1138.
    https://doi.org/10.1007/11523468_91
  17. W. McCuaig and B. Shepherd, Domination in graphs with minimum degree two, J. Graph Theory 13 (1989) 749–762.
    https://doi.org/10.1002/jgt.3190130610
  18. C.M. Mynhardt and J.L. Wodlinger, The $k$-conversion number of regular graphs, AKCE Int. J. Graphs Comb. 17 (2020) 955–965.
    https://doi.org/10.1016/j.akcej.2019.12.016
  19. O. Ore, Theory of Graphs, Amer. Math. Soc. Colloq. Publ. 38 (Providence, RI, 1962).
    https://doi.org/10.1090/coll/038
  20. C. Payan and N.H. Xuong, Domination-balanced graphs, J. Graph Theory 6 (1982) 23–32.
    https://doi.org/10.1002/jgt.3190060104
  21. B. Randerath and L. Volkmann, Characterization of graphs with equal domination and covering number, Discrete Math. 191 (1998) 159–169.
    https://doi.org/10.1016/S0012-365X(98)00103-4
  22. B.A. Reed, Paths, stars and the number three, Combin. Probab. Comput. 5 (1996) 277–295.
    https://doi.org/10.1017/S0963548300002042
  23. F.S. Roberts, Graph-theoretical problems arising from defending against bioterrorism and controlling the spread of fires, in: Proc. DIMACS/DIMATIA/Renyi Combinatorial Challenges Conf., (Piscataway, NJ 2006).
  24. C. Stracke and L. Volkmann, A new domination conception, J. Graph Theory 17 (1993) 315–323.
    https://doi.org/10.1002/jgt.3190170306

Close