DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2023): 0.5

5-year Journal Impact Factor (2023): 0.6

CiteScore (2023): 2.2

SNIP (2023): 0.681

Discussiones Mathematicae Graph Theory

Article in volume


Authors:

G. Hao

Guoliang Hao

Heze University

email: guoliang-hao@163.com

0000-0002-1267-696X

X.D. Chen

Xiaodan Chen

Guangxi University

email: x.d.chen@live.cn

0000-0003-4264-1888

Z. Xie

Zhihong Xie

Heze University

email: xiezh168@163.com

0000-0001-7150-0852

S.M. Sheikholeslami

Seyed Mahmoud Sheikholeslami

Azarbaijan Shahid Madani university

email: s.m.sheikholeslami@azaruniv.ac.ir

0000-0003-2298-4744

Title:

Some results on the global triple Roman domination in graphs

PDF

Source:

Discussiones Mathematicae Graph Theory 45(2) (2025) 725-754

Received: 2024-01-04 , Revised: 2024-06-14 , Accepted: 2024-06-15 , Available online: 2024-09-07 , https://doi.org/10.7151/dmgt.2558

Abstract:

A triple Roman dominating function (TRDF) on a graph $G$ with vertex set $V$ is a function $f:V\rightarrow\{0,1,2,3,4\}$ such that for any vertex $v\in V$ with $f(v)<3,$ $\sum_{x\in N(v)\cup\{v\}}f(x)\ge|\{x\in N(v):f(x)\ge1\}|+3$, where $N(v)$ is the open neighborhood of $v.$ The weight of a TRDF $f$ is the value $\sum_{v\in V}f(v).$ A global triple Roman dominating function (GTRDF) on $G$ is a TRDF on both $G$ and its complement. The minimum weight of a GTRDF on $G$ is called the global triple Roman domination number $\gamma_{g[3R]}(G)$ of $G.$ We first show that for any tree $T$ on $n\ge5$ vertices, $\gamma_{g[3R]}(T) \le7n/4$ and characterize all extremal trees. We also show that for any graph $G$ on $n$ vertices, $\gamma_{g[3R]}(G)\ne3n-3,$ and further characterize all graphs $G$ with $\gamma_{g[3R]}(G)=3n-k$ for each $k\in\{4,5,6,7\},$ which improves the results given by Nahani Pour et al. (2022).

Keywords:

global triple Roman domination, triple Roman domination, complement, characterization

References:

  1. H. Abdollahzadeh Ahangar, M.P. Álvarez, M. Chellali, S.M. Sheikholeslami and J.C. Valenzuela-Tripodoro, Triple Roman domination in graphs, Appl. Math. Comput. 391 (2021) 125444.
    https://doi.org/10.1016/j.amc.2020.125444
  2. H. Abdollahzadeh Ahangar, J. Amjadi, M. Chellali, S. Nazari-Moghaddam and S.M. Sheikholeslami, Trees with double Roman domination number twice the domination number plus two, Iran. J. Sci. Technol. Trans. A Sci. 43 (2019) 1081–1088.
    https://doi.org/10.1007/s40995-018-0535-7
  3. R.A. Beeler, T.W. Haynes and S.T. Hedetniemi, Double Roman domination, Discrete Appl. Math. 211 (2016) 23–29.
    https://doi.org/10.1016/j.dam.2016.03.017
  4. M. Chellali, N. Jafari Rad, S.M. Sheikholeslami and L. Volkmann, Roman domination in graphs, in: Topics in Domination in Graphs, T.W. Haynes, S.T.Hedetniemi and M.A. Henning (Ed(s)), Dev. Math. 64, (Springer, Cham, 2020) 365–409.
    https://doi.org/10.1007/978-3-030-51117-3_11
  5. M. Chellali, N. Jafari Rad, S.M. Sheikholeslami and L. Volkmann, Varieties of Roman domination, in: Structures of Domination in Graphs, T.W. Haynes, S.T. Hedetniemi and M.A. Henning (Ed(s)), Dev. Math. 66, (Springer, Cham, 2021) 273–307.
    https://doi.org//10.1007/978-3-030-58892-2_10
  6. M. Chellali, N. Jafari Rad, S.M. Sheikholeslami and L. Volkmann, Varieties of Roman domination II, AKCE Int. J. Graphs Comb. 17 (2020) 966–984.
    https://doi.org/10.1016/j.akcej.2019.12.001
  7. M. Chellali, N. Jafari Rad, S.M. Sheikholeslami and L. Volkmann, The Roman domatic problem in graphs and digraphs: a survey, Discuss. Math. Graph Theory 42 (2022) 861–891.
    https://doi.org/10.7151/dmgt.2313
  8. M. Chellali, N. Jafari Rad, S.M. Sheikholeslami and L. Volkmann, A survey on Roman domination parameters in directed graphs, J. Combin. Math. Combin. Comput. 115 (2020) 141–171.
  9. A.T. Egunjobi and T.W. Haynes, Perfect double Roman domination of trees, Discrete Appl. Math. 284 (2020) 71–85.
    https://doi.org/10.1016/j.dam.2020.03.021
  10. M. Hajjari, H. Abdollahzadeh Ahangar, R. Khoeilar, Z. Shao and S.M. Sheikholeslami, New bounds on the triple Roman domination number of graphs, J. Math. 2022 (2022) 9992618.
    https://doi.org/10.1155/2022/9992618
  11. G. Hao, L. Volkmann and D.A. Mojdeh, Total double Roman domination in graphs, Commun. Comb. Optim. 5 (2020) 27–39.
    https://doi.org/10.22049/cco.2019.26484.1118
  12. N. Jafari Rad and H. Rahbani, Some progress on the double Roman domination in graphs, Discuss. Math. Graph Theory 39 (2019) 41–53.
    https://doi.org/10.7151/dmgt.2069
  13. R. Khoeilar, M. Chellali, H. Karami and S.M. Sheikholeslami, An improved upper bound on the double Roman domination number of graphs with minimum degree at least two, Discrete Appl. Math. 270 (2019) 159–167.
    https://doi.org/10.1016/j.dam.2019.06.018
  14. F. Nahani Pour, H. Abdollahzadeh Ahangar, M. Chellali and S.M. Sheikholeslami, Global triple Roman dominating function, Discrete Appl. Math. 314 (2022) 228–237.
    https://doi.org/10.1016/j.dam.2022.02.015
  15. A. Poureidi, Double Roman domination in graphs: algorithmic complexity, Commun. Comb. Optim. 8 (2023) 491–503.
    https://doi.org/10.22049/cco.2022.27661.1309
  16. A. Poureidi and J. Fathali, Algorithmic complexity of triple Roman dominating functions on graphs, Commun. Comb. Optim. 9 (2024) 217–232.
    https://doi.org/10.22049/cco.2023.27884.1385
  17. L. Ouldrabah and L. Volkmann, An upper bound on the double Roman domination number, Bull. Iranian Math. Soc. 47 (2021) 1315–1323.
    https://doi.org/10.1007/s41980-020-00442-1
  18. Z. Shao, R. Khoeilar, H. Karami, M. Chellali and S.M. Sheikholeslami, Disprove of a conjecture on the double Roman domination number, Aequationes Math. 98 (2024) 241–260.
    https://doi.org/10.1007/s00010-023-01029-x
  19. L. Volkmann, Double Roman domination and domatic numbers of graphs, Commun. Comb. Optim. 3 (2018) 71–77.
    https://doi.org/10.22049/cco.2018.26125.1078

Close